51
|
Sun H, Yang J, Song H. Engineering mycobacteria artificial promoters and ribosomal binding sites for enhanced sterol production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Sengupta A, Madhu S, Wangikar PP. A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria. ACS Synth Biol 2020; 9:1790-1801. [PMID: 32551554 DOI: 10.1021/acssynbio.0c00152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyanobacteria are emerging as hosts for various biotechnological applications. The ability to engineer these photosynthetic prokaryotes greatly depends on the availability of well-characterized promoters. Inducer-free promoters of a range of activities may be desirable for the eventual large-scale, outdoor cultivations. Further, several native promoters of cyanobacteria are repressed by high carbon dioxide or light, and it would be of interest to alter this property. We started with PrbcL and PcpcB, the well-characterized native promoters of the model cyanobacterium Synechococcus elongatus PCC 7942, found upstream of the two abundantly expressed genes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase, and phycocyanin β-1 subunit, respectively. The library of 48 promoters created via error-prone PCR of these 300-bp-long native promoters showed 2 orders of magnitude dynamic range with activities that were both lower and higher than those of the wild-type promoters. A few mutants of the PrbcL showed greater strength than PcpcB, which is widely considered a superstrong promoter. A number of mutant promoters did not show repression by high CO2 or light, typically found for PrbcL and PcpcB, respectively. Further, the wild-type and mutant promoters showed comparable activities in the fast-growing and stress-tolerant strains S. elongatus PCC 11801 and PCC 11802, suggesting that the library can be used in different cyanobacteria. Interestingly, the majority of the promoters showed strong expression in E. coli, thus adding to the repertoire of inducer-free promoters for this heterotrophic workhorse. Our results have implications in the metabolic engineering of cyanobacteria and E. coli.
Collapse
|
53
|
Behle A, Saake P, Germann AT, Dienst D, Axmann IM. Comparative Dose-Response Analysis of Inducible Promoters in Cyanobacteria. ACS Synth Biol 2020; 9:843-855. [PMID: 32134640 DOI: 10.1021/acssynbio.9b00505] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design and implementation of synthetic biological circuits highly depends on well-characterized, robust promoters with predictable input-output responses. While great progress has been made with heterotrophic model organisms such as Escherichia coli, the available variety of tunable promoter parts for phototrophic cyanobacteria is still limited. Commonly used synthetic and semisynthetic promoters show weak dynamic ranges or no regulation at all in cyanobacterial models. Well-controlled alternatives such as native metal-responsive promoters, however, pose the problems of inducer toxicity and lacking orthogonality. Here, we present the comparative assessment of dose-response functions of four different inducible promoter systems in the model cyanobacterium Synechocystis sp. PCC 6803. Using the novel bimodular reporter plasmid pSHDY, dose-response dynamics of the re-established vanillate-inducible promoter PvanCC was compared to the previously described rhamnose-inducible Prha, the anhydrotetracycline-inducible PL03, and the Co2+-inducible PcoaT. We estimate individual advantages and disadvantages regarding dynamic range and strength of each promoter, also in comparison with well-established constitutive systems. We observed a delicate balance between transcription factor toxicity and sufficient expression to obtain a dose-dependent response to the inducer. In summary, we expand the current understanding and employability of inducible promoters in cyanobacteria, facilitating the scalability and robustness of synthetic regulatory network designs and of complex metabolic pathway engineering strategies.
Collapse
Affiliation(s)
- Anna Behle
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Pia Saake
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Anna T. Germann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Dennis Dienst
- Department of Chemistry − Ångström, Uppsala University, 75120 Uppsala, Sweden
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
54
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|
55
|
Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metab Eng Commun 2020; 10:e00125. [PMID: 32123662 PMCID: PMC7038009 DOI: 10.1016/j.mec.2020.e00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/28/2019] [Accepted: 02/03/2020] [Indexed: 11/21/2022] Open
Abstract
Squalene is a triterpene which is produced as a precursor for a wide range of terpenoid compounds in many organisms. It has commercial use in food and cosmetics but could also be used as a feedstock for production of chemicals and fuels, if generated sustainably on a large scale. We have engineered a cyanobacterium, Synechocystis sp. PCC 6803, for production of squalene from CO2. In this organism, squalene is produced via the methylerythritol-phosphate (MEP) pathway for terpenoid biosynthesis, and consumed by the enzyme squalene hopene cyclase (Shc) for generation of hopanoids. The gene encoding Shc in Synechocystis was inactivated (Δshc) by insertion of a gene encoding a squalene synthase from the green alga Botryococcus braunii, under control of an inducible promoter. We could demonstrate elevated squalene generation in cells where the algal enzyme was induced. Heterologous overexpression of genes upstream in the MEP pathway further enhanced the production of squalene, to a level three times higher than the Δshc background strain. During growth in flat panel bioreactors, a squalene titer of 5.1 mg/L of culture was reached.
Collapse
|
56
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
57
|
Till P, Toepel J, Bühler B, Mach RL, Mach-Aigner AR. Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 2020; 104:1977-1991. [PMID: 31965222 PMCID: PMC7007895 DOI: 10.1007/s00253-019-10344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 11/24/2022]
Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light. Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new promoters have been discovered or engineered for cyanobacteria. Moreover, alternative tools and strategies for expression control such as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
58
|
Self-Redirection of Metabolic Flux Toward Squalene and Ethanol Pathways by Engineered Yeast. Metabolites 2020; 10:metabo10020056. [PMID: 32024107 PMCID: PMC7074498 DOI: 10.3390/metabo10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022] Open
Abstract
We have previously reported that squalene overproducing yeast self-downregulate the expression of the ethanol pathway (non-essential pathway) to divert the metabolic flux to the squalene pathway. In this study, the effect of co-production of squalene and ethanol on other non-essential pathways (fusel alcohol pathway, FA) of Saccharomyces cerevisiae was evaluated. However, before that, 13 constitutive promoters, like IRA1p, PET9p, RHO1p, CMD1p, ATP16p, USA3p,RER2p, COQ1p, RIM1p, GRS1p, MAK5p, and BRN1p, were engineered using transcription factor bindings sites from strong promoters HHF2p (−300 to −669 bp) and TEF1p (−300 to −579 bp), and employed to co-overexpress squalene and ethanol pathways in S. cerevisiae. The FSE strain overexpressing the key genes of the squalene pathway accumulated 56.20 mg/L squalene, a 16.43-fold higher than wild type strain (WS). The biogenesis of lipid droplets was stimulated by overexpressing DGA1 and produced 106 mg/L squalene in the FSE strain. AFT1p and CTR1p repressible promoters were also characterized and employed to downregulate the expression of ERG1, which also enhanced the production of squalene in FSE strain up to 42.85- (148.67 mg/L) and 73.49-fold (255.11 mg/L) respectively. The FSE strain was further engineered by overexpressing the key genes of the ethanol pathway and produced 40.2 mg/mL ethanol in the FSE1 strain, 3.23-fold higher than the WS strain. The FSE1 strain also self-downregulated the expression of the FA pathway up to 73.9%, perhaps by downregulating the expression of GCN4 by 2.24-fold. We demonstrate the successful tuning of the strength of yeast promoters and highest coproduction of squalene and ethanol in yeast, and present GCN4 as a novel metabolic regulator that can be manipulated to divert the metabolic flux from the non-essential pathway to engineered pathways.
Collapse
|
59
|
Durall C, Lindberg P, Yu J, Lindblad P. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:16. [PMID: 32010220 PMCID: PMC6988332 DOI: 10.1186/s13068-020-1653-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. RESULTS The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobacterium Synechocystis PCC 6803 with increased phosphoenolpyruvate carboxylase (PEPc) levels. The resulting engineered strain (CD-P) showed significantly increased ethylene production (10.5 ± 3.1 µg mL-1 OD-1 day-1) compared to the control strain (6.4 ± 1.4 µg mL-1 OD-1 day-1). Interestingly, extra copies of the native pepc or the heterologous expression of PEPc from the cyanobacterium Synechococcus PCC 7002 (Synechococcus) in the CD-P, increased ethylene production (19.2 ± 1.3 and 18.3 ± 3.3 µg mL-1 OD-1 day-1, respectively) when the cells were treated with the acetyl-CoA carboxylase inhibitor, cycloxydim. A heterologous expression of phosphoenolpyruvate synthase (PPSA) from Synechococcus in the CD-P also increased ethylene production (16.77 ± 4.48 µg mL-1 OD-1 day-1) showing differences in the regulation of the native and the PPSA from Synechococcus in Synechocystis. CONCLUSIONS This work demonstrates that genetic rewiring of cyanobacterial central carbon metabolism can enhance carbon supply to the TCA cycle and thereby further increase ethylene production.
Collapse
Affiliation(s)
- Claudia Durall
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
60
|
Hitchcock A, Hunter CN, Canniffe DP. Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microb Biotechnol 2019; 13:363-367. [PMID: 31880868 PMCID: PMC7017823 DOI: 10.1111/1751-7915.13526] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/26/2022] Open
Abstract
Cyanobacteria are prokaryotic phototrophs that, in addition to being excellent model organisms for studying photosynthesis, have tremendous potential for light‐driven synthetic biology and biotechnology. These versatile and resilient microorganisms harness the energy of sunlight to oxidise water, generating chemical energy (ATP) and reductant (NADPH) that can be used to drive sustainable synthesis of high‐value natural products in genetically modified strains. In this commentary article for the Synthetic Microbiology Caucus we discuss the great progress that has been made in engineering cyanobacterial hosts as microbial cell factories for solar‐powered biosynthesis. We focus on some of the main areas where the synthetic biology and metabolic engineering tools in cyanobacteria are not as advanced as those in more widely used heterotrophic chassis, and go on to highlight key improvements that we feel are required to unlock the full power of cyanobacteria for future green biotechnology.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Daniel P Canniffe
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
61
|
Büchsenschütz HC, Vidimce‐Risteski V, Eggbauer B, Schmidt S, Winkler CK, Schrittwieser JH, Kroutil W, Kourist R. Stereoselective Biotransformations of Cyclic Imines in Recombinant Cells of
Synechocystis
sp. PCC 6803. ChemCatChem 2019. [DOI: 10.1002/cctc.201901592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology NAWI Graz, BioTechMedGraz University of Technology Petersgasse 14 Graz 8010 Austria
| | | | - Bettina Eggbauer
- Institute of Molecular Biotechnology NAWI Graz, BioTechMedGraz University of Technology Petersgasse 14 Graz 8010 Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology NAWI Graz, BioTechMedGraz University of Technology Petersgasse 14 Graz 8010 Austria
| | - Christoph K. Winkler
- Austrian Centre of Industrial Biotechnology (acib GmbH) Krenngasse 37 Graz 8010 Austria
- Institute of Chemistry, Organic & Bioorganic Chemistry NAWI Graz, BioTechMed GrazUniversity of Graz Heinrichstraße 28/II Graz 8010 Austria
| | - Joerg H. Schrittwieser
- Institute of Chemistry, Organic & Bioorganic Chemistry NAWI Graz, BioTechMed GrazUniversity of Graz Heinrichstraße 28/II Graz 8010 Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology (acib GmbH) Krenngasse 37 Graz 8010 Austria
- Institute of Chemistry, Organic & Bioorganic Chemistry NAWI Graz, BioTechMed GrazUniversity of Graz Heinrichstraße 28/II Graz 8010 Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology NAWI Graz, BioTechMedGraz University of Technology Petersgasse 14 Graz 8010 Austria
- Austrian Centre of Industrial Biotechnology (acib GmbH) Krenngasse 37 Graz 8010 Austria
| |
Collapse
|
62
|
Kalkreuter E, Pan G, Cepeda AJ, Shen B. Targeting Bacterial Genomes for Natural Product Discovery. Trends Pharmacol Sci 2019; 41:13-26. [PMID: 31822352 DOI: 10.1016/j.tips.2019.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
Bacterial natural products (NPs) and their analogs constitute more than half of the new small molecule drugs developed over the past few decades. Despite this success, interest in natural products from major pharmaceutical companies has decreased even as genomics has uncovered the large number of biosynthetic gene clusters (BGCs) that encode for novel natural products. To date, there is still a lack of universal strategies and enabling technologies to discover natural products at scale and speed. This review highlights several of the opportunities provided by genome sequencing and bioinformatics, challenges associated with translating genomes into natural products, and examples of successful strain prioritization and BGC activation strategies that have been used in the genomic era for natural product discovery from cultivatable bacteria.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alexis J Cepeda
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
63
|
Dann M, Leister D. Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow. Nat Commun 2019; 10:5299. [PMID: 31757966 PMCID: PMC6876563 DOI: 10.1038/s41467-019-13223-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
In plants and cyanobacteria, the PGR5 protein contributes to cyclic electron flow around photosystem I. In plants, PGR5 interacts with PGRL1 during cyclic electron flow, but cyanobacteria appear to lack PGRL1 proteins. We have heterologously expressed the PGR5 and PGRL1 proteins from the plant Arabidopsis in various genetic backgrounds in the cyanobacterium Synechocystis. Our results show that plant PGR5 suffices to re-establish cyanobacterial cyclic electron flow (CEF), albeit less efficiently than the cyanobacterial PGR5 or the plant PGR5 and PGRL1 proteins together. A mutation that inactivates Arabidopsis PGR5 destabilises the protein in Synechocystis. Furthermore, the Synechocystis protein Sll1217, which exhibits weak sequence similarity with PGRL1, physically interacts with both plant and cyanobacterial PGR5 proteins, and stimulates CEF in Synechocystis. Therefore, Sll1217 partially acts as a PGRL1 analogue, the mode of action of PGR5 and PGRL1/Sll1217 proteins is similar in cyanobacteria and plants, and PGRL1 could have evolved from a cyanobacterial ancestor.
Collapse
Affiliation(s)
- Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University Munich, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University Munich, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany.
| |
Collapse
|
64
|
Zhou Y, Sun T, Chen Z, Song X, Chen L, Zhang W. Development of a New Biocontainment Strategy in Model Cyanobacterium Synechococcus Strains. ACS Synth Biol 2019; 8:2576-2584. [PMID: 31577416 DOI: 10.1021/acssynbio.9b00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent synthetic biology efforts have raised biosafety concerns for possible release of engineered cyanobacteria into natural environments. To address the issues, we developed a controllable metal ion induced biocontainment system for two model cyanobacteria. First, six ion-inducible promoters were respectively evaluated in both Synechococcus elongatus PCC 7942 and the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973, leading to the identification of an iron ion-repressed promoter PisiAB with low leakage and a reduction-fold of 5.4 and 7.9, respectively. Second, holin-endolysin and nuclease NucA systems were introduced, the inhibition rate of which against two Synechococcus strains varied from 61% to 86.4%. Third, two toxin/antitoxin modules were identified capable of inducing programmed suicide in both Synechococcus strains after induction. Furthermore, an escape experiment was conducted and the results showed that the system was able to achieve an escape frequency below the detection limit of 10-9 after 3 days' duration, demonstrating the strategy integrating iron ion-inducible promoter PisiAB and that toxin/antitoxin modules could be a useful tool for cyanobacterium biocontainment.
Collapse
Affiliation(s)
- Yuqing Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | | | - Zixi Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | | | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
65
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
66
|
A Comparison of Constitutive and Inducible Non-Endogenous Keto-Carotenoids Biosynthesis in Synechocystis sp. PCC 6803. Microorganisms 2019; 7:microorganisms7110501. [PMID: 31661899 PMCID: PMC6920976 DOI: 10.3390/microorganisms7110501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 12/05/2022] Open
Abstract
The model cyanobacterium Synechocystis sp. PCC 6803 has gained significant attention as an alternative and sustainable source for biomass, biofuels and added-value compounds. The latter category includes keto-carotenoids, which are molecules largely employed in a wide spectrum of industrial applications in the food, feed, nutraceutical, cosmetic and pharmaceutical sectors. Keto-carotenoids are not naturally synthesized by Synechocystis, at least in any significant amounts, but their accumulation can be induced by metabolic engineering of the endogenous carotenoid biosynthetic pathway. In this study, the accumulation of the keto-carotenoids astaxanthin and canthaxanthin, resulting from the constitutive or temperature-inducible expression of the CrtW and CrtZ genes from Brevundimonas, is compared. The benefits and drawbacks of the two engineering approaches are discussed.
Collapse
|
67
|
Gale GAR, Schiavon Osorio AA, Mills LA, Wang B, Lea-Smith DJ, McCormick AJ. Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms 2019; 7:E409. [PMID: 31569579 PMCID: PMC6843473 DOI: 10.3390/microorganisms7100409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - Alejandra A Schiavon Osorio
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
68
|
Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria. ENERGIES 2019. [DOI: 10.3390/en12183515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the public awareness for climate change has risen, increasing scientific effort has been made to find and develop alternative resources and production processes to reduce the dependency on petrol-based fuels and chemicals of our society. Among others, the biotechnological fuel production, as for example fermenting sugar-rich crops to ethanol, is one of the main strategies. For this purpose, various classical production systems like Escherichia coli or Saccharomyces cerevisiae are used and have been optimized via genetic modifications. Despite the progress made, this strategy competes for nutritional resources and agricultural land. To overcome this problem, various attempts were made for direct photosynthetic driven ethanol synthesis with different microalgal species including cyanobacteria. However, compared to existing platforms, the development of cyanobacteria as photoautotrophic cell factories has just started, and accordingly, the ethanol yield of established production systems is still unreached. This is mainly attributed to low ethanol tolerance levels of cyanobacteria and there is still potential for optimizing the cyanobacteria towards alternative gene expression systems. Meanwhile, several improvements were made by establishing new toolboxes for synthetic biology offering new possibilities for advanced genetic modifications of cyanobacteria. Here, current achievements and innovations of those new molecular tools are discussed.
Collapse
|
69
|
Vavitsas K, Crozet P, Vinde MH, Davies F, Lemaire SD, Vickers CE. The Synthetic Biology Toolkit for Photosynthetic Microorganisms. PLANT PHYSIOLOGY 2019; 181:14-27. [PMID: 31262955 PMCID: PMC6716251 DOI: 10.1104/pp.19.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/09/2019] [Indexed: 05/10/2023]
Abstract
Photosynthetic microorganisms offer novel characteristics as synthetic biology chassis, and the toolbox of components and techniques for cyanobacteria and algae is rapidly increasing.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Marcos Hamborg Vinde
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Fiona Davies
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| |
Collapse
|
70
|
Bartasun P, Prandi N, Storch M, Aknin Y, Bennett M, Palma A, Baldwin G, Sakuragi Y, Jones PR, Rowland J. The effect of modulating the quantity of enzymes in a model ethanol pathway on metabolic flux in Synechocystis sp. PCC 6803. PeerJ 2019; 7:e7529. [PMID: 31523505 PMCID: PMC6717505 DOI: 10.7717/peerj.7529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into Synechocystis sp. PCC 6803. We characteriseda new set of ribosome binding site sequences in Synechocystis sp. PCC 6803 providing a range of translation strengths for different genes under test. The effect of ribosome-bindingsite sequence, operon design and modifications to native metabolism on pathway flux was analysed by HPLC. The accumulation of all introduced proteins was also quantified using selected reaction monitoring mass spectrometry. Pathway productivity was more strongly dependent on the accumulation of pyruvate decarboxylase than acetaldehyde reductase. In fact, abolishment of reductase over-expression resulted in the greatest ethanol productivity, most likely because strains harbouringsingle-gene constructs accumulated more pyruvate decarboxylase than strains carrying any of the multi-gene constructs. Overall, several lessons were learned. Firstly, the expression level of the first gene in anyoperon influenced the expression level of subsequent genes, demonstrating that translational coupling can also occur in cyanobacteria. Longer operons resulted in lower protein abundance for proximally-encoded cistrons. And, implementation of metabolic engineering strategies that have previously been shown to enhance the growth or yield of pyruvate dependent products, through co-expression with pyruvate kinase and/or fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase, indicated that other factors had greater control over growth and metabolic flux under the tested conditions.
Collapse
Affiliation(s)
- Paulina Bartasun
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole Prandi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marko Storch
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yarin Aknin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mark Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Arianna Palma
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Geoff Baldwin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - John Rowland
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
71
|
Azevedo R, Lopes JL, de Souza MM, Quirino BF, Cançado LJ, Marins LF. Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:174. [PMID: 31303894 PMCID: PMC6607534 DOI: 10.1186/s13068-019-1505-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The production of glucose from cellulose requires cellulases, which are obtained from decomposing microorganisms such as fungi and bacteria. Among the cellulases, β-glucosidases convert cellobiose to glucose and have low concentration in commercial cocktails used for the production of second-generation (2G) ethanol. Genetic engineering can be used to produce recombinant β-glucosidases, and cyanobacteria may be interesting bioreactors. These photosynthetic microorganisms can be cultured using CO2 emitted from the first-generation ethanol (1G) industry as a carbon source. In addition, vinasse, an effluent of 1G ethanol production, can be used as a source of nitrogen for cyanobacteria growth. Thus, photosynthetic bioreactors cannot only produce cellulases at a lower cost, but also reduce the environmental impact caused by residues of 1G ethanol production. RESULTS In the present work, we produced a strain of Synechococcus elongatus capable of expressing high levels of a heterologous β-glucosidase from a microorganism from the Amazonian soil. For this, the pET system was cloned into cyanobacteria genome. This system uses a dedicated T7 RNA polymerase for the expression of the gene of interest under the control of a nickel-inducible promoter. The results showed that the pET system functions efficiently in S. elongatus, once nickel induced T7 RNA polymerase expression which, in turn, induced expression of the gene of the microbial β-glucosidase at high levels when compared with non-induced double transgenic strain. β-glucosidase activity was more than sevenfold higher in the transformed cyanobacteria than in the wild-type strain. CONCLUSIONS The T7 system promotes high expression levels of the cloned gene in S. elongatus, demonstrating that the arrangement in which an exclusive RNA polymerase is used for transcription of heterologous genes may contribute to high-level gene expression in cyanobacteria. This work was the first to demonstrate the use of cyanobacteria for the production of recombinant β-glucosidases. This strategy could be an alternative to reduce the release of 1G ethanol by-products such as CO2 and vinasse, not only contributing to decrease the cost of β-glucosidase production, but also mitigating the environmental impacts of ethanol industrial plants.
Collapse
Affiliation(s)
- Raíza Azevedo
- Laboraty of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil
| | - Jéssika Lawall Lopes
- Laboraty of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil
| | - Manuel Macedo de Souza
- Institute of Oceanography (IO), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil
| | | | | | - Luis Fernando Marins
- Laboraty of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
72
|
Khan AZ, Bilal M, Mehmood S, Sharma A, Iqbal HMN. State-of-the-Art Genetic Modalities to Engineer Cyanobacteria for Sustainable Biosynthesis of Biofuel and Fine-Chemicals to Meet Bio-Economy Challenges. Life (Basel) 2019; 9:life9030054. [PMID: 31252652 PMCID: PMC6789541 DOI: 10.3390/life9030054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic engineering of microorganisms has attained much research interest to produce biofuels and industrially pertinent chemicals. Owing to the relatively fast growth rate, genetic malleability, and carbon neutral production process, cyanobacteria has been recognized as a specialized microorganism with a significant biotechnological perspective. Metabolically engineering cyanobacterial strains have shown great potential for the photosynthetic production of an array of valuable native or non-native chemicals and metabolites with profound agricultural and pharmaceutical significance using CO2 as a building block. In recent years, substantial improvements in developing and introducing novel and efficient genetic tools such as genome-scale modeling, high throughput omics analyses, synthetic/system biology tools, metabolic flux analysis and clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (CRISPR/cas) systems have been made for engineering cyanobacterial strains. Use of these tools and technologies has led to a greater understanding of the host metabolism, as well as endogenous and heterologous carbon regulation mechanisms which consequently results in the expansion of maximum productive ability and biochemical diversity. This review summarizes recent advances in engineering cyanobacteria to produce biofuel and industrially relevant fine chemicals of high interest. Moreover, the development and applications of cutting-edge toolboxes such as the CRISPR-cas9 system, synthetic biology, high-throughput "omics", and metabolic flux analysis to engineer cyanobacteria for large-scale cultivation are also discussed.
Collapse
Affiliation(s)
- Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Shahid Mehmood
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
73
|
Monshupanee T, Chairattanawat C, Incharoensakdi A. Disruption of cyanobacterial γ-aminobutyric acid shunt pathway reduces metabolites levels in tricarboxylic acid cycle, but enhances pyruvate and poly(3-hydroxybutyrate) accumulation. Sci Rep 2019; 9:8184. [PMID: 31160681 PMCID: PMC6547876 DOI: 10.1038/s41598-019-44729-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
The photoautotrophic cyanobacterium Synechocystis sp. PCC 6803 assimilates carbon dioxide as the sole carbon source, and a major portion of the assimilated carbon is metabolically consumed by the tricarboxylic acid (TCA) cycle. Effects of partial interference of TCA cycle metabolic activity on other carbon metabolism have yet to be examined. Here, the γ-aminobutyric acid (GABA) shunt, one of the metabolic pathways for completing TCA cycle in Synechocystis, was disrupted via inactivating the glutamate decarboxylase gene (gdc). Under normal photoautotrophic condition, cell growth and the level of the TCA cycle metabolites succinate, malate and citrate were decreased by 25%, 35%, 19% and 28%, respectively, in Δgdc mutant relative to those in the wild type (WT). The cellular levels of glycogen and total lipids of the Δgdc mutant were comparable to those of the WT, but the intracellular levels of pyruvate and bioplastic poly(3-hydroxybutyrate) (PHB) were 1.23- and 2.50-fold higher, respectively, in Δgdc mutant. Thus, disruption of the GABA shunt pathway reduced the TCA cycle metabolites levels, but positively enhanced the bioaccumulation of pyruvate and PHB. The PHB production rate in Δgdc mutant was 2.0-fold higher than in the WT under normal photoautotrophy.
Collapse
Affiliation(s)
- Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chayanee Chairattanawat
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
74
|
Hoschek A, Bühler B, Schmid A. Stabilization and scale‐up of photosynthesis‐driven ω‐hydroxylation of nonanoic acid methyl ester by two‐liquid phase whole‐cell biocatalysis. Biotechnol Bioeng 2019; 116:1887-1900. [DOI: 10.1002/bit.27006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Anna Hoschek
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| |
Collapse
|
75
|
Sengupta A, Sunder AV, Sohoni SV, Wangikar PP. Fine-Tuning Native Promoters of Synechococcus elongatus PCC 7942 To Develop a Synthetic Toolbox for Heterologous Protein Expression. ACS Synth Biol 2019; 8:1219-1223. [PMID: 30973704 DOI: 10.1021/acssynbio.9b00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 is a potential photosynthetic cell-factory. In this study, two native promoters from S. elongatus PCC 7942 driving the expression of abundant cyanobacterial proteins phycocyanin (P cpcB7942) and RuBisCO (P rbc7942) were characterized in relation to their sequence features, expression levels, diurnal behavior, and regulation by light and CO2, major abiotic factors important for cyanobacterial growth. P cpcB7942 was repressed under high light intensity, but cultivation at higher CO2 concentration was able to recover promoter activity. On the other hand, P rbc7942 was repressed by elevated CO2 with a negative regulatory region between 300 and 225 bp. Removal of this region flipped the effect of CO2 with Rbc225 being activated only at high CO2 concentration, besides leading to the loss of circadian rhythm. The results from this study on promoter features and regulation will help expand the repertoire of tools for pathway engineering in cyanobacteria.
Collapse
|
76
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
77
|
Vasudevan R, Gale GAR, Schiavon AA, Puzorjov A, Malin J, Gillespie MD, Vavitsas K, Zulkower V, Wang B, Howe CJ, Lea-Smith DJ, McCormick AJ. CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. PLANT PHYSIOLOGY 2019; 180:39-55. [PMID: 30819783 PMCID: PMC6501082 DOI: 10.1104/pp.18.01401] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/16/2019] [Indexed: 05/10/2023]
Abstract
Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.
Collapse
Affiliation(s)
- Ravendran Vasudevan
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Alejandra A Schiavon
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Anton Puzorjov
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - John Malin
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Michael D Gillespie
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Konstantinos Vavitsas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- CSIRO, Synthetic Biology Future Science Platform, Brisbane, Queensland 4001, Australia
| | - Valentin Zulkower
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
78
|
Jin H, Lindblad P, Bhaya D. Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803. ACS Synth Biol 2019; 8:655-660. [PMID: 30935196 DOI: 10.1021/acssynbio.8b00515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop tightly regulated orthogonal gene expression circuits in the photoautotrophic cyanobacterium Synechocystis sp. PCC6803 (Syn6803), we designed a circuit in which a native inducible promoter drives the expression of phage T7 RNA polymerase (T7RNAP). T7RNAP, in turn, specifically recognizes the T7 promoter that is designed to drive GFP expression. In Syn6803, this T7RNAP/T7promoter-GFP circuit produces high GFP fluorescence, which was further enhanced by using mutant T7 promoters. We also tested two orthogonal inducible promoters, Trc1O and L03, but these promoters drive T7RNAP to levels that are toxic in E. coli. Introduction of a protein degradation tag alleviated this problem. However, in Syn6803, these circuits did not function successfully. This highlights the underappreciated fact that similar circuits work with varying efficiencies in different chassis organisms. This lays the groundwork for developing new orthogonally controlled phage RNA polymerase-dependent expression systems in Syn6803.
Collapse
Affiliation(s)
- Haojie Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE 75120, Uppsala, Sweden
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, United States
| |
Collapse
|
79
|
Santos-Merino M, Singh AK, Ducat DC. New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering. Front Bioeng Biotechnol 2019; 7:33. [PMID: 30873404 PMCID: PMC6400836 DOI: 10.3389/fbioe.2019.00033] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Cyanobacteria are promising microorganisms for sustainable biotechnologies, yet unlocking their potential requires radical re-engineering and application of cutting-edge synthetic biology techniques. In recent years, the available devices and strategies for modifying cyanobacteria have been increasing, including advances in the design of genetic promoters, ribosome binding sites, riboswitches, reporter proteins, modular vector systems, and markerless selection systems. Because of these new toolkits, cyanobacteria have been successfully engineered to express heterologous pathways for the production of a wide variety of valuable compounds. Cyanobacterial strains with the potential to be used in real-world applications will require the refinement of genetic circuits used to express the heterologous pathways and development of accurate models that predict how these pathways can be best integrated into the larger cellular metabolic network. Herein, we review advances that have been made to translate synthetic biology tools into cyanobacterial model organisms and summarize experimental and in silico strategies that have been employed to increase their bioproduction potential. Despite the advances in synthetic biology and metabolic engineering during the last years, it is clear that still further improvements are required if cyanobacteria are to be competitive with heterotrophic microorganisms for the bioproduction of added-value compounds.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Amit K. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
80
|
Angeleri M, Muth-Pawlak D, Wilde A, Aro EM, Battchikova N. Global proteome response ofSynechocystis6803 to extreme copper environments applied to control the activity of the induciblepetJpromoter. J Appl Microbiol 2019; 126:826-841. [DOI: 10.1111/jam.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- M. Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - D. Muth-Pawlak
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - A. Wilde
- Molecular Genetics of Prokaryotes; University of Freiburg; Freiburg Germany
| | - E.-M. Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - N. Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| |
Collapse
|
81
|
Metabolic engineering tools in model cyanobacteria. Metab Eng 2018; 50:47-56. [DOI: 10.1016/j.ymben.2018.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
|
82
|
Functional Genetic Elements for Controlling Gene Expression in Cupriavidus necator H16. Appl Environ Microbiol 2018; 84:AEM.00878-18. [PMID: 30030234 PMCID: PMC6146998 DOI: 10.1128/aem.00878-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements, such as constitutive and inducible promoters as well as ribosome binding sites (RBSs), are required. In this study, we designed, built, and tested promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within a >700-fold dynamic range was compared to the native P phaC , with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were evaluated. By supplying different concentrations of inducers, a >1,000-fold range of gene expression levels was achieved. Application of inducible systems for controlling expression of the isoprene synthase gene ispS led to isoprene yields that exhibited a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was also evaluated. A second-order polynomial relationship was observed between the RBS activities and isoprene yields. This report presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necatorIMPORTANCE This report provides tools for robust and predictable control of gene expression in the model lithoautotroph C. necator H16. To address a current need, we designed, built, and tested promoters and RBSs for controlling gene expression in C. necator H16. To answer a question on how existing and newly developed inducible systems compare, two positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and two negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were quantitatively evaluated and their induction kinetics analyzed. To establish if gene expression can be further improved, the effect of genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was evaluated. Using isoprene production as an example, the study investigated if and to what extent chemical compound yield correlates to the level of gene expression of product-synthesizing enzyme.
Collapse
|
83
|
Yunus IS, Jones PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 2018; 49:59-68. [DOI: 10.1016/j.ymben.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
|
84
|
Synthetic Gene Regulation in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:317-355. [DOI: 10.1007/978-981-13-0854-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
85
|
Ferreira EA, Pacheco CC, Pinto F, Pereira J, Lamosa P, Oliveira P, Kirov B, Jaramillo A, Tamagnini P. Expanding the toolbox for Synechocystis sp. PCC 6803: validation of replicative vectors and characterization of a novel set of promoters. Synth Biol (Oxf) 2018; 3:ysy014. [PMID: 32995522 PMCID: PMC7445879 DOI: 10.1093/synbio/ysy014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria are promising 'low-cost' cell factories since they have minimal nutritional requirements, high metabolic plasticity and can use sunlight and CO2 as energy and carbon sources. The unicellular Synechocystis sp. PCC 6803, already considered the 'green' Escherichia coli, is the best studied cyanobacterium but to be used as an efficient and robust photoautotrophic chassis it requires a customized and well-characterized toolbox. In this context, we evaluated the possibility of using three self-replicative vectors from the Standard European Vector Architecture (SEVA) repository to transform Synechocystis. Our results demonstrated that the presence of the plasmid does not lead to an evident phenotype or hindered Synechocystis growth, being the vast majority of the cells able to retain the replicative plasmid even in the absence of selective pressure. In addition, a set of heterologous and redesigned promoters were characterized exhibiting a wide range of activities compared to the reference P rnpB , three of which could be efficiently repressed. As a proof-of-concept, from the expanded toolbox, one promoter was selected and assembled with the ggpS gene [encoding one of the proteins involved in the synthesis of the native compatible solute glucosylglycerol (GG)] and the synthetic device was introduced into Synechocystis using one of the SEVA plasmids. The presence of this device restored the production of the GG in a ggpS deficient mutant validating the functionality of the tools/device developed in this study.
Collapse
Affiliation(s)
- Eunice A Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Porto, Portugal
| | - Catarina C Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - José Pereira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Oeiras, Portugal
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Boris Kirov
- CNRS-UMR8030 Laboratoire iSSB and Université Paris-Saclay and Université d'Évry and CEA DRF, IG, Genoscope, Évry, France.,ANP - Faculty of Automatics, TU - Sofia, Sofia, Bulgaria.,BioInfoTech Lab - RDIC, Sofia Tech Park, Sofia, Bulgaria
| | - Alfonso Jaramillo
- CNRS-UMR8030 Laboratoire iSSB and Université Paris-Saclay and Université d'Évry and CEA DRF, IG, Genoscope, Évry, France.,Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, UK.,Institute for Integrative Systems Biology (I2SysBio) University of Valencia-CSIC, Paterna, Spain
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
86
|
Sun T, Li S, Song X, Diao J, Chen L, Zhang W. Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnol Adv 2018; 36:1293-1307. [DOI: 10.1016/j.biotechadv.2018.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
|
87
|
Sengupta A, Pakrasi HB, Wangikar PP. Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol 2018; 102:5457-5471. [PMID: 29744631 DOI: 10.1007/s00253-018-9046-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO2. Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO2, diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, USA.,Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
88
|
Kelly CL, Taylor GM, Hitchcock A, Torres-Méndez A, Heap JT. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth Biol 2018; 7:1056-1066. [PMID: 29544054 DOI: 10.1021/acssynbio.7b00435] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are important for fundamental studies of photosynthesis and have great biotechnological potential. In order to better study and fully exploit these organisms, the limited repertoire of genetic tools and parts must be expanded. A small number of inducible promoters have been used in cyanobacteria, allowing dynamic external control of gene expression through the addition of specific inducer molecules. However, the inducible promoters used to date suffer from various drawbacks including toxicity of inducers, leaky expression in the absence of inducer and inducer photolability, the latter being particularly relevant to cyanobacteria, which, as photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear response to inducer concentration and crucially no basal transcription in the absence of inducer.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - George M. Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Andrew Hitchcock
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Antonio Torres-Méndez
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
89
|
Rübsam H, Kirsch F, Reimann V, Erban A, Kopka J, Hagemann M, Hess WR, Klähn S. The iron-stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium Synechocystis sp. PCC 6803. Environ Microbiol 2018; 20:2757-2768. [PMID: 29468839 DOI: 10.1111/1462-2920.14079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
Abstract
In nature, microorganisms are exposed to multiple stress factors in parallel. Here, we investigated the response of the model cyanobacterium Synechocystis sp. PCC 6803 to simultaneous iron limitation and osmotic stresses. Iron is a major limiting factor for bacterial and phytoplankton growth in most environments. Thus, bacterial iron homeostasis is tightly regulated. In Synechocystis, it is mediated mainly by the transcriptional regulator FurA and the iron-stress activated RNA 1 (IsaR1). IsaR1 is an important riboregulator that affects the acclimation of the photosynthetic apparatus to iron starvation in multiple ways. Upon increases in salinity, Synechocystis responds by accumulating the compatible solute glucosylglycerol (GG). We show that IsaR1 overexpression causes a reduction in the de novo GG synthesis rate upon salt shock. We verified the direct interaction between IsaR1 and the 5'UTR of the ggpS mRNA, which in turn drastically reduced the de novo synthesis of the key enzyme for GG synthesis, glucosylglycerol phosphate synthase (GgpS). Thus, IsaR1 specifically interferes with the salt acclimation process in Synechocystis, in addition to its primary regulatory function. Moreover, the salt-stimulated GgpS production became reduced under parallel iron limitation in WT - an effect which is, however, attenuated in an isaR1 deletion strain. Hence, IsaR1 is involved in the integration of the responses to different environmental perturbations and slows the osmotic adaptation process in cells suffering from parallel iron starvation.
Collapse
Affiliation(s)
- Henriette Rübsam
- Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, University of Freiburg, D-79104 Freiburg, Germany
| | - Friedrich Kirsch
- Plant Physiology department, A.-Einstein-Str. 3, University of Rostock, Institute of Biological Sciences, D-18059 Rostock, Germany
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, University of Freiburg, D-79104 Freiburg, Germany
| | - Alexander Erban
- Department of Molecular Physiology: Applied Metabolome Analysis, Am Mühlenberg 1, Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Department of Molecular Physiology: Applied Metabolome Analysis, Am Mühlenberg 1, Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Martin Hagemann
- Plant Physiology department, A.-Einstein-Str. 3, University of Rostock, Institute of Biological Sciences, D-18059 Rostock, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, University of Freiburg, D-79104 Freiburg, Germany
| | - Stephan Klähn
- Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
90
|
Liu D, Pakrasi HB. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Fact 2018; 17:48. [PMID: 29580240 PMCID: PMC5868059 DOI: 10.1186/s12934-018-0897-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 11/24/2022] Open
Abstract
Background The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a photoautotrophic host for synthetic biology studies. However, as a green chassis to capture CO2 for biotechnological applications, the genetic toolbox for Synechocystis 6803 is still a limited factor. Results We systematically characterized endogenous genetic elements of Synechocystis 6803, including promoters, ribosome binding sites, transcription terminators, and plasmids. Expression from twelve native promoters was compared by measuring fluorescence from the reporter protein EYFP in an identical setup, exhibiting an 8000-fold range of promoter activities. Moreover, we measured the strength of twenty native ribosome binding sites and eight native terminators, indicating their influence on the expression of the reporter genes. In addition, two shuttle vectors, pCA-UC118 and pCB-SC101, capable of replication in both Synechocystis 6803 and E. coli were constructed. Expression of reporter proteins were significantly enhanced in cells containing these new plasmids, thus providing superior gene expression platforms in this cyanobacterium. Conclusions The results of this study provide useful and well characterized native tools for bioengineering work in the model cyanobacterium Synechocystis 6803. Electronic supplementary material The online version of this article (10.1186/s12934-018-0897-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
91
|
Thiel K, Mulaku E, Dandapani H, Nagy C, Aro EM, Kallio P. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Fact 2018; 17:34. [PMID: 29499707 PMCID: PMC5834881 DOI: 10.1186/s12934-018-0882-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/23/2018] [Indexed: 12/26/2022] Open
Abstract
Background Photosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from CO2 and water, as part of the development of sustainable future biotechnological applications. The engineering approaches, however, are still limited by the lack of comprehensive information on most optimal expression strategies and validated species-specific genetic elements which are essential for increasing the intricacy, predictability and efficiency of the systems. This study focused on the systematic evaluation of the key translational control elements, ribosome binding sites (RBS), in the cyanobacterial host Synechocystis sp. PCC 6803, with the objective of expanding the palette of tools for more rigorous engineering approaches. Results An expression system was established for the comparison of 13 selected RBS sequences in Synechocystis, using several alternative reporter proteins (sYFP2, codon-optimized GFPmut3 and ethylene forming enzyme) as quantitative indicators of the relative translation efficiencies. The set-up was shown to yield highly reproducible expression patterns in independent analytical series with low variation between biological replicates, thus allowing statistical comparison of the activities of the different RBSs in vivo. While the RBSs covered a relatively broad overall expression level range, the downstream gene sequence was demonstrated in a rigorous manner to have a clear impact on the resulting translational profiles. This was expected to reflect interfering sequence-specific mRNA-level interaction between the RBS and the coding region, yet correlation between potential secondary structure formation and observed translation levels could not be resolved with existing in silico prediction tools. Conclusions The study expands our current understanding on the potential and limitations associated with the regulation of protein expression at translational level in engineered cyanobacteria. The acquired information can be used for selecting appropriate RBSs for optimizing over-expression constructs or multicistronic pathways in Synechocystis, while underlining the complications in predicting the activity due to gene-specific interactions which may reduce the translational efficiency for a given RBS-gene combination. Ultimately, the findings emphasize the need for additional characterized insulator sequence elements to decouple the interaction between the RBS and the coding region for future engineering approaches. Electronic supplementary material The online version of this article (10.1186/s12934-018-0882-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kati Thiel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Edita Mulaku
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Hariharan Dandapani
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Csaba Nagy
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Pauli Kallio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
92
|
Liang F, Englund E, Lindberg P, Lindblad P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab Eng 2018; 46:51-59. [DOI: 10.1016/j.ymben.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/14/2017] [Accepted: 02/18/2018] [Indexed: 01/02/2023]
|
93
|
Yang G, Cozad MA, Holland DA, Zhang Y, Luesch H, Ding Y. Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synth Biol 2018; 7:664-671. [PMID: 29304277 DOI: 10.1021/acssynbio.7b00397] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycosporine-like amino acids (MAAs) are secondary metabolites of a variety of marine organisms including cyanobacteria and macroalgae. These compounds have strong ultraviolet (UV) absorption maxima between 310 and 362 nm and are biological sunscreens for counteracting the damaging effects of UV radiation in nature. The common MAA shinorine has been used as one key active ingredient of environmentally friendly sunscreen creams. Commercially used shinorine is isolated from one red algae that is generally harvested from the wild. Here, we describe the use of Synechocystis sp. PCC6803 as a host for the heterologous production of shinorine. We mined a shinorine gene cluster from the filamentous cyanobacterium Fischerella sp. PCC9339. When expressing the cluster in Synechocystis sp. PCC6803, we observed the production of shinorine using LC-MS analysis, but its productivity was three times lower than the native producer. Integrated transcriptional and metabolic profiling identified rate-limiting steps in the heterologous production of shinorine. The use of multiple promoters led to a 10-fold increase of its yield to 2.37 ± 0.21 mg/g dry biomass weight, comparable to commercially used shinorine producer. The UV protection of shinorine was further confirmed using the engineered Synechocystis sp. PCC6803. This work was the first time to demonstrate the photosynthetic overproduction of MAA. The results suggest that Synechocystis sp. PCC6803 can have broad applications as the synthetic biology chassis to produce other cyanobacterial natural products, expediting the translation of genomes into chemicals.
Collapse
Affiliation(s)
- Guang Yang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Monica A. Cozad
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Destin A. Holland
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yi Zhang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
94
|
Stensjö K, Vavitsas K, Tyystjärvi T. Harnessing transcription for bioproduction in cyanobacteria. PHYSIOLOGIA PLANTARUM 2018; 162:148-155. [PMID: 28762505 DOI: 10.1111/ppl.12606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Sustainable production of biofuels and other valuable compounds is one of our future challenges. One tempting possibility is to use photosynthetic cyanobacteria as production factories. Currently, tools for genetic engineering of cyanobacteria are not good enough to exploit the full potential of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has a central role in adjusting gene expression and thus also metabolic fluxes of cells according to environmental cues. Here we summarize the recent progress in developing tools for efficient cyanofactories, focusing especially on transcriptional regulation.
Collapse
Affiliation(s)
- Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Taina Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
95
|
Wang B, Eckert C, Maness PC, Yu J. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2018; 7:276-286. [PMID: 29232504 DOI: 10.1021/acssynbio.7b00297] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E. coli σ70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. These systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.
Collapse
Affiliation(s)
- Bo Wang
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Carrie Eckert
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University of Colorado, Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| | - Pin-Ching Maness
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jianping Yu
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
96
|
Du W, Burbano PC, Hellingwerf KJ, Branco Dos Santos F. Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:3-26. [PMID: 30091089 DOI: 10.1007/978-981-13-0854-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacterial direct conversion of CO2 to several commodity chemicals has been recognized as a potential contributor to support the much-needed sustainable development of human societies. However, the feasibility of this "green conversion" hinders on our ability to overcome the hurdles presented by the natural evolvability of microbes. The latter may result in the genetic instability of engineered cyanobacterial strains leading to impaired productivity. This challenge is general to any "cell factory" approach in which the cells grow for multiple generations, and based on several studies carried out in different microbial hosts, we could identify that three distinct strategies have been proposed to tackle it. These are (1) to reduce microbial evolvability by decreasing the native mutation rate, (2) to align product formation with cell growth/fitness, and, paradoxically, (3) to efficiently reallocate cellular resources to product formation by uncoupling it from growth. The implementation of either of these strategies requires an advanced synthetic biology toolkit. Here, we review the existing methods available for cyanobacteria and identify areas of focus in which specific developments are still needed. Furthermore, we discuss how potentially stabilizing strategies may be used in combination leading to further increases of productivity while ensuring the stability of the cyanobacterial-based direct conversion process.
Collapse
Affiliation(s)
- Wei Du
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia Caicedo Burbano
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|