51
|
Saint Fleur-Lominy S, Evensen NA, Bhatla T, Sethia G, Narang S, Choi JH, Ma X, Yang JJ, Kelly S, Raetz E, Harvey RC, Willman C, Loh ML, Hunger SP, Brown PA, Getz KM, Meydan C, Mason CE, Tsirigos A, Carroll WL. Evolution of the Epigenetic Landscape in Childhood B Acute Lymphoblastic Leukemia and Its Role in Drug Resistance. Cancer Res 2020; 80:5189-5202. [PMID: 33067268 DOI: 10.1158/0008-5472.can-20-1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Although B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in children and while highly curable, it remains a leading cause of cancer-related mortality. The outgrowth of tumor subclones carrying mutations in genes responsible for resistance to therapy has led to a Darwinian model of clonal selection. Previous work has indicated that alterations in the epigenome might contribute to clonal selection, yet the extent to which the chromatin state is altered under the selective pressures of therapy is unknown. To address this, we performed chromatin immunoprecipitation, gene expression analysis, and enhanced reduced representation bisulfite sequencing on a cohort of paired diagnosis and relapse samples from individual patients who all but one relapsed within 36 months of initial diagnosis. The chromatin state at diagnosis varied widely among patients, while the majority of peaks remained stable between diagnosis and relapse. Yet a significant fraction was either lost or newly gained, with some patients showing few differences and others showing massive changes of the epigenetic state. Evolution of the epigenome was associated with pathways previously linked to therapy resistance as well as novel candidate pathways through alterations in pyrimidine biosynthesis and downregulation of polycomb repressive complex 2 targets. Three novel, relapse-specific superenhancers were shared by a majority of patients including one associated with S100A8, the top upregulated gene seen at relapse in childhood B-ALL. Overall, our results support a role of the epigenome in clonal evolution and uncover new candidate pathways associated with relapse. SIGNIFICANCE: This study suggests a major role for epigenetic mechanisms in driving clonal evolution in B-ALL and identifies novel pathways associated with drug resistance.
Collapse
Affiliation(s)
- Shella Saint Fleur-Lominy
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.,Department of Medicine, NYU Langone Health, New York, New York
| | - Nikki A Evensen
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Teena Bhatla
- Department of Pediatrics, Children's Hospital of New Jersey at NBI, RWJBarnabas Health, Newark, New Jersey
| | - Gunjan Sethia
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Sonali Narang
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Jun H Choi
- Department of Medicine, NYU Langone Health, New York, New York
| | - Xiaotu Ma
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Kelly
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Elizabeth Raetz
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.,Department of Pediatrics, NYU Health, New York, New York
| | - Richard C Harvey
- University of New Mexico Comprehensive Cancer Center, Department of Pathology, University of New Mexico School of Medicine and Health Sciences Center, Albuquerque, New Mexico
| | - Cheryl Willman
- University of New Mexico Comprehensive Cancer Center, Department of Pathology, University of New Mexico School of Medicine and Health Sciences Center, Albuquerque, New Mexico
| | - Mignon L Loh
- Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, California
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kylie M Getz
- Department of Physiology and Biophysics and Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Cem Meydan
- Department of Physiology and Biophysics and Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Christopher E Mason
- Department of Physiology and Biophysics and Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Aristotelis Tsirigos
- Perlmutter Cancer Center, NYU Langone Health, New York, New York. .,Department of Pathology, NYU Langone Health, New York, New York
| | - William L Carroll
- Perlmutter Cancer Center, NYU Langone Health, New York, New York. .,Department of Pediatrics, NYU Health, New York, New York.,Department of Pathology, NYU Langone Health, New York, New York
| |
Collapse
|
52
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1457] [Impact Index Per Article: 291.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
53
|
Kim EH, Cao D, Mahajan NP, Andriole GL, Mahajan K. ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers. NAR Cancer 2020; 2:zcaa018. [PMID: 32885168 PMCID: PMC7454006 DOI: 10.1093/narcan/zcaa018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
The androgen receptor (AR) is a critical transcription factor in prostate cancer (PC) pathogenesis. Its activity in malignant cells is dependent on interactions with a diverse set of co-regulators. These interactions fluctuate depending on androgen availability. For example, the androgen depletion increases the dependence of castration-resistant PCs (CRPCs) on the ACK1 and HOXB13 cell survival pathways. Activated ACK1, an oncogenic tyrosine kinase, phosphorylates cytosolic and nuclear proteins, thereby avoiding the inhibitory growth consequences of androgen depletion. Notably, ACK1-mediated phosphorylation of histone H4, which leads to epigenetic upregulation of AR expression, has emerged as a critical mechanism of CRPC resistance to anti-androgens. This resistance can be targeted using the ACK1-selective small-molecule kinase inhibitor (R)- 9b. CRPCs also deploy the bromodomain and extra-terminal domain protein BRD4 to epigenetically increase HOXB13 gene expression, which in turn activates the MYC target genes AURKA/AURKB. HOXB13 also facilitates ligand-independent recruitment of the AR splice variant AR-V7 to chromatin, compensating for the loss of the chromatin remodeling protein, CHD1, and restricting expression of the mitosis control gene HSPB8. These studies highlight the crosstalk between AR-ACK1 and AR-HOXB13 pathways as key mediators of CRPC recurrence.
Collapse
Affiliation(s)
- Eric H Kim
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Dengfeng Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
54
|
Patani H, Rushton MD, Higham J, Teijeiro SA, Oxley D, Cutillas P, Sproul D, Ficz G. Transition to naïve human pluripotency mirrors pan-cancer DNA hypermethylation. Nat Commun 2020; 11:3671. [PMID: 32699299 PMCID: PMC7376100 DOI: 10.1038/s41467-020-17269-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Epigenetic reprogramming is a cancer hallmark, but how it unfolds during early neoplastic events and its role in carcinogenesis and cancer progression is not fully understood. Here we show that resetting from primed to naïve human pluripotency results in acquisition of a DNA methylation landscape mirroring the cancer DNA methylome, with gradual hypermethylation of bivalent developmental genes. We identify a dichotomy between bivalent genes that do and do not become hypermethylated, which is also mirrored in cancer. We find that loss of H3K4me3 at bivalent regions is associated with gain of methylation. Additionally, we observe that promoter CpG island hypermethylation is not restricted solely to emerging naïve cells, suggesting that it is a feature of a heterogeneous intermediate population during resetting. These results indicate that transition to naïve pluripotency and oncogenic transformation share common epigenetic trajectories, which implicates reprogramming and the pluripotency network as a central hub in cancer formation.
Collapse
Affiliation(s)
- Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Jonathan Higham
- MRC Human Genetics Unit and Edinburgh Cancer Research Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Saul A Teijeiro
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Pedro Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Duncan Sproul
- MRC Human Genetics Unit and Edinburgh Cancer Research Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK.
| |
Collapse
|
55
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
56
|
Bhattacharjee P, Paul S, Bhattacharjee P. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 2020; 430:152340. [PMID: 31805316 DOI: 10.1016/j.tox.2019.152340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The study of heritable epigenetic changes in arsenic exposure has intensified over the last decade. Groundwater arsenic contamination causes a great threat to humans and, to date, no accurate measure has been formulated for remediation. The fascinating possibilities of epi-therapeutics identify the need for an in-depth mechanistic understanding of the epigenetic landscape. OBJECTIVE In this comprehensive review, we have set to analyze major studies pertaining to histone post-translational modifications in arsenic-mediated disease development and carcinogenesis during last ten years (2008-2018). RESULTS The role of the specific histone marks in arsenic toxicity has been detailed. A comprehensive list that includes major arsenic-induced histone modifications identified for the last 10 years has been documented and details of different states of arsenic, organisms, exposure type, study platform, and findings were provided. An arsenic signature panel was suggested to help in early prognosis. An attempt has been made to identify the grey areas of research. PROSPECTS Future prospective multi-target analyses of the inter-molecular crosstalk among different histone marks are needed to be explored further in order to understand the mechanism of arsenic toxicity and carcinogenicity and to confirm the suitability of these epi-marks as prognostic markers.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
57
|
Kvist J, Athanàsio CG, Pfrender ME, Brown JB, Colbourne JK, Mirbahai L. A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics 2020; 21:17. [PMID: 31906859 PMCID: PMC6945601 DOI: 10.1186/s12864-019-6415-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Daphnia species reproduce by cyclic parthenogenesis involving both sexual and asexual reproduction. The sex of the offspring is environmentally determined and mediated via endocrine signalling by the mother. Interestingly, male and female Daphnia can be genetically identical, yet display large differences in behaviour, morphology, lifespan and metabolic activity. Our goal was to integrate multiple omics datasets, including gene expression, splicing, histone modification and DNA methylation data generated from genetically identical female and male Daphnia pulex under controlled laboratory settings with the aim of achieving a better understanding of the underlying epigenetic factors that may contribute to the phenotypic differences observed between the two genders. RESULTS In this study we demonstrate that gene expression level is positively correlated with increased DNA methylation, and histone H3 trimethylation at lysine 4 (H3K4me3) at predicted promoter regions. Conversely, elevated histone H3 trimethylation at lysine 27 (H3K27me3), distributed across the entire transcript length, is negatively correlated with gene expression level. Interestingly, male Daphnia are dominated with epigenetic modifications that globally promote elevated gene expression, while female Daphnia are dominated with epigenetic modifications that reduce gene expression globally. For examples, CpG methylation (positively correlated with gene expression level) is significantly higher in almost all differentially methylated sites in male compared to female Daphnia. Furthermore, H3K4me3 modifications are higher in male compared to female Daphnia in more than 3/4 of the differentially regulated promoters. On the other hand, H3K27me3 is higher in female compared to male Daphnia in more than 5/6 of differentially modified sites. However, both sexes demonstrate roughly equal number of genes that are up-regulated in one gender compared to the other sex. Since, gene expression analyses typically assume that most genes are expressed at equal level among samples and different conditions, and thus cannot detect global changes affecting most genes. CONCLUSIONS The epigenetic differences between male and female in Daphnia pulex are vast and dominated by changes that promote elevated gene expression in male Daphnia. Furthermore, the differences observed in both gene expression changes and epigenetic modifications between the genders relate to pathways that are physiologically relevant to the observed phenotypic differences.
Collapse
Affiliation(s)
- Jouni Kvist
- Research Program for Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, USA
| | - James B Brown
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, USA
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | | | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
58
|
Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2019; 36:118-131. [PMID: 31818514 DOI: 10.1016/j.tig.2019.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
An intricate molecular machinery is at the core of gene expression regulation in every cell. During the initial stages of organismal development, the coordinated activation of diverse transcriptional programs is crucial and must be carefully executed to shape every organ and tissue. Bivalent promoters and poised enhancers are regulatory regions decorated with histone marks that are associated with both positive and negative transcriptional outcomes. These apparently contradictory signals are important for setting bivalent genes in a poised state, which is subsequently resolved during differentiation into either active or repressive states. We discuss the origins of bivalent promoters and the mechanisms implicated in their acquisition and maintenance. We further review how the presence of bivalent marks influences genome architecture. Finally, we highlight the potential link between bivalency and cancer which could drive biomedical research in disease etiology and treatment.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
59
|
Rezazadeh S, Yang D, Tombline G, Simon M, Regan SP, Seluanov A, Gorbunova V. SIRT6 promotes transcription of a subset of NRF2 targets by mono-ADP-ribosylating BAF170. Nucleic Acids Res 2019; 47:7914-7928. [PMID: 31216030 DOI: 10.1093/nar/gkz528] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
SIRT6 is critical for activating transcription of Nuclear factor (erythroid-derived 2)-like 2 (NRF2) responsive genes during oxidative stress. However, while the mechanism of SIRT6-mediated silencing is well understood, the mechanism of SIRT6-mediated transcriptional activation is unknown. Here, we employed SIRT6 separation of function mutants to reveal that SIRT6 mono-ADP-ribosylation activity is required for transcriptional activation. We demonstrate that SIRT6 mono-ADP-ribosylation of BAF170, a subunit of BAF chromatin remodeling complex, is critical for activation of a subset of NRF2 responsive genes upon oxidative stress. We show that SIRT6 recruits BAF170 to enhancer region of the Heme oxygenase-1 locus and promotes recruitment of RNA polymerase II. Furthermore, SIRT6 mediates the formation of the active chromatin 10-kb loop at the HO-1 locus, which is absent in SIRT6 deficient tissue. These results provide a novel mechanism for SIRT6-mediated transcriptional activation, where SIRT6 mono-ADP-ribosylates and recruits chromatin remodeling proteins to mediate the formation of active chromatin loop.
Collapse
Affiliation(s)
| | - David Yang
- University of Rochester, Rochester, NY 14627, USA
| | | | | | - Sean P Regan
- University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
60
|
Solomonova E, Lee YEA, Robins S, King L, Feeley N, Gold I, Hayton B, Libman E, Nagy C, Turecki G, Zelkowitz P. Sleep quality is associated with vasopressin methylation in pregnant and postpartum women with a history of psychosocial stress. Psychoneuroendocrinology 2019; 107:160-168. [PMID: 31132568 DOI: 10.1016/j.psyneuen.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relationship between disturbed sleep and stress is well-documented. Sleep disorders and stress are highly prevalent during the perinatal period, and both are known to contribute to a number of adverse maternal and foetal outcomes. Arginine vasopressin (AVP) is a hormone and a neuropeptide that is involved in stress response, social bonding and circadian regulation of the sleep-wake cycle. Whether the AVP system is involved in regulation of stress response and sleep quality in the context of the perinatal mental health is currently unknown. The objective of the present study was to assess the relationship between levels of cumulative and ongoing psychosocial risk, levels of disordered sleep and AVP methylation in a community sample of pregnant and postpartum women. METHODS A sample of 316 participants completed a battery of questionnaires during the second trimester of pregnancy (PN2, 12-14 weeks gestation), third trimester (PN3, 32-34 weeks gestation), and at 7-9 weeks postpartum (PP). Disordered sleep was measured using the Sleep Symptom Checklist at PN2, PN3 and PP; cumulative psychosocial risk was assessed with the Antenatal Risk Questionnaire (ANRQ) at PN2; salivary DNA was collected at the follow-up (FU, 2.9 years postpartum); and % methylation were calculated for AVP and for two of the three AVP receptor genes (AVPR1a and AVPR1b). Women were separated into high (HighPR) and low (LowPR) psychosocial risk groups, based on their scores on the ANRQ. RESULTS Women in the HighPR group had significantly worse sleep disturbances during PN2 (p < .001) and PN3 (p < .001), but not at PP (p = .146) than women in the LowPR group. In HighPR participants only, methylation of AVP at intron 1 negatively correlated with sleep disturbances at PN2 (rs=-.390, p = .001), PN3 (rs=-.384, p = .002) and at PP (rs= -.269, p = .032). There was no association between sleep disturbances and AVPR1a or AVPR1b methylation, or between sleep disturbances and any of the AVP methylation for the LowPR group. Lastly, cumulative psychosocial stress was a moderator for the relationship between AVP intron 1 methylation and disordered sleep at PN2 (p < .001, adjusted R2 = .105), PN2 (p < .001, adjusted R2 = .088) and PP (p = .003, adjusted R2 = .064). CONCLUSIONS Our results suggest that cumulative psychosocial stress exacerbates sleep disorders in pregnant women, and that salivary DNA methylation patterns of the AVP gene may be seen as a marker of biological predisposition to stress and sleep reactivity during the perinatal period. Further research is needed to establish causal links between AVP methylation, sleep and stress.
Collapse
Affiliation(s)
- E Solomonova
- Department of Psychiatry, McGill University, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - Y E A Lee
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada
| | - S Robins
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - L King
- Department of Psychiatry, McGill University, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - N Feeley
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Center for Nursing Research, Jewish General Hospital, Canada; Ingram School of Nursing, McGill University, Canada
| | - I Gold
- Department of Psychiatry, McGill University, Canada; Department of Philosophy, McGill University, Canada
| | - B Hayton
- Department of Psychiatry, McGill University, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - E Libman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada
| | - C Nagy
- Department of Neurology and Neurosurgery, McGill University, Canada; McGill Group for Suicide Studies, Canada; Douglas Mental Health University Institute, Canada
| | - G Turecki
- Department of Psychiatry, McGill University, Canada; McGill Group for Suicide Studies, Canada; Douglas Mental Health University Institute, Canada
| | - P Zelkowitz
- Department of Psychiatry, McGill University, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Canada; Department of Psychiatry, Jewish General Hospital, Canada.
| |
Collapse
|
61
|
Martin-Herranz DE, Aref-Eshghi E, Bonder MJ, Stubbs TM, Choufani S, Weksberg R, Stegle O, Sadikovic B, Reik W, Thornton JM. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol 2019; 20:146. [PMID: 31409373 PMCID: PMC6693144 DOI: 10.1186/s13059-019-1753-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. RESULTS Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. CONCLUSIONS These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms. Our observations provide novel insights into the mechanisms behind the epigenetic aging clock and we expect will shed light on the different processes that erode the human epigenetic landscape during aging.
Collapse
Affiliation(s)
- Daniel E. Martin-Herranz
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Chronomics Ltd., Cambridge, UK
| | - Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Canada
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Canada
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
62
|
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11:81. [PMID: 31097014 PMCID: PMC6524244 DOI: 10.1186/s13148-019-0675-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of nanotechnology applied to medicine has revolutionized the treatment of human cancer. As in the case of classic drugs for the treatment of cancer, epigenetic drugs have evolved in terms of their specificity and efficiency, especially because of the possibility of using more effective transport and delivery systems. The use of nanoparticles (NPs) in oncology management offers promising advantages in terms of the efficacy of cancer treatments, but it is still unclear how these NPs may be affecting the epigenome such that safe routine use is ensured. In this work, we summarize the importance of the epigenetic alterations identified in human cancer, which have led to the appearance of biomarkers or epigenetic drugs in precision medicine, and we describe the transport and release systems of the epigenetic drugs that have been developed to date.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Adolfo F Valdes
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| |
Collapse
|
63
|
Goeppert B, Toth R, Singer S, Albrecht T, Lipka DB, Lutsik P, Brocks D, Baehr M, Muecke O, Assenov Y, Gu L, Endris V, Stenzinger A, Mehrabi A, Schirmacher P, Plass C, Weichenhan D, Roessler S. Integrative Analysis Defines Distinct Prognostic Subgroups of Intrahepatic Cholangiocarcinoma. Hepatology 2019; 69:2091-2106. [PMID: 30615206 PMCID: PMC6594081 DOI: 10.1002/hep.30493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer. It is defined by cholangiocytic differentiation and has poor prognosis. Recently, epigenetic processes have been shown to play an important role in cholangiocarcinogenesis. We performed an integrative analysis on 52 iCCAs using both genetic and epigenetic data with a specific focus on DNA methylation components. We found recurrent isocitrate dehydrogenase 1 (IDH1) and IDH2 (28%) gene mutations, recurrent arm-length copy number alterations (CNAs), and focal alterations such as deletion of 3p21 or amplification of 12q15, which affect BRCA1 Associated Protein 1, polybromo 1, and mouse double minute 2 homolog. DNA methylome analysis revealed excessive hypermethylation of iCCA, affecting primarily the bivalent genomic regions marked with both active and repressive histone modifications. Integrative clustering of genetic and epigenetic data identified four iCCA subgroups with prognostic relevance further designated as IDH, high (H), medium (M), and low (L) alteration groups. The IDH group consisted of all samples with IDH1 or IDH2 mutations and showed, together with the H group, a highly disrupted genome, characterized by frequent deletions of chromosome arms 3p and 6q. Both groups showed excessive hypermethylation with distinct patterns. The M group showed intermediate characteristics regarding both genetic and epigenetic marks, whereas the L group exhibited few methylation changes and mutations and a lack of CNAs. Methylation-based latent component analysis of cell-type composition identified differences among these four groups. Prognosis of the H and M groups was significantly worse than that of the L group. Conclusion: Using an integrative genomic and epigenomic analysis approach, we identified four major iCCA subgroups with widespread genomic and epigenomic differences and prognostic implications. Furthermore, our data suggest differences in the cell-of-origin of the iCCA subtypes.
Collapse
Affiliation(s)
- Benjamin Goeppert
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany
| | - Reka Toth
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Stephan Singer
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Institute of PathologyErnst‐Moritz‐Arndt UniversityGreifswaldGermany
| | - Thomas Albrecht
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany
| | - Daniel B. Lipka
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Pavlo Lutsik
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - David Brocks
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Marion Baehr
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Oliver Muecke
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Yassen Assenov
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Lei Gu
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany,Boston Children's HospitalBostonMA
| | - Volker Endris
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany
| | | | - Arianeb Mehrabi
- Liver Cancer Center HeidelbergHeidelbergGermany,Department of General Visceral and Transplantation SurgeryUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter Schirmacher
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany,German Consortium for Translational Cancer ResearchHeidelbergGermany
| | - Christoph Plass
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany,German Consortium for Translational Cancer ResearchHeidelbergGermany
| | - Dieter Weichenhan
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Stephanie Roessler
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany
| |
Collapse
|
64
|
Németh CG, Röcken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. Recurrent chromosomal and epigenetic alterations in oral squamous cell carcinoma and its putative premalignant condition oral lichen planus. PLoS One 2019; 14:e0215055. [PMID: 30964915 PMCID: PMC6456184 DOI: 10.1371/journal.pone.0215055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects about 700.000 individuals per year worldwide with oral squamous cell carcinoma (OSCC) as a major subcategory. Despite a comprehensive treatment concept including surgery, radiation, and chemotherapy the 5-year survival rate is still only about 50 percent. Chronic inflammation is one of the hallmarks of carcinogenesis. Until now, little is known about the premalignant status of oral lichen planus (OLP) and molecular alterations in OLP are still poorly characterized. Our study aims to delineate differential DNA methylation patterns in OLP, OSCC, and normal oral mucosa. By applying a bead chip approach, we identified altered chromosomal patterns characteristic for OSCC while finding no recurrent alterations in OLP. In contrast, we identified numerous alterations in the DNA methylation pattern in OLP, as compared to normal controls, that were also present in OSCC. Our data support the hypothesis that OLP is a precursor lesion of OSCC sharing multiple epigenetic alterations with OSCC.
Collapse
Affiliation(s)
- Christopher G Németh
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Volker Gassling
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
65
|
Lima-Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, Luciani GM, Haynes J, Pollett A, Zeller C, Duan S, Kreso A, Barsyte-Lovejoy D, Wouters BG, Jin J, Carvalho DDD, Lupien M, Arrowsmith CH, O'Brien CA. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun 2019; 10:1436. [PMID: 30926792 PMCID: PMC6441108 DOI: 10.1038/s41467-019-09309-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
In embryonic stem cells, promoters of key lineage-specific differentiation genes are found in a bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3. Whether cancer-initiating cells (C-ICs) have similar epigenetic mechanisms that prevent lineage commitment is unknown. Here we show that colorectal C-ICs (CC-ICs) are maintained in a stem-like state through a bivalent epigenetic mechanism. Disruption of the bivalent state through inhibition of the H3K27 methyltransferase EZH2, resulted in decreased self-renewal of patient-derived C-ICs. Epigenomic analyses revealed that the promoter of Indian Hedgehog (IHH), a canonical driver of normal colonocyte differentiation, exists in a bivalent chromatin state. Inhibition of EZH2 resulted in de-repression of IHH, decreased self-renewal, and increased sensitivity to chemotherapy in vivo. Our results reveal an epigenetic block to differentiation in CC-ICs and demonstrate the potential for epigenetic differentiation therapy of a solid tumour through EZH2 inhibition.
Collapse
Affiliation(s)
- Evelyne Lima-Fernandes
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Tiago da Silva Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Yadong Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cherry Leung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Genna M Luciani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Jennifer Haynes
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Lunenfeld-Tanenbaum Research Institute Toronto, Toronto, ON, M5G1X5, Canada
| | - Constanze Zeller
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shili Duan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Antonija Kreso
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | | | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.,Ontario Institute for Cancer Research, Toronto, ON, M5G1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G1L7, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5G1L7, Canada. .,Department of Surgery, Toronto General Hospital, Toronto, ON, M5G2C4, Canada.
| |
Collapse
|
66
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
67
|
Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating Embryonic Expression Signatures in Cancer. Trends Mol Med 2019; 25:287-302. [PMID: 30795971 DOI: 10.1016/j.molmed.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of mutations causing aberrant changes in the genome promotes cancer. However, mutations do not occur in every cancer subtype, suggesting additional events that trigger cancer. Chromatin rearrangements initiated by pioneer factors and architectural proteins are key events occurring before cancer-related genes are expressed. Both protein groups are also master regulators of important processes during embryogenesis. Several publications demonstrated that embryonic gene expression signatures are reactivated during cancer. This review article highlights current knowledge on pioneer factors and architectural proteins mediating chromatin rearrangements, which are the backbone of embryonic expression signatures promoting malignant transformation. Understanding chromatin rearrangements inducing embryonic expression signatures in adult cells might be the key to novel therapeutic approaches against cancers subtypes that arise without genomic mutations.
Collapse
Affiliation(s)
- Stephanie Dobersch
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Member of the Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), 35932 Giessen, Germany; Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL).
| |
Collapse
|
68
|
From Genotype to Phenotype: Through Chromatin. Genes (Basel) 2019; 10:genes10020076. [PMID: 30678090 PMCID: PMC6410296 DOI: 10.3390/genes10020076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies have enabled the exploration of the genetic basis for several clinical disorders by allowing identification of causal mutations in rare genetic diseases. Sequencing technology has also facilitated genome-wide association studies to gather single nucleotide polymorphisms in common diseases including cancer and diabetes. Sequencing has therefore become common in the clinic for both prognostics and diagnostics. The success in follow-up steps, i.e., mapping mutations to causal genes and therapeutic targets to further the development of novel therapies, has nevertheless been very limited. This is because most mutations associated with diseases lie in inter-genic regions including the so-called regulatory genome. Additionally, no genetic causes are apparent for many diseases including neurodegenerative disorders. A complementary approach is therefore gaining interest, namely to focus on epigenetic control of the disease to generate more complete functional genomic maps. To this end, several recent studies have generated large-scale epigenetic datasets in a disease context to form a link between genotype and phenotype. We focus DNA methylation and important histone marks, where recent advances have been made thanks to technology improvements, cost effectiveness, and large meta-scale epigenome consortia efforts. We summarize recent studies unravelling the mechanistic understanding of epigenetic processes in disease development and progression. Moreover, we show how methodology advancements enable causal relationships to be established, and we pinpoint the most important issues to be addressed by future research.
Collapse
|
69
|
The Role of Nucleosomes in Epigenetic Gene Regulation. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
70
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
71
|
Nagel S, MacLeod RAF, Meyer C, Kaufmann M, Drexler HG. NKL homeobox gene activities in B-cell development and lymphomas. PLoS One 2018; 13:e0205537. [PMID: 30308041 PMCID: PMC6181399 DOI: 10.1371/journal.pone.0205537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation. Several members of the NKL subclass are deregulated in T-cell progenitors and support leukemogenesis. We have recently described particular expression patterns of nine NKL homeobox genes in early hematopoiesis and T-cell development. Here, we screened NKL homeobox gene activities in normal B-cell development and extended the NKL-code to include this lymphoid lineage. Analysis of public expression profiling datasets revealed that HHEX and NKX6-3 were the only members differentially active in naïve B-cells, germinal center B-cells, plasma cells and memory B-cells. Subsequent examination of different types of B-cell malignancies showed both aberrant overexpression of NKL-code members and ectopic activation of subclass members physiologically silent in lymphopoiesis including BARX2, DLX1, EMX2, NKX2-1, NKX2-2 and NKX3-2. Based on these findings we performed detailed studies of the B-cell specific NKL homeobox gene NKX6-3 which showed enhanced activity in patient subsets of follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL), and in three DLBCL cell lines to serve as in vitro models. While excluding genomic and chromosomal rearrangements at the locus of NKX6-3 (8p11) promoter studies demonstrated that B-cell factors MYB and PAX5 activated NKX6-3 transcription. Furthermore, aberrant BMP7/SMAD1-signalling and deregulated expression of chromatin complex components AUTS2 and PCGF5 promoted NKX6-3 activation. Finally, NKL homeobox genes HHEX, HLX, MSX1 and NKX6-3 were expressed in B-cell progenitors and generated a regulatory gene network in cell lines which we propose may provide physiological support for NKL-code formation in early B-cell development. Together, we identified an NKL-code in B-cell development whose violation may deregulate differentiation and promote malignant transformation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
72
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
73
|
Adamik J, Galson DL, Roodman GD. Osteoblast suppression in multiple myeloma bone disease. J Bone Oncol 2018; 13:62-70. [PMID: 30591859 PMCID: PMC6303385 DOI: 10.1016/j.jbo.2018.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is the most frequent cancer to involve the skeleton with patients developing osteolytic bone lesions due to hyperactivation of osteoclasts and suppression of BMSCs differentiation into functional osteoblasts. Although new therapies for MM have greatly improved survival, MM remains incurable for most patients. Despite the major advances in current anti-MM and anti-resorptive treatments that can significantly improve osteolytic bone lysis, many bone lesions can persist even after therapeutic remission of active disease. Bone marrow mesenchymal stem cells (BMSCs) from MM patients are phenotypically distinct from their healthy counterparts and the mechanisms associated with the long-term osteogenic suppression are largely unknown. In this review we will highlight recent results of transcriptomic profiling studies that provide new insights into the establishment and maintenance of the persistent pathological alterations in MM-BMSCs that occur in MM. We will we discuss the role of genomic instabilities and senescence in propagating the chronically suppressed state and pro-inflammatory phenotype associated with MM-BMSCs. Lastly we describe the role of epigenetic-based mechanisms in regulating osteogenic gene expression to establish and maintain the pro-longed suppression of MM-BMSC differentiation into functional OBs.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA, USA
| | - G David Roodman
- Department of Medicine, Division of Hematology-Oncology, Indiana University, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
74
|
Collord G, Tarpey P, Kurbatova N, Martincorena I, Moran S, Castro M, Nagy T, Bignell G, Maura F, Young MD, Berna J, Tubio JMC, McMurran CE, Young AMH, Sanders M, Noorani I, Price SJ, Watts C, Leipnitz E, Kirsch M, Schackert G, Pearson D, Devadass A, Ram Z, Collins VP, Allinson K, Jenkinson MD, Zakaria R, Syed K, Hanemann CO, Dunn J, McDermott MW, Kirollos RW, Vassiliou GS, Esteller M, Behjati S, Brazma A, Santarius T, McDermott U. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep 2018; 8:13537. [PMID: 30202034 PMCID: PMC6131140 DOI: 10.1038/s41598-018-31659-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Anaplastic meningioma is a rare and aggressive brain tumor characterised by intractable recurrences and dismal outcomes. Here, we present an integrated analysis of the whole genome, transcriptome and methylation profiles of primary and recurrent anaplastic meningioma. A key finding was the delineation of distinct molecular subgroups that were associated with diametrically opposed survival outcomes. Relative to lower grade meningiomas, anaplastic tumors harbored frequent driver mutations in SWI/SNF complex genes, which were confined to the poor prognosis subgroup. Aggressive disease was further characterised by transcriptional evidence of increased PRC2 activity, stemness and epithelial-to-mesenchymal transition. Our analyses discern biologically distinct variants of anaplastic meningioma with prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Grace Collord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Patrick Tarpey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manuel Castro
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Tibor Nagy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Graham Bignell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Francesco Maura
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jorge Berna
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jose M C Tubio
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Chris E McMurran
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Adam M H Young
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mathijs Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Imran Noorani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Colin Watts
- Department of Neurosurgery, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elke Leipnitz
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Matthias Kirsch
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Danita Pearson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Abel Devadass
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Zvi Ram
- Department of Neurosurgery, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - V Peter Collins
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Khaja Syed
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Michael W McDermott
- Department of Neurosurgery, UCSF Medical Center, San Francisco, CA, 94143-0112, USA
| | - Ramez W Kirollos
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Thomas Santarius
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK.
- AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
75
|
Singh RK, Diaz PE, Binette F, Nasonkin IO. Immunohistochemical Detection of 5-Methylcytosine and 5-Hydroxymethylcytosine in Developing and Postmitotic Mouse Retina. J Vis Exp 2018. [PMID: 30222161 PMCID: PMC6235063 DOI: 10.3791/58274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The epigenetics of retinal development is a well-studied research field, which promises to bring a new level of understanding about the mechanisms of a variety of human retinal degenerative diseases and pinpoint new treatment approaches. The nuclear architecture of mouse retina is organized in two different patterns: conventional and inverted. Conventional pattern is universal where heterochromatin is localized to the periphery of the nucleus, while active euchromatin resides in the nuclear interior. In contrast, inverted nuclear pattern is unique to the adult rod photoreceptor cell nuclei where heterochromatin localizes to the nuclear center, and euchromatin resides in the nuclear periphery. DNA methylation is predominantly observed in chromocenters. DNA methylation is a dynamic covalent modification on the cytosine residues (5-methylcytosine, 5mC) of CpG dinucleotides that are enriched in the promoter regions of many genes. Three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) participate in methylation of DNA during development. Detecting 5mC with immunohistochemical techniques is very challenging, contributing to variability in results, as all DNA bases including 5mC modified bases are hidden within the double-stranded DNA helix. However, detailed delineation of 5mC distribution during development is very informative. Here, we describe a reproducible technique for robust immunohistochemical detection of 5mC and another epigenetic DNA marker 5-hydroxymethylcytosine (5hmC), which colocalizes with the "open", transcriptionally active chromatin in developing and postmitotic mouse retina.
Collapse
|
76
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
77
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
78
|
Statin and Bisphosphonate Induce Starvation in Fast-Growing Cancer Cell Lines. Int J Mol Sci 2017; 18:ijms18091982. [PMID: 28914765 PMCID: PMC5618631 DOI: 10.3390/ijms18091982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
Statins and bisphosphonates are increasingly recognized as anti-cancer drugs, especially because of their cholesterol-lowering properties. However, these drugs act differently on various types of cancers. Thus, the aim of this study was to compare the effects of statins and bisphosphonates on the metabolism (NADP+/NADPH-relation) of highly proliferative tumor cell lines from different origins (PC-3 prostate carcinoma, MDA-MB-231 breast cancer, U-2 OS osteosarcoma) versus cells with a slower proliferation rate like MG-63 osteosarcoma cells. Global gene expression analysis revealed that after 6 days of treatment with pharmacologic doses of the statin simvastatin and of the bisphosphonate ibandronate, simvastatin regulated more than twice as many genes as ibandronate, including many genes associated with cell cycle progression. Upregulation of starvation-markers and a reduction of metabolism and associated NADPH production, an increase in autophagy, and a concomitant downregulation of H3K27 methylation was most significant in the fast-growing cancer cell lines. This study provides possible explanations for clinical observations indicating a higher sensitivity of rapidly proliferating tumors to statins and bisphosphonates.
Collapse
|
79
|
Pozhitkov AE, Noble PA. Gene expression in the twilight of death: The increase of thousands of transcripts has implications to transplantation, cancer, and forensic research. Bioessays 2017; 39. [PMID: 28787088 DOI: 10.1002/bies.201700066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
After a vertebrate dies, many of its organ systems, tissues, and cells remain functional while its body no longer works as a whole. We define this state as the "twilight of death" - the transition from a living body to a decomposed corpse. We claim that the study of the twilight of death is important to ethical, legal and medical science. We examined gene expression at the twilight of death in the zebrafish and mouse reaching the conclusion that apparently thousands of transcripts significantly increase in abundance from life to several hours/days postmortem relative to live controls. Transcript dynamics of different genes provided "proof-of-principle" that models accurately predict an individual's elapsed-time-of-death (i.e. postmortem interval). While many transcripts were associated with survival and stress compensation, others were associated with epigenetic factors, developmental control, and cancer. Future studies are needed to determine whether the high incidence of cancer in transplant recipients is due to the postmortem processes in donor organs.
Collapse
Affiliation(s)
| | - Peter A Noble
- Department of Periodontics, University of Washington, Seattle, WA, USA
| |
Collapse
|
80
|
DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 2017; 36:5551-5566. [PMID: 28581528 DOI: 10.1038/onc.2017.159] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022]
Abstract
Widespread genome hypo-methylation and promoter hyper-methylation of epithelium-specific genes are hallmarks of stable epithelial-to-mesenchymal transition (EMT), which in prostate cancer (PCa) correlates with castration resistance, cancer stem cells generation, chemoresistance and worst prognosis. Exploiting our consolidated 'ex-vivo' system, we show that cancer-associated fibroblasts (CAFs) released factors have pivotal roles in inducing genome methylation changes required for EMT and stemness in EMT-prone PCa cells. By global DNA methylation analysis and RNA-Seq, we provide compelling evidence that conditioned media from CAFs explanted from two unrelated patients with advanced PCa, stimulates concurrent DNA hypo- and hyper-methylation required for EMT and stemness in PC3 and DU145, but not in LN-CaP and its derivative C4-2B, PCa cells. CpG island (CGI) hyper-methylation associates with repression of genes required for epithelial maintenance and invasion antagonism, whereas activation of EMT markers and stemness genes correlate with CGI hypo-methylation. Remarkably, methylation variations and EMT-regulated transcripts almost completely reverse qualitatively and quantitatively during MET. Unsupervised clustering analysis of the PRAD TCGA data set with the differentially expressed (DE) and methylated EMT signature, identified a gene cluster of DE genes defined by a CAF+ and AR- phenotype and worst diagnosis. This gene cluster includes the relevant factors for EMT and stemness, which display DNA methylation variations in regulatory regions inversely correlated to their expression changes, thus strongly sustaining the ex-vivo data. DNMT3A-dependent methylation is essential for silencing epithelial maintenance and EMT counteracting genes, such as CDH1 and GRHL2, that is, the direct repressor of ZEB1, the key transcriptional factor for EMT and stemness. Accordingly, DNMT3A knock-down prevents EMT entry. These results shed light on the mechanisms of establishment and maintenance of coexisting DNA hypo- and hyper-methylation patterns during cancer progression, the generation of EMT and cell stemness in advanced PCa, and may pave the way to new therapeutic implications.
Collapse
|
81
|
Primetime for Learning Genes. Genes (Basel) 2017; 8:genes8020069. [PMID: 28208656 PMCID: PMC5333058 DOI: 10.3390/genes8020069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be “poised” for rapid response to activate or repress gene expression depending on environmental stimuli.
Collapse
|