51
|
Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol 2019; 56:78-86. [PMID: 30690220 DOI: 10.1016/j.sbi.2018.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be directly linked to protein via an O-linkage to Serine or Threonine residues located within consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both cases, the O-linked fucose can also be elongated with other sugars. Here, we describe the biological importance of these O-fucose glycans and molecular mechanisms by which they affect the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets including several extracellular proteases. Recent data show O-fucose glycans mediate their effects by participating in both intermolecular and intramolecular interactions.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
52
|
Jones W, Rodriguez J, Bassnett S. Targeted deletion of fibrillin-1 in the mouse eye results in ectopia lentis and other ocular phenotypes associated with Marfan syndrome. Dis Model Mech 2019; 12:dmm.037283. [PMID: 30642872 PMCID: PMC6361150 DOI: 10.1242/dmm.037283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
Fibrillin is an evolutionarily ancient protein that lends elasticity and resiliency to a variety of tissues. In humans, mutations in fibrillin-1 cause Marfan and related syndromes, conditions in which the eye is often severely affected. To gain insights into the ocular sequelae of Marfan syndrome, we targeted Fbn1 in mouse lens or non-pigmented ciliary epithelium (NPCE). Conditional knockout of Fbn1 in NPCE, but not lens, profoundly affected the ciliary zonule, the system of fibrillin-rich fibers that centers the lens in the eye. The tensile strength of the fibrillin-depleted zonule was reduced substantially, due to a shift toward production of smaller caliber fibers. By 3 months, zonular fibers invariably ruptured and mice developed ectopia lentis, a hallmark of Marfan syndrome. At later stages, untethered lenses lost their polarity and developed cataracts, and the length and volume of mutant eyes increased. This model thus captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease. Summary: Targeted knockout of Fbn1 in the ciliary epithelium of the mouse eye undermines the structural and biomechanical integrity of the ciliary zonule and results in an ectopia lentis phenotype.
Collapse
Affiliation(s)
- Wendell Jones
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave, Box 8096, St. Louis, MO 63117, USA
| | - Juan Rodriguez
- St Louis College of Pharmacy, Department of Basic Sciences, 4588 Parkview Place, St. Louis, MO 63110, USA
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave, Box 8096, St. Louis, MO 63117, USA
| |
Collapse
|
53
|
Enlarged Optic Nerve Axons and Reduced Visual Function in Mice with Defective Microfibrils. eNeuro 2018; 5:eN-NWR-0260-18. [PMID: 30406200 PMCID: PMC6220594 DOI: 10.1523/eneuro.0260-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss due to retinal ganglion cell (RGC) degeneration that develops slowly with age. Elevated intraocular pressure (IOP) is a significant risk factor, although many patients develop glaucoma with IOP in the normal range. Mutations in microfibril-associated genes cause glaucoma in animal models, suggesting the hypothesis that microfibril defects contribute to glaucoma. To test this hypothesis, we investigated IOP and functional/structural correlates of RGC degeneration in mice of either sex with abnormal microfibrils due to heterozygous Tsk mutation of the fibrilin-1 gene (Fbn1Tsk/+). Although IOP was not affected, Fbn1Tsk/+ mice developed functional deficits at advanced age consistent with glaucoma, including reduced RGC responses in electroretinogram (ERG) experiments. While RGC density in the retina was not affected, the density of RGC axons in the optic nerve was significantly reduced in Fbn1Tsk/+ mice. However, reduced axon density correlated with expanded optic nerves, resulting in similar numbers of axons in Fbn1Tsk/+ and control nerves. Axons in the optic nerves of Fbn1Tsk/+ mice were significantly enlarged and axon diameter was strongly correlated with optic nerve area, as has been reported in early pathogenesis of the DBA/2J mouse model of glaucoma. Our results suggest that microfibril abnormalities can lead to phenotypes found in early-stage glaucomatous neurodegeneration. Thinning of the elastic fiber-rich pia mater was found in Fbn1Tsk/+ mice, suggesting mechanisms allowing for optic nerve expansion and a possible biomechanical contribution to determination of axon caliber.
Collapse
|
54
|
Wang LW, Kutz WE, Mead TJ, Beene LC, Singh S, Jenkins MW, Reinhardt DP, Apte SS. Adamts10 inactivation in mice leads to persistence of ocular microfibrils subsequent to reduced fibrillin-2 cleavage. Matrix Biol 2018; 77:117-128. [PMID: 30201140 DOI: 10.1016/j.matbio.2018.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023]
Abstract
Mutations in the secreted metalloproteinase ADAMTS10 cause recessive Weill-Marchesani syndrome (WMS), comprising ectopia lentis, short stature, brachydactyly, thick skin and cardiac valve anomalies. Dominant WMS caused by FBN1 mutations is clinically similar and affects fibrillin-1 microfibrils, which are a major component of the ocular zonule. ADAMTS10 was previously shown to enhance fibrillin-1 assembly in vitro. Here, Adamts10 null mice were analyzed to determine the impact of ADAMTS10 deficiency on fibrillin microfibrils in vivo. An intragenic lacZ reporter identified widespread Adamts10 expression in the eye, musculoskeletal tissues, vasculature, skin and lung. Adamts10-/- mice had reduced viability on the C57BL/6 background, and although surviving mice were slightly smaller and had stiff skin, they lacked brachydactyly and cardiovascular defects. Ectopia lentis was not observed in Adamts10-/- mice, similar to Fbn1-/- mice, most likely because the mouse zonule contains fibrillin-2 in addition to fibrillin-1. Unexpectedly, in contrast to wild-type eyes, Adamts10-/- zonule fibers were thicker and immunostained strongly with fibrillin-2 antibodies into adulthood, whereas fibrillin-1 staining was reduced. Furthermore, fibrillin-2 staining of hyaloid vasculature remnants persisted post-natally in Adamts10-/- eyes. ADAMTS10 was found to cleave fibrillin-2, providing an explanation for persistence of fibrillin-2 at these sites. Thus, analysis of Adamts10-/- mice led to identification of fibrillin-2 as a novel ADAMTS10 substrate and defined a proteolytic mechanism for clearance of ocular fibrillin-2 at the end of the juvenile period.
Collapse
Affiliation(s)
- Lauren W Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wendy E Kutz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy J Mead
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren C Beene
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shweta Singh
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
55
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|