51
|
Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front Pharmacol 2018; 9:996. [PMID: 30233374 PMCID: PMC6131480 DOI: 10.3389/fphar.2018.00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm-mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm-μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm-μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described.
Collapse
Affiliation(s)
| | | | | | | | - Katherine A. Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Di Maria S, Belchior A, Romanets Y, Paulo A, Vaz P. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl Radiat Isot 2018; 135:72-77. [DOI: 10.1016/j.apradiso.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/26/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023]
|
53
|
Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 2018; 144:144-152. [DOI: 10.1016/j.biochi.2017.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023]
|
54
|
Mastren T, Radchenko V, Hopkins PD, Engle JW, Weidner JW, Copping R, Brugh M, Nortier FM, Birnbaum ER, John KD, Fassbender MEH. Separation of 103Ru from a proton irradiated thorium matrix: A potential source of Auger therapy radionuclide 103mRh. PLoS One 2017; 12:e0190308. [PMID: 29272318 PMCID: PMC5741265 DOI: 10.1371/journal.pone.0190308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within.
Collapse
Affiliation(s)
- Tara Mastren
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Valery Radchenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Philip D. Hopkins
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan W. Engle
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Weidner
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Roy Copping
- Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Mark Brugh
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - F. Meiring Nortier
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Eva R. Birnbaum
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kevin D. John
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | |
Collapse
|