51
|
Ren L, Pan S, Li H, Li Y, He L, Zhang S, Che J, Niu Y. Effects of aspirin-loaded graphene oxide coating of a titanium surface on proliferation and osteogenic differentiation of MC3T3-E1 cells. Sci Rep 2018; 8:15143. [PMID: 30310118 PMCID: PMC6181949 DOI: 10.1038/s41598-018-33353-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Graphene oxide (GO) has attracted considerable attention for biomedical applications such as drug delivery because of its two-dimensional structure, which provides a large surface area on both sides of the nanosheet. Here, a new method for titanium (Ti) surface modification involving a GO coating and aspirin (A) loading (A/Ti-GO) was developed, and the bioactive effects on mouse osteoblastic MC3T3-E1 cells were preliminarily studied. The X-ray photoelectron spectrometry indicated new C-O-N, C-Si-O-C, and C-N=C bond formation upon GO coating. Remarkably, the torsion test results showed stable bonding between the GO coating and Ti under a torsional shear force found in clinical settings, in that, there was no tearing or falling off of GO coating from the sample surface. More importantly, through π-π stacking interactions, the release of aspirin loaded on the surface of Ti-GO could sustain for 3 days. Furthermore, the A/Ti-GO surface displayed a significantly higher proliferation rate and differentiation of MC3T3-E1 cells into osteoblasts, which was confirmed by a water-soluble tetrazolium salt-8 (WST-8) assay and alkaline phosphatase activity test. Consequently, Ti surface modification involving GO coating and aspirin loading might be a useful contribution to improve the success rate of Ti implants in patients, especially in bone conditions.
Collapse
Affiliation(s)
- Liping Ren
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Shuang Pan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China.,Oral Biomedical Research institute of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Haiqing Li
- Department of Stomatology, Hospital of Heilongjiang Province, No. 82 Zhongshan Street, Xiangfang District, Harbin, 150036, China
| | - Yanping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Lina He
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Jingyi Che
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China. .,Oral Biomedical Research institute of Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
52
|
Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:534-546. [PMID: 30423738 DOI: 10.1016/j.msec.2018.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022]
Abstract
In this study, we have fabricated the PHBV functionalized graphite oxide using freeze drying technique, followed by 'in situ' pay loading of Fe3O4 nanoparticles onto the hydrophobic plate of the composite basal plane; thereby, mechanically and thermally stable, bio-imaging Fe3O4/GO-g-PHBV composites have been developed. The synthesis of Fe3O4/GO-g-PHBV composite was confirmed by field emission SEM and TEM analyses, X-ray diffraction and Fourier transform infrared spectroscopy. The wrapping of PHBV copolymer into the graphene layers was investigated by atomic force microscopy and Raman spectral analyses which provided the shifting of the 2D band with low signal intensity in the range of 2600-3000 cm-1. The bactericidal activities of the Fe3O4/GO-g-PHBV composite films were found to exhibit more efficiency against Gram-negative bacteria strains compared to Gram-positive strains. In vibrating sample magnetometer (VSM) analysis, the zero value of coercivity revealed the super-paramagnetic nature of the Fe3O4/GO-g-PHBV composites. The Phantom agar magnetic resonance imaging analysis revealed the efficiency of Fe3O4 nanoparticles as a negative contrast (T2 contrast) along with higher relaxivity value. The significant fibroblast cell (NIH 3T3) adhesion and proliferation (85%) on the Fe3O4/GO-g-PHBV composite surface indicated the physiological and biocompatible stability of that composite along with the presence of large π conjugated aromatic domain.
Collapse
|
53
|
Murugan N, Murugan C, Sundramoorthy AK. In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
54
|
Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W, Shuai C. A Multimaterial Scaffold With Tunable Properties: Toward Bone Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700817. [PMID: 29984132 PMCID: PMC6033191 DOI: 10.1002/advs.201700817] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/23/2018] [Indexed: 05/25/2023]
Abstract
Polyetheretherketone (PEEK)/β-tricalcium phosphate (β-TCP) scaffolds are expected to be able to combine the excellent mechanical strength of PEEK and the good bioactivity and biodegradability of β-TCP. While PEEK acts as a closed membrane in which β-TCP is completely wrapped after the melting/solidifying processing, the PEEK membrane degrades very little, hence the scaffolds cannot display bioactivity and biodegradability. The strategy reported here is to blend a biodegradable polymer with PEEK and β-TCP to fabricate multi-material scaffolds via selective laser sintering (SLS). The biodegradable polymer first degrades and leaves caverns on the closed membrane, and then the wrapped β-TCP is exposed to body fluid. In this study, poly(l-lactide) (PLLA) is adopted as the biodegradable polymer. The results show that large numbers of caverns form on the membrane with the degradation of PLLA, enabling direct contact between β-TCP and body fluid, and allowing for their ion-exchange. As a consequence, the scaffolds display the bioactivity, biodegradability and cytocompatibility. Moreover, bone defect repair studies reveal that new bone tissues grow from the margin towards the center of the scaffolds from the histological analysis. The bone defect region is completely connected to the host bone end after 8 weeks of implantation.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Ping Wu
- College of ChemistryXiangtan UniversityXiangtan411105China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Youwen Yang
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Wang Guo
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
- School of Energy and Machinery EngineeringJiangxi University of Science and TechnologyGanzhou341000China
- State Key Laboratory of High Performance Complex ManufacturingCentral South UniversityChangsha410083China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangsha410008China
| |
Collapse
|
55
|
Osteogenesis and Antibacterial Activity of Graphene Oxide and Dexamethasone Coatings on Porous Polyetheretherketone via Polydopamine-Assisted Chemistry. COATINGS 2018. [DOI: 10.3390/coatings8060203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
56
|
Tang Z, Zhao L, Yang Z, Liu Z, Gu J, Bai B, Liu J, Xu J, Yang H. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int J Nanomedicine 2018; 13:2907-2919. [PMID: 29844673 PMCID: PMC5961647 DOI: 10.2147/ijn.s159388] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Graphene and its derivative graphene oxide (GO) have been implicated in a wide range of anticancer effects. Purpose The objective of this study was to systematically evaluate the toxicity and underlying mechanisms of GO on two osteosarcoma (OSA) cancer cell lines, MG-63 and K7M2 cells. Methods MG-63 and K7M2 cells were treated by GO (0–50 µg/mL) for various time periods. Cell viability was tested by MTT and Live/Dead assays. A ROS Detection Kit based on DHE oxidative reaction was used for ROS detection. An Annexin V-FITC Apoptosis Kit was used for apoptosis detection. Dansylcadaverine (MDC) dyeing was applied for seeking unspecific autophagosomes. Western blot and Immunofluorescence analysis were used for related protein expression and location. Results K7M2 cells were more sensitive to GO compared with MG-63 cells. The mechanism was attributed to the different extent of the generation of reactive oxygen species (ROS). In K7M2 cells, ROS was easily stimulated and the apoptosis pathway was subsequently activated, accompanied by elevated expression of proapoptosis proteins (such as caspase-3) and decreased expression levels of antiapoptosis proteins (such as Bcl-2). A ROS inhibitor (N-acetylcysteine) could alleviate the cytotoxic effects of GO in K7M2 cells. However, the production of ROS in MG-63 cells was probably inhibited by the activation of an antioxidative factor, nuclear factor-E2-related factor-2, which translocated from the cytoplasm to the nucleus after GO treatment, while a nuclear factor-E2-related factor-2 inhibitor (ML385) significantly increased ROS production in MG-63 cells when combined with GO treatment. In addition, autophagy was simultaneously stimulated by characteristic autophagosome formation, autophagy flux, and increased the expression level of autophagy-related proteins (such as LC3I to LC3II conversion, ATG5, and ATG7). Conclusion This paper proposes various underlying mechanisms of the anticancer effect of GO. The novel synthetic use of GO with an oxidizing agent is the key step for further potential applications in clinical OSA cancer therapy.
Collapse
Affiliation(s)
- Zhibing Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Lin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhaohui Liu
- Department of Anatomy and Histology and Embryology, Basic Medical and Biological Sciences, School of Medicine, Soochow University, Suzhou, China
| | - Jia Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing Bai
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jinlian Liu
- Department of Orthopaedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jiaying Xu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
57
|
Ouyang L, Deng Y, Yang L, Shi X, Dong T, Tai Y, Yang W, Chen ZG. Graphene-Oxide-Decorated Microporous Polyetheretherketone with Superior Antibacterial Capability and In Vitro Osteogenesis for Orthopedic Implant. Macromol Biosci 2018; 18:e1800036. [DOI: 10.1002/mabi.201800036] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ling Ouyang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Yi Deng
- School of Chemical Engineering; Sichuan University; Chengdu 610065 China
- Department of Mechanical Engineering; The University of Hong Kong; 999077 Hong Kong China
| | - Lei Yang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Xiuyuan Shi
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Taosheng Dong
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Youyi Tai
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Weizhong Yang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Zhi-Gang Chen
- Centre for Future Materials; University of Southern Queensland; Springfield QLD 4300 Australia
- Materials Engineering; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
58
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
59
|
Dicalcium Phosphate Coated with Graphene Synergistically Increases Osteogenic Differentiation In Vitro. COATINGS 2017. [DOI: 10.3390/coatings8010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|