51
|
Xi ZW, He Y, Liu LQ, Wang YC. Palladium-catalyzed double coupling reaction of terminal alkynes with isocyanides: a direct approach to symmetrical N-aryl dialkynylimines. Org Biomol Chem 2020; 18:8089-8093. [PMID: 33026017 DOI: 10.1039/d0ob01604g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient one-pot synthesis of symmetrical N-aryl dialkynylimines via palladium-catalyzed and copper-promoted isocyanide insertion, cross-coupling and elimination has been developed. This method features readily available starting materials, mild reaction conditions and high atom efficiency as well as simple one-pot operation, which make this strategy highly attractive. Moreover, 2-iodobenzo[f]quinoline derivatives can be obtained via electrophilic cyclization of N-aryl dialkynylimines.
Collapse
Affiliation(s)
- Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Yan He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China.
| |
Collapse
|
52
|
Liu Z, Cao S, Wu J, Zanoni G, Sivaguru P, Bi X. Palladium(II)-Catalyzed Cross-Coupling of Diazo Compounds and Isocyanides to Access Ketenimines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
53
|
Ojeda-Carralero GM, Ceballos LG, Coro J, Rivera DG. One Reacts as Two: Applications of N-Isocyaniminotriphenylphosphorane in Diversity-Oriented Synthesis. ACS COMBINATORIAL SCIENCE 2020; 22:475-494. [PMID: 32631055 DOI: 10.1021/acscombsci.0c00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Isocyaniminotriphenylphosphorane (NIITP) is a functionalized isonitrile that has been extensively applied in a variety of organic reactions during the last two decades. This Review summarizes the most important applications in organic synthesis of this versatile reactant, with the focus posed on mechanistic and methodological aspects allowing the generation of molecular diversity. NIITP combines the reactivity of isonitriles with that of phosphoranes to enable chemical transformations employed in the construction of compound libraries. Here, we cover from the initial applications of NIITP in the Nef isocyanide reaction to further derivations that render a variety of heterocyclic scaffolds. The presence of the isonitrile moiety in this singular compound makes possible the double addition of nucleophiles and electrophiles, which followed by inter(intra)molecular aza-Wittig type transformations enable several multicomponent and tandem processes. In particular, we stress the impact of NIITP in oxadiazole chemistry, from the early two-component transformations to recent examples of multicomponent reactions that take place in the presence of suitable electrophiles. In addition, we briefly describe the role of NIITP chemistry in generating skeletal and conformational diversity in cyclic peptides. The reaction of NIITP with alkynes is thoroughly revised, with particular emphasis on silver-catalyzed processes that have been developed in the last years. Biomedicinal applications of some reaction products are also mentioned along with a perspective of future applications of this reactant.
Collapse
Affiliation(s)
- Gerardo M. Ojeda-Carralero
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | - Leonardo G. Ceballos
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | - Julieta Coro
- Laboratory of Organic Synthesis, Faculty of Chemistry, University of Havana, Zapata and G, 10400, La Habana, Cuba
| | - Daniel G. Rivera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| |
Collapse
|
54
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. A Facile C‐H Insertion Strategy using Combination of HFIP and Isocyanides: Metal‐Free Access to Azole Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC) School of Science RMIT University GPO Box 2476 Melbourne 3001 Australia
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| |
Collapse
|
55
|
Liang YX, Yang M, He BW, Zhao YL. Silver-Catalyzed Cascade Cyclization Reaction of Isocyanides with Sulfoxonium Ylides: Synthesis of 3-Aminofurans and 4-Aminoquinolines. Org Lett 2020; 22:7640-7644. [DOI: 10.1021/acs.orglett.0c02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bo-Wen He
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
56
|
Wang C, Wu L, Xu W, He F, Qu J, Chen Y. Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Org Lett 2020; 22:6954-6959. [PMID: 32808530 DOI: 10.1021/acs.orglett.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a palladium-catalyzed secondary benzylic imidoylative Negishi reaction leveraging the sterically bulky aromatic isocyanides as the imine source. This method allows the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to afford various α-substituted phenylacetone products under mild acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted phenethylamine derivatives with high atom economy.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
57
|
Li D, Lei J. Iron- or copper-catalyzed aerobic oxidative Ugi-azide reactions with tertiary amines: Efficient access to α-aminotetrazoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Yao T, Wang B, He D, Zhang X, Li X, Fang R. Ligand-Controlled Palladium-Catalyzed Chemoselective Multicomponent Reaction of Olefin-Tethered Aryl Halides, Isocyanides, and Carboxylic Acids: Diversified Synthesis of Imides. Org Lett 2020; 22:6784-6789. [DOI: 10.1021/acs.orglett.0c02297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuanli Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Dan He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiang Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ran Fang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
59
|
Schraff S, Kreienborg NM, Trampert J, Sun Y, Orthaber A, Merten C, Pammer F. Asymmetric chain‐growth synthesis of polyisocyanide with chiral nickel
precatalysts. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra Schraff
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| | - Nora M. Kreienborg
- Organic Chemistry II, Ruhr University BochumFaculty of Chemistry and Biochemistry Bochum Germany
| | - Jens Trampert
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| | - Yu Sun
- Fachbereich Chemie, Anorganische ChemieTechnische Universität Kaiserslautern Kaiserslautern Germany
| | - Andreas Orthaber
- Department of Chemistry—Ångström laboratoriesUppsala University Uppsala Sweden
| | - Christian Merten
- Organic Chemistry II, Ruhr University BochumFaculty of Chemistry and Biochemistry Bochum Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced MaterialsUniversity of Ulm Ulm Germany
| |
Collapse
|
60
|
Huang K, Liu JB, Chen ZF, Wang YC, Yadav S, Qiu G. Palladium-Catalyzed Imidoylation-Triggered [2 + 2 + 1] Cyclization of Internal Alkyne with Isocyanides. Org Lett 2020; 22:5931-5935. [PMID: 32662274 DOI: 10.1021/acs.orglett.0c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a palladium-catalyzed [2 + 2 + 1] cyclization of internal alkynes with double isocyanides is described. This facile procedure is efficient for synthesizing various pyrrolo[3,2-c]quinolin-2-amines. The reaction worked well with a broad reaction scope. In the process, it is believed that sequential double isocyanide insertion, 6-exo-dig cyclization of alkyne, and addition of an imino group are involved.
Collapse
Affiliation(s)
- Keke Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Feng Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yu-Chao Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Sarita Yadav
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
61
|
Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L. C(sp2)–H Functionalization of Imidazole at the C2- and C4-Position via Palladium-Catalyzed Isocyanide Insertion Leading to Indeno[1,2-d]imidazole and Imidazo[1,2-a]indole Derivatives. J Org Chem 2020; 85:11014-11024. [DOI: 10.1021/acs.joc.0c01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ying-Ying Liu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Yin-Qing Xie
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ding Yuan
- School of Biology and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan Province, 617000, P. R. of China
| | - Min Lei
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei Province, 443002, P. R. of China
| |
Collapse
|
62
|
Catalytic synthesis of thiazolidines by the reaction of Nef-isocyanide reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
63
|
Wang Y, Huang W, Wang C, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Secondary Benzyl Chlorides with Isocyanides. Org Lett 2020; 22:4245-4249. [PMID: 32383891 DOI: 10.1021/acs.orglett.0c01284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylacetamides represent versatile feedstocks in synthetic chemistry, widely existing in drug molecules and natural products. Herein, we disclose a nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides yielding α-substituted phenylacetamide with steric hindrance, which is synthetically challenging via palladium-catalyzed aminocarbonylation. The reaction features wide functional group tolerance under mild conditions, highlighted by the tolerance of various aromatic halide (-Cl, -Br, -I) and heteroaromatic rings (pyridine and pyrazine).
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
64
|
Tarlton ML, Del Rosal I, Vilanova SP, Kelley SP, Maron L, Walensky JR. Comparative Insertion Reactivity of CO, CO2, tBuCN, and tBuNC into Thorium– and Uranium–Phosphorus Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Iker Del Rosal
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Universite de Toulouse, 135 Avenuede Rangueil, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
65
|
Chen D, Yang M, Li J, Cui P, Su L, Shan Y, You J, Rojsitthisak P, Liu JB, Qiu G. Palladium-Catalyzed Cycloaddition of Alkynylimines, Double Isocyanides, and H 2O/KOAc. J Org Chem 2020; 85:6441-6449. [PMID: 32321251 DOI: 10.1021/acs.joc.0c00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this work, a palladium-catalyzed cyclization of alkynylimines and double isocyanides is described. This facile procedure is efficient for synthesizing various 4-amidyl-2-aminopyrroles. Mechanism investigation indicates that a four-membered ring-fused pyrrole species is a key intermediate and the reaction involves [4 + 1] cycloaddition, protonation, nucleophilic addition, 1,4-addition of isocyanide, and rearomatization. Interestingly, the linear dipyrrole derivative is found to be an appropriate fluoride ion probe with a remarkable emission change, which could serve as a potential candidate for optoelectronic conjugated materials.
Collapse
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Min Yang
- Department of Forensic Science, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peiying Cui
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lei Su
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
66
|
Chen Y, Wu Y, Shatskiy A, Kan Y, Kärkäs MD, Liu JQ, Wang XS. Cooperative Silver- and Base-Catalyzed Diastereoselective Cycloaddition of Nitrones with Methylene Isocyanides: Access to 2-Imidazolinones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Chen
- School of Chemistry and Materials Science; Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University; 221116 Xuzhou Jiangsu China
| | - Yijing Wu
- School of Chemistry and Materials Science; Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University; 221116 Xuzhou Jiangsu China
| | - Andrey Shatskiy
- Department of Chemistry; KTH Royal Institute of Technology; 100 44 Stockholm Sweden
| | - Yuhe Kan
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials; School of Chemistry and Chemical Engineering; Huaiyin Normal University; 223300 Huaian PR China
| | - Markus D. Kärkäs
- Department of Chemistry; KTH Royal Institute of Technology; 100 44 Stockholm Sweden
| | - Jian-Quan Liu
- School of Chemistry and Materials Science; Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University; 221116 Xuzhou Jiangsu China
- Department of Chemistry; KTH Royal Institute of Technology; 100 44 Stockholm Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science; Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University; 221116 Xuzhou Jiangsu China
| |
Collapse
|
67
|
Wang J, Zhong L, Tang S, Liu Y, Ding S, Li L, Zhao H, Chen C, Shang Y. Palladium-Catalyzed Divergent Imidoylative Cyclization of Multifunctionalized Isocyanides: Tunable Access to Oxazol-5(4H)-ones and Cyclic Ketoimines. J Org Chem 2020; 85:7297-7308. [DOI: 10.1021/acs.joc.0c00672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ling Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shi Tang
- Department of Pharmacy, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Yuan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
68
|
Luo J, Chen GS, Chen SJ, Liu YL. Catalyst-free formal [4+1]/[4+2] cyclization cascade sequence of isocyanides with two molecules of acylketene formed in situ from thermal-induced Wolff rearrangement of 2-diazo-1,3-diketones. Sci Bull (Beijing) 2020; 65:670-677. [PMID: 36659136 DOI: 10.1016/j.scib.2019.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
Abstract
An expedient and economic approach for constructing O,O,N-spiro compounds consisting of both a 1,3-oxazine and a furan ring through a catalyst-free formal [4+1]/[4+2] cycloaddition cascade sequence of isocyanides with two molecules of acylketene formed in situ through thermal-induced Wolff rearrangement of 2-diazo-1,3-diketones was developed. The reaction displayed good functional group tolerance and was compatible with different isocyanides and 2-diazo-1,3-diketones. Furthermore, preliminary asymmetric attempts of this reaction are made by utilizing optically pure isocyanides as inputs, and moderate diastereomeric induction was observed.
Collapse
Affiliation(s)
- Jian Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
69
|
Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Org Lett 2020; 22:3245-3250. [PMID: 32242414 DOI: 10.1021/acs.orglett.0c01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, we disclose a Ni-catalyzed formal aminocarbonylation of primary and secondary unactivated aliphatic iodides with isocyanides to afford alkyl amide, which proceeds via the selective monomigratory insertion of isocyanides with alkyl iodides, subsequent β-hydride elimination, and hydrolysis process. The reaction features wide functional group tolerance under mild conditions. Additionally, the selective, one-pot hydrolysis of reaction mixture under acid conditions allows for expedient synthesis of the corresponding alkyl carboxylic acid.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Weng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
70
|
Mao S, Wang H, Liu L, Wang X, Zhou M, Li L. Trifluoromethylation/Difluoromethylation‐Initiated Radical Cyclization of
o
‐Alkenyl Aromatic Isocyanides for Direct Construction of 4‐Cyano‐2‐Trifluoromethyl/Difluoromethyl‐Containing Quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shukuan Mao
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lu Liu
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lei Li
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| |
Collapse
|
71
|
Wang J, Liu Y, Xiong Z, Zhong L, Ding S, Li L, Zhao H, Chen C, Shang Y. Palladium-catalysed dearomative aryl/cycloimidoylation of indoles. Chem Commun (Camb) 2020; 56:3249-3252. [PMID: 32108847 DOI: 10.1039/d0cc00402b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first example of a dearomative palladium-catalysed isocyanide insertion reaction has been developed using functionalized isocyanides as the reaction partner of N-(2-bromobenzoyl)indoles. The imidoyl-palladium intermediate generated by tandem indole double bond/isocyanide insertion reactions could be trapped by intramolecular functional groups such as the C(sp2)-H bond and alkenes, affording diversified indoline derivatives bearing C3 imine-containing heterocycles. The dearomative aryl/cycloimidoylation of indoles proceeded smoothly in good to excellent yields with a wide functional group tolerance.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yuan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ling Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
72
|
Shen X, Shatskiy A, Chen Y, Kärkäs MD, Wang XS, Liu JQ. Silver-Assisted [3 + 2] Annulation of Nitrones with Isocyanides: Synthesis of 2,3,4-Trisubstituted 1,2,4-Oxadiazolidin-5-ones. J Org Chem 2020; 85:3560-3567. [PMID: 32013428 PMCID: PMC7307928 DOI: 10.1021/acs.joc.9b03279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
A silver-assisted method for [3 +
2] annulation of nitrones with
isocyanides has been developed. The developed protocol allows access
to a variety of 2,3,4-trisubstituted 1,2,4-oxadiazolidin-5-one derivatives
as single diastereomers in good to excellent yields using silver oxide
as the catalyst and molecular oxygen as the terminal oxidant. A plausible
mechanism involving a nucleophilic addition/cyclization/protodeargentation/oxidation
pathway is proposed on the basis of experimental results.
Collapse
Affiliation(s)
- Xuanyu Shen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
73
|
Zhang L, Yang W, Hu Z, Zhang X, Xu X. Tandem Access to Acridones and their Fused Derivatives: [1+2+3] Annulation of Isocyanides with Unsaturated Carbonyls. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ling‐Juan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Wenhui Yang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano ScienceShandong Normal University Jinan 250014 People's Republic of China
| | - Xian‐Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano ScienceShandong Normal University Jinan 250014 People's Republic of China
| |
Collapse
|
74
|
Nickel-catalyzed allylic carbonylative coupling of alkyl zinc reagents with tert-butyl isocyanide. Nat Commun 2020; 11:392. [PMID: 31959753 PMCID: PMC6971256 DOI: 10.1038/s41467-020-14320-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/17/2019] [Indexed: 11/24/2022] Open
Abstract
Transition metal-catalyzed carbonylation with carbon nucleophiles is one of the most prominent methods to construct ketones, which are highly versatile motifs prevalent in a variety of organic compounds. In comparison to the well-established palladium catalytic system, the nickel-catalyzed carbonylative coupling is much underdeveloped due to the strong binding affinity of CO to nickel. By leveraging easily accessible tert-butyl isocyanide as the CO surrogate, we present a nickel-catalyzed allylic carbonylative coupling with alkyl zinc reagent, allowing for the practical and straightforward preparation of synthetically important β,γ-unsaturated ketones in a linear-selective fashion with excellent trans-selectivity under mild conditions. Moreover, the undesired polycarbonylation process which is often encountered in palladium chemistry could be completely suppressed. This nickel-based method features excellent functional group tolerance, even including the active aryl iodide functionality to allow the orthogonal derivatization of β,γ-unsaturated ketones. Preliminary mechanistic studies suggest that the reaction proceeds via a π-allylnickel intermediate. In contrast to the well-established palladium-catalyzed version, the nickel-catalyzed carbonylative coupling is underdeveloped. Here the authors report a nickel-catalyzed allylic carbonylative coupling with alkyl zinc reagents, allowing for preparation of β,γ-unsaturated ketones in a linear-selective fashion.
Collapse
|
75
|
Collet JW, Morel B, Lin HC, Roose TR, Mampuys P, Orru RVA, Ruijter E, Maes BUW. Synthesis of Densely Functionalized Pyrimidouracils by Nickel(II)-Catalyzed Isocyanide Insertion. Org Lett 2020; 22:914-919. [PMID: 31942797 PMCID: PMC7011176 DOI: 10.1021/acs.orglett.9b04387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A robust nickel-catalyzed oxidative
isocyanide insertion/C–H
amination by reaction of readily available N-uracil-amidines
with isocyanides affording polysubstituted pyrimidouracils has been
reported. The reaction proceeds in moderate to quantitative yield,
under mild conditions (i.e., green solvent, air atmosphere,
moderate temperature). The broad range of structurally diverse isocyanides
and N-uracil-amidines that are tolerated make this
method an interesting alternative to the currently available procedures
toward pyrimidouracils.
Collapse
Affiliation(s)
- Jurriën W Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands.,Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Bénédicte Morel
- Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Hung-Chien Lin
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Thomas R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Pieter Mampuys
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands.,Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Romano V A Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Bert U W Maes
- Organic Synthesis, Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| |
Collapse
|
76
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2020; 59:614-621. [DOI: 10.1002/anie.201911614] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
77
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2020; 59:540-558. [DOI: 10.1002/anie.201905838] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
78
|
Affiliation(s)
- Yeming Wang
- Institute of Chemical and Industrial BioengineeringJilin Engineering Normal University Kaixuan Road, No.3050. Changchun 130052 China
| | - Chaoqun Zhang
- Institute of Chemical and Industrial BioengineeringJilin Engineering Normal University Kaixuan Road, No.3050. Changchun 130052 China
| |
Collapse
|
79
|
Wang Z, Meng XH, Liu P, Hu WY, Zhao YL. Rhodium-catalyzed homodimerization–cyclization reaction of two vinyl isocyanides: a general route to 2-(isoquinolin-1-yl)oxazoles. Org Chem Front 2020. [DOI: 10.1039/c9qo01229j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel rhodium-catalyzed homodimerization–cyclization reaction of two vinyl isocyanides has been developed for the synthesis of 2-(isoquinolin-1-yl)oxazoles by formation of three new bonds and two rings in a single step.
Collapse
Affiliation(s)
- Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Pei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Wan-Ying Hu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
80
|
Liu L, Li L, Mao S, Wang X, Zhou MD, Zhao YL, Wang H. Synthesis of pyrazolo[1,5-c]quinazoline derivatives through the copper-catalyzed domino reaction of o-alkenyl aromatic isocyanides with diazo compounds. Chem Commun (Camb) 2020; 56:7665-7668. [DOI: 10.1039/d0cc00594k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various o-alkenyl aromatic isocyanides were prepared from readily available reactants for their double annulation with diazo compounds for a one-pot synthesis of pyrazolo[1,5-c]quinazolines under mild reaction conditions.
Collapse
Affiliation(s)
- Lu Liu
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Lei Li
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Shukuan Mao
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| | - Yu-long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science
- Liaoning Shihua University
- Fushun 113001
- People's Republic of China
| |
Collapse
|
81
|
Tao LY, Wei Y, Shi M. Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes via a triplet biradical mediated process. Org Chem Front 2020. [DOI: 10.1039/d0qo00878h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A triplet biradical mediated dimerization–cyclization reaction of isocyanoaryl-tethered alkylidenecyclobutanes to construct macrocyclic skeletons including dihydroquinoline and quinoline units has been reported.
Collapse
Affiliation(s)
- Le-Yi Tao
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
82
|
Altundas B, Marrazzo JPR, Fleming FF. Metalated isocyanides: formation, structure, and reactivity. Org Biomol Chem 2020; 18:6467-6482. [PMID: 32766609 DOI: 10.1039/d0ob01340d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metalated isocyanides are highly versatile organometallics. Central to the reactivity of metalated isocyanides is the presence of two orthogonally reactive carbons, a highly nucleophilic "carbanion" inductively stabilized by a carbene-like isocyanide carbon. The two reactivities are harnessed in the attack of metalated isocyanides on π-electrophiles where an initial nucleophilic attack leads to an electron pair that cyclizes onto the terminal isocyanide carbon in a rapid route to diverse, nitrogenous heterocycles. Harnessing the potent nucleophilicity of metalated isocyanides while preventing electrophilic attack on the terminal isocyanide carbon has largely been driven by empirical heuristics. This review provides a foundational understanding by surveying the formation, structure, and properties of metalated isocyanides. The focus on the interplay between the structure and reactivity of metalated isocyanides is anticipated to facilitate the development and deployment of these exceptional nucleophiles in complex bond constructions.
Collapse
Affiliation(s)
- Bilal Altundas
- Chemistry, Drexel University, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
83
|
Chen X, Qiu G, Liu R, Chen D, Chen Z. Divergent oriented synthesis (DOS) of aza-heterocyclic amides through palladium-catalyzed ketenimination of 2-iodo-N-(propa-1,2-dien-1-yl)anilines. Org Chem Front 2020. [DOI: 10.1039/c9qo01451a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium-catalyzed tandem reaction of N-(2-iodophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide with isocyanide is described to divergently produce aza-heterocyclic amides.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Renzhi Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Dianpeng Chen
- Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| |
Collapse
|
84
|
Hu Z, Zhang M, Zhou Q, Xu X, Tang B. Domino synthesis of fully substituted pyridines by silver-catalyzed chemoselective hetero-dimerization of isocyanides. Org Chem Front 2020. [DOI: 10.1039/c9qo01333d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A silver-catalyzed hetero-dimerization of various vinyl isocyanides with isocyanoacetamides has been developed for the efficient and practical synthesis of fully substituted pyridines in a single operation.
Collapse
Affiliation(s)
- Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Mingyue Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Qinghua Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| |
Collapse
|
85
|
Luo L, Li H, Liu J, Zhou Y, Dong L, Xiao YC, Chen FE. Transition-metal and oxidant-free approach for the synthesis of diverse N-heterocycles by TMSCl activation of isocyanides. RSC Adv 2020; 10:29257-29262. [PMID: 35521093 PMCID: PMC9055958 DOI: 10.1039/d0ra04636a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023] Open
Abstract
A highly efficient TMSCl-mediated addition of N-nucleophiles to isocyanides has been achieved. This transition-metal and oxidant-free strategy has been applied to the construction of various N-heterocyles such as quinazolinone, benzimidazole and benzothiazole derivatives by the use of distinct amino-based binucleophiles. The notable feature of this protocol includes its mild reaction condition, broad functional group tolerance and excellent yield. A highly efficient TMSCl-mediated addition of N-nucleophiles to isocyanides has been achieved.![]()
Collapse
Affiliation(s)
- Liangliang Luo
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Hongyan Li
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jinxin Liu
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Lin Dong
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
86
|
Liu Y, Li S, Chen X, Fan L, Li X, Zhu S, Qu L, Yu B. Mn(III)‐Mediated Regioselective 6‐
endo
‐trig Radical Cyclization of
o
‐Vinylaryl Isocyanides to Access 2‐Functionalized Quinolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901300] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
- College of Biological and Pharmaceutical Engineering Xinyang Agriculture & Forestry University Xinyang 464000 People's Republic of China
| | - Shi‐Jun Li
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xiao‐Lan Chen
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Lu‐Lu Fan
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 People's Republic of China
| | - Xiao‐Yun Li
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Shan‐Shan Zhu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Ling‐Bo Qu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Bing Yu
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
87
|
Xiong Z, Cai P, Mei Y, Wang J. Access to 1-amino-3,4-dihydroisoquinolines via palladium-catalyzed C-H bond aminoimidoylation reaction from functionalized isocyanides. RSC Adv 2019; 9:42072-42076. [PMID: 35542878 PMCID: PMC9076523 DOI: 10.1039/c9ra09139d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Efficient access to 1-amino-3,4-dihydroisoquinolines, through palladium-catalyzed intramolecular C-H bond aminoimidoylation of α-benzyl-α-isocyanoacetates, has been developed. Consecutive isocyanide insertion and C-H bond activation were realized with C-N and C-C bonds formation in one step under redox neutral conditions, employing O-benzoyl hydroxylamines as electrophilic amino sources.
Collapse
Affiliation(s)
- Zhuang Xiong
- School of Biotechnology and Sciences, Wuyi University Jiangmen Guangdong 529090 P. R. China
| | - Panyuan Cai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241000 P. R. China
| | - Yingshuang Mei
- School of Biotechnology and Sciences, Wuyi University Jiangmen Guangdong 529090 P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241000 P. R. China
| |
Collapse
|
88
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
89
|
Shiva Kumar K, Naikawadi PK, Jatoth R, Dandela R. Bimetallic Cu/Pd-catalyzed three-component azide-alkyne cycloaddition/isocyanide insertion: synthesis of fully decorated tricyclic triazoles. Org Biomol Chem 2019; 17:7320-7324. [PMID: 31343035 DOI: 10.1039/c9ob01175g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The construction of fully decorated 1,2,3-triazole-fused 5-, 6- and 7-membered rings has been disclosed via a bimetallic relay-catalyzed cascade process combining azide-alkyne cycloaddition, C(sp2)-H functionalization of intermediary 1,2,3-triazoles and isocyanide insertion. The salient features of this methodology include simple starting materials, reduced synthetic steps, good substrate scope and high efficiency.
Collapse
Affiliation(s)
- K Shiva Kumar
- Department of Chemistry, Osmania University, Hyderabad-500 007, India.
| | | | | | | |
Collapse
|
90
|
Li D, Lei J. Thio radical-induced denitrogenative annulation of 1-azido-2-isocyanoarenes to construct 2-thiolated benzimidazoles. Org Biomol Chem 2019; 17:9666-9671. [PMID: 31691703 DOI: 10.1039/c9ob02165e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for the synthesis of 2-thiolated benzimidazoles is described starting from thiols and 1-azido-2-isocyanoarenes. The isocyano group works as an acceptor of various thio radicals, followed by denitrogenative annulation of the resulting imidoyl radical intermediates to the azido group, with nitrogen loss as the only process involving high bond-forming efficiency. The one-pot method for the synthesis of these products with high functional group tolerance in the benzimidazole-based ring is not available in previous literature.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China.
| | - Jian Lei
- College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
91
|
Wang Y, Yu Y, Zhao L, Ning Y. Silver-Catalyzed Cascade Reaction of N
-Isocyaniminotriphenylphosphorane with Aldehydes: Synthesis of Unsymmetrical Azines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yeming Wang
- Institute of Chemical and Industrial Bioengineering; Jilin Engineering Normal University; Kaixuan Road, No. 3050 130052 Changchun China
| | - Yang Yu
- Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Northeast Normal University; Renmin Street, No. 5268 130024 Changchun China
| | - Liping Zhao
- Institute of Chemical and Industrial Bioengineering; Jilin Engineering Normal University; Kaixuan Road, No. 3050 130052 Changchun China
| | - Yongquan Ning
- Department of Chemistry; Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis; Northeast Normal University; Renmin Street, No. 5268 130024 Changchun China
| |
Collapse
|
92
|
Zhao L, Liu B, Tan Q, Ding CH, Xu B. Silver-Assisted Oxidative Isocyanide Insertion of Ethers: A Direct Approach to β-Carbonyl α-Iminonitriles. Org Lett 2019; 21:9223-9227. [DOI: 10.1021/acs.orglett.9b03590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Leiyang Zhao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
93
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
94
|
Peng X, Qin F, Xu M, Zhu S, Pan Y, Tang H, Meng X, Wang H. Synthesis of imidazo[1,2-c]thiazoles through Pd-catalyzed bicyclization of tert-butyl isonitrile with thioamides. Org Biomol Chem 2019; 17:8403-8407. [PMID: 31482915 DOI: 10.1039/c9ob01664c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Building new biological molecules is challenging. Herein, imidazo[1,2-c]thiazoles were synthesized as a new class of heterobicyclic analogs through Pd-catalyzed cascade bicyclization from isonitriles with thioamides. The bicyclic scaffolds were constructed by inserting three molecules of isonitrile into two molecules of thioamide and then cyclizing them in a one-pot procedure. In vitro antitumor studies of these new compounds were conducted by using the MTT assay, and compound 3c showed excellent inhibitory effects against HepG2 at 7.06 ± 0.68 μM.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China and School of Pharmaceutical Science, Gannan Medical University, Ganzhou, Jiangxi 341000, P. R. China.
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mengyue Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shaojie Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Haitao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiujin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
95
|
Chicote MT, Saura-Llamas I, García-Yuste MF, Bautista D, Vicente J. Insertion reactions of isocyanides into the Metal-C(sp3) bonds of ylide complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
96
|
Liu JQ, Chen X, Shatskiy A, Kärkäs MD, Wang XS. Silver-Mediated Synthesis of Substituted Benzofuran- and Indole-Pyrroles via Sequential Reaction of ortho-Alkynylaromatics with Methylene Isocyanides. J Org Chem 2019; 84:8998-9006. [PMID: 31117557 DOI: 10.1021/acs.joc.9b00528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A silver-mediated reaction between 2-ethynyl-3-(1-hydroxyprop-2-yn-1-yl)phenols or 2-ethynyl-3-(1-hydroxyprop-2-yn-1-yl)anilines and methylene isocyanides has been developed. A sequential 5-endo-dig cyclization and [3 + 2] cycloaddition process is proposed. This synthetic strategy is atom- and step-efficient and applicable to a broad scope of substrates, allowing the synthesis of valuable substituted benzofuran- and indole-pyrroles in moderate to high yields.
Collapse
Affiliation(s)
- Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China.,Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Xinyi Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| | - Andrey Shatskiy
- Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Markus D Kärkäs
- Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|
97
|
Liu J, Shen X, Shatskiy A, Zhou E, Kärkäs MD, Wang X. Silver‐Induced [3+2] Cycloaddition of Isocyanides with Acyl Chlorides: Regioselective Synthesis of 2,5‐Disubstituted Oxazoles. ChemCatChem 2019. [DOI: 10.1002/cctc.201900965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jian‐Quan Liu
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Xuanyu Shen
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
| | - Andrey Shatskiy
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Enlong Zhou
- College of Chemistry and Material Science Shandong Agricultural University Taian Shandong 271000 P. R. China
| | - Markus D. Kärkäs
- Department of Chemistry Organic ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Xiang‐Shan Wang
- School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal University Xuzhou Jiangsu 221116 P. R China
| |
Collapse
|
98
|
Sau SC, Mei R, Struwe J, Ackermann L. Cobaltaelectro-Catalyzed C-H Activation with Carbon Monoxide or Isocyanides. CHEMSUSCHEM 2019; 12:3023-3027. [PMID: 30897295 DOI: 10.1002/cssc.201900378] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/12/2019] [Indexed: 05/10/2023]
Abstract
Electrochemical oxidative C-H/N-H activations with isocyanides have been realized with a versatile cobalt catalyst. The widely applicable cobalt catalysis manifold further enabled electrooxidative C-H/N-H carbonylations with carbon monoxide under ambient conditions. The C-H functionalizations were efficiently realized with ample scope and outstanding functional group tolerance in a user-friendly undivided cell setup.
Collapse
Affiliation(s)
- Samaresh Chandra Sau
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ruhuai Mei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
99
|
Chen D, Shan Y, Li J, You J, Sun X, Qiu G. External Reductant-Free Palladium-Catalyzed Reductive Insertion of Isocyanide: Synthesis of Polysubstituted Pyrroles and Its Applications as a Cysteine Probe. Org Lett 2019; 21:4044-4048. [DOI: 10.1021/acs.orglett.9b01220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuejun Sun
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| |
Collapse
|
100
|
Hao W, Sha Y, Deng Y, Luo Y, Zeng L, Tang S, Weng Y, Chiang CW, Lei A. XANES/EPR Evidence of the Oxidation of Nickel(II) Quinolinylpropioamide and Its Application in Csp 3 -H Functionalization. Chemistry 2019; 25:4931-4934. [PMID: 30768816 DOI: 10.1002/chem.201900009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/28/2022]
Abstract
An in situ generated oxidation species of nickel quinolinylpropioamide intermediate was produced. Characterization by X-ray absorption near edge structure (XANES) and EPR provides complementary insights into this oxidized nickel species. With aliphatic amides and isocyanides as substrates, a nickel-catalyzed facile synthesis of structurally diverse five-membered lactams could be achieved.
Collapse
Affiliation(s)
- Wenyan Hao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Yuchen Sha
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Yi Deng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Yi Luo
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Shan Tang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.,National Synchrotron Radiation Research Center (NSRRC), Hsinchu Science Park, Hsinchu, Taiwan
| | - Chien-Wei Chiang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P.R. China.,College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|