51
|
Zhao L, Zhang L, Zheng Z, Ling Y, Tang H. Synthesis and Properties of UCST‐Type Thermo‐ and Light‐Responsive Homopolypeptides with Azobenzene Spacers and Imidazolium Pendants. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liang Zhao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Lin Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Zelai Zheng
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
52
|
Kerscher B, Trötschler TM, Pásztói B, Gröer S, Szabó Á, Iván B, Mülhaupt R. Thermoresponsive Polymer Ionic Liquids and Nanostructured Hydrogels Based upon Amphiphilic Polyisobutylene-b-poly(2-ethyl-2-oxazoline) Diblock Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00296] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Kerscher
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Tobias M. Trötschler
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Balázs Pásztói
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - Saskia Gröer
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ákos Szabó
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Rolf Mülhaupt
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
53
|
Ohno H, Yoshizawa-Fujita M, Kohno Y. Functional Design of Ionic Liquids: Unprecedented Liquids that Contribute to Energy Technology, Bioscience, and Materials Sciences. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180401] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroyuki Ohno
- Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| | - Masahiro Yoshizawa-Fujita
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yuki Kohno
- National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| |
Collapse
|
54
|
Liu G. Tuning the Properties of Charged Polymers at the Solid/Liquid Interface with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3232-3247. [PMID: 29806944 DOI: 10.1021/acs.langmuir.8b01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In conventional theories, where ions are treated as point charges, the properties of charged polymers can be tuned using ions via the ionic strength. However, this article will show that the properties of charged polymers at the solid/liquid interface, including charged polymer brushes and polyelectrolyte multilayers, can be tuned by ions beyond ionic strength effects. Ion specificity, multivalency, ionic hydrogen bonding, and ionic hydrophobicity/hydrophilicity are used to tune a range of properties of charged polymers at the solid/liquid interface such as hydration, conformation, stiffness, surface wettability, lubricity, adhesion, and protein adsorption. The ionic effects demonstrated here greatly broaden our understanding of the use of ions to tune the interfacial properties of charged polymers. It is anticipated that these ionic effects can be further expanded by incorporating new types of important ion-charged polymer interactions and can also be extended to neutral polymer systems.
Collapse
Affiliation(s)
- Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
55
|
Zhao C, Ma Z, Zhu X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
OEGylated polypeptide bearing Y-Shaped pendants with a LCST close to body temperature: Synthesis and thermoresponsive properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Profiling the molecular interactions between a promising thermoresponsive polymer and ionic liquid: A biophysical outlook. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Deng Y, Li X, Zhang Q, Luo Z, Han C, Dong S. LCST phase behavior of benzo-21-crown-7 with different alkyl chains. Beilstein J Org Chem 2019; 15:437-444. [PMID: 30873228 PMCID: PMC6404474 DOI: 10.3762/bjoc.15.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022] Open
Abstract
The introduction of hydrophobic units into crown ethers can dramatically decrease the critical transition temperature of LCST and realize macroscopic phase separation at low to moderate temperature and concentration. Minor modifications in the chemical structure of crown ethers (benzo-21-crown-7, B21C7s) can effectively control the thermo-responsive properties.
Collapse
Affiliation(s)
- Yan Deng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Chengyou Han
- Department of Chemistry, College of science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
59
|
Biswas Y, Banerjee P, Mandal TK. From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
60
|
Zheng B, Luo Z, Deng Y, Zhang Q, Gao L, Dong S. A degradable low molecular weight monomer system with lower critical solution temperature behaviour in water. Chem Commun (Camb) 2019; 55:782-785. [PMID: 30569924 DOI: 10.1039/c8cc09160a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A degradable thermo-responsive system was prepared and investigated. The degradation behaviour induced by the cleavage process of the thermo-sensitive crown ethers effectively altered the thermo-responsiveness.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | | | | | | | | | | |
Collapse
|
61
|
Schaeffer N, Pérez-Sánchez G, Passos H, Gomes JRB, Papaiconomou N, Coutinho JAP. Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems. Phys Chem Chem Phys 2019; 21:7462-7473. [DOI: 10.1039/c8cp07750a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thermal and acid responsive behaviour of bulky phosphonium-based ILs is elucidated using a mixed experimental and computational approach.
Collapse
Affiliation(s)
- Nicolas Schaeffer
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - German Pérez-Sánchez
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Helena Passos
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José R. B. Gomes
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | - João A. P. Coutinho
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
62
|
Abstract
Ionic liquids have established themselves as promising soft compounds for bringing innovation to materials science. For further developing functions and abilities of ionic liquids, one of the most important challenges is to organize ionic liquids into dimensionally ordered states. In this feature article, we will present the organization of ionic liquids by endowing them with liquid-crystalline properties. In particular, focusing on the specific abilities and properties of functional ionic liquids, a variety of nanostructured ionic materials have been developed and their unique and enhanced functions have been revealed. Some potential uses of organized ionic liquids have also been mentioned.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan. and Functional Ionic Liquid Laboratories (FILL), Nakacho, Koganei, Tokyo 184-8588, Japan and JST, PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan. and Functional Ionic Liquid Laboratories (FILL), Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
63
|
Li JJ, Zhou YN, Luo ZH, Zhu S. A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition. Polym Chem 2019. [DOI: 10.1039/c8py01265b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyelectrolyte-containing copolymer with a CO2/N2-switchable cloud point, resulting from the gas-induced alternation of hydrophilicity, was prepared.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shiping Zhu
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- School of Science and Engineering
| |
Collapse
|
64
|
Zhao L, Wang X, Sun L, Zhou R, Zhang X, Zhang L, Zheng Z, Ling Y, Luan S, Tang H. Synthesis and UCST-type thermoresponsive properties of polypeptide based single-chain nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py01040h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the synthesis and UCST-type thermoresponsive properties of helical polypeptide based single-chain nanoparticles which displayed increased solution phase transition temperature and improved biocompatibility.
Collapse
|
65
|
Jana S, Anas M, Maji T, Banerjee S, Mandal TK. Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polym Chem 2019. [DOI: 10.1039/c8py01512k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-stimuli responsive tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST under different conditions are presented.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Mahammad Anas
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanmoy Maji
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
66
|
Ouyang Y, Zhang Y, Luo Z, Li X, Duan A, Dong S. Differences in solubilities, crystal structures, NMR spectra and fluorescence emissions induced by potassium cation/benzo-21-crown-7 molecular recognition. NEW J CHEM 2019. [DOI: 10.1039/c9nj03208h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes of the fundamental properties of host–guest pairs induced by potassium cation complexation were investigated.
Collapse
Affiliation(s)
- Yunyun Ouyang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University
- Changsha 410082
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
67
|
Luo Z, Deng Y, Li X, Zhang Q, Wu J, Qi Z, Jin L, Dong S. LCST behavior controlled by size-matching selectivity from low molecular weight monomer systems. NEW J CHEM 2019. [DOI: 10.1039/c9nj00846b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LCST behavior was controlled by crown ether–cation recognition motifs via size-matching selectivity.
Collapse
Affiliation(s)
- Zheng Luo
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jianfeng Wu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi’an
- P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi’an
- P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi’an
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
68
|
Huang J, Chen X, Qin H, Liang H, Lu J. A new thermoresponsive polymer with reactive aldehyde groups for postmodification to tune the solubility and phase transition temperature. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Ju C, Park C, Kim T, Kang S, Kang H. Thermo-responsive draw solute for forward osmosis process; poly(ionic liquid) having lower critical solution temperature characteristics. RSC Adv 2019; 9:29493-29501. [PMID: 35531499 PMCID: PMC9072005 DOI: 10.1039/c9ra04020j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
A poly(ionic liquid) having lower critical solution temperature characteristics was synthesized to investigate its suitability as a draw solute for forward osmosis.
Collapse
Affiliation(s)
- Changha Ju
- Department of Chemical Engineering
- Dong-A University
- Busan 49315
- Republic of Korea
| | - Chanhyuk Park
- Department of Chemical Engineering
- Dong-A University
- Busan 49315
- Republic of Korea
| | - Taehyung Kim
- Department of Chemical Engineering
- Dong-A University
- Busan 49315
- Republic of Korea
| | - Shinwoo Kang
- Department of Chemical Engineering
- Dong-A University
- Busan 49315
- Republic of Korea
| | - Hyo Kang
- Department of Chemical Engineering
- Dong-A University
- Busan 49315
- Republic of Korea
| |
Collapse
|
70
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Rola K, Zajac A, Czajkowski M, Cybinska J, Martynkien T, Smiglak M, Komorowska K. Ionic liquids-a novel material for planar photonics. NANOTECHNOLOGY 2018; 29:475202. [PMID: 30198858 DOI: 10.1088/1361-6528/aae01e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron beam patterning is an important technology in the fabrication of miniaturized photonic devices. The fabrication process conventionally involves the use of radiation sensitive polymer-based solutions (called resists). We propose to replace typical polymer resists with eco-friendly solvent-free room temperature ionic liquids (RTILs), which are polymerized in situ and solidified by an electron beam. It is demonstrated that the shapes of polymerized structures are different for high-viscous Cl-based RTILs and low-viscous NTf2-based RTILs. Due to the the satisfactory quality of the polymerized spatial microstructures and their light transmission properties, the RTIL-derived microstructures are potentially attractive as photonic elements for near-infrared.
Collapse
Affiliation(s)
- Krzysztof Rola
- PORT Polish Center for Technology Development, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|
72
|
Temperature-responsive self-separation ionic liquid system of zwitterionic-type quaternary ammonium-KI for CO2 fixation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63101-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Chen X, Liu X, Miao C, Song P, Xiong Y. Ionic liquid-like inimer mediated RAFT polymerization of N-isopropylacrylamide. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
74
|
Merindol R, Loescher S, Samanta A, Walther A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. NATURE NANOTECHNOLOGY 2018; 13:730-738. [PMID: 29941888 PMCID: PMC6082344 DOI: 10.1038/s41565-018-0168-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 05/21/2023]
Abstract
DNA has traditionally been used for the programmable design of nanostructures by exploiting its sequence-defined supramolecular recognition. However, control on larger length scales or even hierarchical materials that translate to the macroscale remain difficult to construct. Here, we show that the polymer character of single-stranded DNA (ssDNA) can be activated via a nucleobase-specific lower critical solution temperature, which provides a unique access to mesoscale structuring mechanisms on larger length scales. We integrate both effects into ssDNA multiblock copolymers that code sequences for phase separation, hybridization and functionalization. Kinetic pathway guidance using temperature ramps balances the counteracting mesoscale phase separation during heating with nanoscale duplex recognition during cooling to yield a diversity of complex all-DNA colloids with control over the internal dynamics and of their superstructures. Our approach provides a facile and versatile platform to add mesostructural layers into hierarchical all-DNA materials. The high density of addressable ssDNA blocks opens routes for applications such as gene delivery, artificial evolution or spatially encoded (bio)materials.
Collapse
Affiliation(s)
- Rémi Merindol
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
| | - Sebastian Loescher
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
| | - Avik Samanta
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
75
|
Kallel Elloumi A, Abdelhedi Miladi I, Serghei A, Taton D, Aissou K, Ben Romdhane H, Drockenmuller E. Partially Biosourced Poly(1,2,3-triazolium)-Based Diblock Copolymers Derived from Levulinic Acid. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amira Kallel Elloumi
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères − Synthèse et Etudes Physicochimiques (LR99ES14), 2092 El Manar, Tunisia
| | - Imen Abdelhedi Miladi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères − Synthèse et Etudes Physicochimiques (LR99ES14), 2092 El Manar, Tunisia
| | - Anatoli Serghei
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux IPB-ENSCBP, CNRS, F-33607 Pessac Cedex, France
| | - Karim Aissou
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux IPB-ENSCBP, CNRS, F-33607 Pessac Cedex, France
| | - Hatem Ben Romdhane
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères − Synthèse et Etudes Physicochimiques (LR99ES14), 2092 El Manar, Tunisia
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| |
Collapse
|
76
|
Vashchuk A, Rios de Anda A, Starostenko O, Grigoryeva O, Sotta P, Rogalsky S, Smertenko P, Fainleib A, Grande D. Structure−Property relationships in nanocomposites based on cyanate ester resins and 1-heptyl pyridinium tetrafluoroborate ionic liquid. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
Korolovych VF, Erwin A, Stryutsky A, Lee H, Heller WT, Shevchenko VV, Bulavin LA, Tsukruk VV. Thermally Responsive Hyperbranched Poly(ionic liquid)s: Assembly and Phase Transformations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00845] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr Stryutsky
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William T. Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valery V. Shevchenko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Leonid A. Bulavin
- Taras Shevchenko
National University of Kyiv, Volodymyrska Str. 64, 01601 Kyiv, Ukraine
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
78
|
Sun N, Sun P, Wu A, Qiao X, Lu F, Zheng L. Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for a smart on-off switch. SOFT MATTER 2018; 14:4327-4334. [PMID: 29761197 DOI: 10.1039/c8sm00504d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive or "smart" soft materials have raised considerable attention due to their ability to spontaneously respond to external environmental variations and have a great potential for wide applications. Herein, a thermo/redox responsive hydrogel is facilely constructed based on a dual crosslinked matrix: the primary chemical crosslinked copolymer is composed of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and poly(ionic liquid), and the secondary physical crosslinking component is generated by the ionic coordination between iron ions and carboxyl groups in the poly(ionic liquid). The non-covalent ion coordination crosslinking is introduced into a covalently crosslinked network, which further strengthens the soft PNIPAM matrix and enhances the mechanical performances of the hydrogels. The excellent thermosensitivity of PNIPAM and the good conductive property of poly(ionic liquid) provide the hydrogel with an attractive performance as a thermo-responsive switch. Moreover, the trapped iron ions in the network endow the hydrogels with redox-responsiveness, which could be reversibly chemically oxidized and reduced. The mechanical strength of hydrogels could also be tuned by the crosslinked capacity of iron ions within the gel matrix between the strong binding of the oxidized state (Fe3+) and poor coordination of the reduced state (Fe2+). These stimuli-responsive hydrogels have the potential to be used as smart materials for stimuli-responsive devices.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | | | | | | | | | | |
Collapse
|
79
|
Zhang Y, Tang H, Wu P. Insights into the thermal phase transition behavior of a gemini dicationic polyelectrolyte in aqueous solution. SOFT MATTER 2018; 14:4380-4387. [PMID: 29767208 DOI: 10.1039/c8sm00598b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The thermal-induced phase transition behavior of a LCST-type poly(ionic liquid) (PIL) aqueous solution with gemini-cationic structure, poly[(1,8-octanediyl-bis(tri-n-butylphosphonium)4-styrene sulfonate)] (P[SS-P2]), was investigated in this paper. Based on the calorimetric measurements, a unique dependence of transition points on concentration was found in P[SS-P2] aqueous solution compared to its mono-cationic PIL and [SS-P2] aqueous solution. Optical microscopy showed that globular microscopic droplets were formed during the phase transition, suggesting that gemini dications and the possible dynamic ionic bonds may facilitate the liquid-liquid phase separation (LLPS) in P[SS-P2] aqueous solution. Temperature-variable 1H NMR and FT-IR investigations manifested that the dehydration of anionic chains instead of the dehydration of dications served as the driving force of the phase separation in the P[SS-P2] aqueous solution, implying that the polymerized anions tended to aggregate together first and lay in the core with dications distributed around the globules at the end of the transition process. Notably, considering that the SO3 groups in the gemini-cationic system tended to be distributed around the surface of collapsed anionic main chains rather than be wrapped into the aggregates, it is supposed that dynamic ionic bonding between dication and anionic backbones was distributed in the periphery of the globules and acted as the "cross-linkers", which enhanced the stability of regular droplets after the phase transition in P[SS-P2] aqueous solution.
Collapse
Affiliation(s)
- Yingna Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
80
|
Gordievskaya YD, Budkov YA, Kramarenko EY. An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: theory and computer simulations. SOFT MATTER 2018; 14:3232-3235. [PMID: 29683178 DOI: 10.1039/c8sm00346g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of an interplay between electrostatic and excluded volume interactions on the conformational behavior of a dipolar chain has been studied theoretically and by means of molecular dynamics simulations. Every monomer unit of the dipolar chain comprises a dipole formed by a charged group of the chain and an oppositely charged counterion. The counterion is assumed to freely move around the chain but keeping the distance between oppositely charged ions (the dipole length) fixed. The novelty of the developed mean-field theory is that variations of the dipole parameters (the dipole length and the counterion size) have been accounted for in both electrostatic and excluded volume contributions to the total free energy of the dipolar chain. It has been shown that conformational transitions between swollen and collapsed states of the chain can be induced by fine-tuning the balance between electrostatic and excluded volume interactions. In particular, in low-polar media not only globule but also extended coil conformations can be realized even under strong electrostatic attraction. The results of MD simulations of a dipolar chain with variable dipolar length support theoretical conclusions.
Collapse
Affiliation(s)
- Yu D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia.
| | | | | |
Collapse
|
81
|
Itsuki K, Kawata Y, Sharker KK, Yusa SI. Ultrasound- and Thermo-Responsive Ionic Liquid Polymers. Polymers (Basel) 2018; 10:E301. [PMID: 30966336 PMCID: PMC6415017 DOI: 10.3390/polym10030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022] Open
Abstract
Poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPSNa) was prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. An ionic liquid polymer (PAMPSP4448) was then prepared by exchanging the pendant counter cation from sodium (Na⁺) to tributyl-n-octylphosphonium (P4448⁺). We studied the ultrasound- and thermo-responsive behaviors of PAMPSP4448 in water. When the aqueous PAMPSP4448 solution was heated from 5 to 50 °C, the solution was always transparent with 100% transmittance. Unimers and interpolymer aggregates coexisted in water in the temperature range 5⁻50 °C. Generally, hydrogen bonding interactions are broken as the temperature increases due to increased molecular motion. Above 25 °C, the size of the interpolymer aggregates decreased, because hydrophobic interactions inside them were strengthened by dehydration accompanying cleavage of hydrogen bonds between water molecules and the pendant amide or sulfonate groups in PAMPSP4448. Above 25 °C, sonication of the aqueous solution induced an increase in the collision frequency of the aggregates. This promoted hydrophobic interactions between the aggregates to form larger aggregates, and the aqueous solution became turbid. When the temperature was decreased below 8 °C, hydrogen bonds reformed between water molecules and the pendant amide or sulfonate groups, allowing PAMPSP4448 to redissolve in water to form a transparent solution. The solution could be repeatedly controlled between turbidity and transparency by sonication and cooling, respectively.
Collapse
Affiliation(s)
- Kohei Itsuki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Yuuki Kawata
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Komol Kanta Sharker
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.
| |
Collapse
|
82
|
Synthesis and characterization of poly (ionic liquid) derivatives of N-alkyl quaternized poly(4-vinylpyridine). REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
83
|
|
84
|
Ge C, Ling Y, Yan S, Luan S, Zhang H, Tang H. Preparation and mechanical properties of strong and tough poly (vinyl alcohol)-polypeptide double-network hydrogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
85
|
Budkov YA, Kiselev MG. Flory-type theories of polymer chains under different external stimuli. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043001. [PMID: 29271365 DOI: 10.1088/1361-648x/aa9f56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia. Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | | |
Collapse
|
86
|
Wang L, Li X, Zhang Q, Luo Z, Deng Y, Yang W, Dong S, Wang QA, Han C. Supramolecular control over pillararene-based LCST phase behaviour. NEW J CHEM 2018. [DOI: 10.1039/c8nj01366g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the supramolecular interactions between pillar[5]arenes and ionic liquids, supramolecular control was successfully introduced into thermo-responsive systems to adjust LCST phase behaviour in water.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Wen Yang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiu-an Wang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Chengyou Han
- Department of Chemistry
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
87
|
Hayano S, Ota K, Ban HT. Syntheses, characterizations and functions of cationic polyethers with imidazolium-based ionic liquid moieties. Polym Chem 2018. [DOI: 10.1039/c7py01985h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cationic polyethers with ionic liquid groups are characterized with deliquescence, ionic conductivity and miscibility in ionic liquid.
Collapse
Affiliation(s)
| | - Keisuke Ota
- Zeon Corporation R&D Center
- Kawasaki-city
- Japan
| | | |
Collapse
|
88
|
Sun W, An Z, Wu P. Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(N-acryloylglycinamide-co-methacrylic acid). Polym Chem 2018. [DOI: 10.1039/c8py00733k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HB-type copolymers with suitably tunable UCST and corresponding core–shell nanogels showing UCST–LCST type behavior.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology
- College of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
89
|
Sun W, Wu P. A molecular level study of the phase transition process of hydrogen-bonding UCST polymers. Phys Chem Chem Phys 2018; 20:20849-20855. [DOI: 10.1039/c8cp04147d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A molecular level study of the UCST-type transition process of PNAGA-based polymers in water and a water/methanol mixture.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
90
|
Huang D, Zhang Q, Deng Y, Luo Z, Li B, Shen X, Qi Z, Dong S, Ge Y, Chen W. Polymeric crown ethers: LCST behavior in water and stimuli-responsiveness. Polym Chem 2018. [DOI: 10.1039/c8py00412a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crown ether-functionalized poly(vinyl alcohol) (PVA) system shows lower critical solution temperature (LCST) phase separation behavior in water.
Collapse
|
91
|
Biswas Y, Mandal TK. Structural Variation in Homopolymers Bearing Zwitterionic and Ionic Liquid Pendants for Achieving Tunable Multi-Stimuli Responsiveness and Hierarchical Nanoaggregates. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
92
|
Dual thermoresponsive homopolypeptide with LCST-type linkages and UCST-type pendants: Synthesis, characterization, and thermoresponsive properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
93
|
Affiliation(s)
- Yin-Ning Zhou
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Lei Lei
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Zheng-Hong Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Shiping Zhu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| |
Collapse
|
94
|
Zhang K, Feng X, Ye C, Hempenius MA, Vancso GJ. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition. J Am Chem Soc 2017; 139:10029-10035. [PMID: 28654756 PMCID: PMC5538755 DOI: 10.1021/jacs.7b04920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and structure-property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL's LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating-cooling cycles.
Collapse
Affiliation(s)
| | | | - Chongnan Ye
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
95
|
|
96
|
Qiao Y, Ma W, Theyssen N, Chen C, Hou Z. Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chem Rev 2017; 117:6881-6928. [DOI: 10.1021/acs.chemrev.6b00652] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wenbao Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chen Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
97
|
Li M, Xu Y, Liu T, Li Y, Ling Y, Tang H. Preparation and Thermoresponsive Properties of UCST-Type Polypeptide Bearing p
-Tolyl Pendants and 3-Methyl-1,2,3-triazolium Linkages in Methanol or Ethanol/Water Solvent Mixtures. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Tingting Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yin Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
98
|
Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
99
|
Sun W, An Z, Wu P. UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of
Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Peiyi Wu
- The State Key Laboratory
of Molecular Engineering of Polymers, Department of Macromolecular
Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
100
|
|