51
|
Manea E. A step closer in defining glycosylphosphatidylinositol anchored proteins role in health and glycosylation disorders. Mol Genet Metab Rep 2018; 16:67-75. [PMID: 30094187 PMCID: PMC6080220 DOI: 10.1016/j.ymgmr.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/21/2018] [Accepted: 07/21/2018] [Indexed: 12/18/2022] Open
Abstract
Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of soluble proteins attached to the external leaflet of the plasma membrane by a post-translation modification, the GPI anchor. The 28 genes currently involved in the synthesis and remodelling of the GPI anchor add to the ever-growing class of congenital glycosylation disorders. Recent advances in next generation sequencing technology have led to the discovery of Mabry disease and CHIME syndrome genetic aetiology. Moreover, with each described mutation known phenotypes expand and new ones emerge without clear genotype-phenotype correlation. A protein database search was made for human GPI-APs with defined pathology to help building-up a physio-pathological mechanism from a clinical perspective. GPI-APs function in vitamin-B6 and folate transport, nucleotide metabolism and lipid homeostasis. Defining GPI-APs role in disease bears significant clinical implications.
Collapse
|
52
|
Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells. Biochem J 2018; 475:1909-1937. [PMID: 29626155 PMCID: PMC5989533 DOI: 10.1042/bcj20180043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.
Collapse
|
53
|
Cheng L, Liu CX, Jiang S, Hou S, Huang JG, Chen ZQ, Sun YY, Qi H, Jiang HW, Wang JF, Zhou YM, Czajkowsky DM, Dai J, Tao SC. Cell Lysate Microarray for Mapping the Network of Genetic Regulators for Histone Marks. Mol Cell Proteomics 2018; 17:1720-1736. [PMID: 29871872 DOI: 10.1074/mcp.ra117.000550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/22/2018] [Indexed: 11/06/2022] Open
Abstract
Proteins, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, to explore the impact of the genome-wide interruption on certain protein, we developed a cell lysate microarray on kilo-conditions (CLICK) with 4837 knockout (YKO) and 322 temperature-sensitive (ts) mutant strains of yeast (Saccharomyces cerevisiae). Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3, which covers most of the known regulators in S. cerevisiae We also noted that several group of proteins are involved in negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.
Collapse
Affiliation(s)
- Li Cheng
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China.,§Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Cheng-Xi Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuangying Jiang
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Sha Hou
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jin-Guo Huang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zi-Qing Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang-Yang Sun
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huan Qi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing-Fang Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yi-Ming Zhou
- ¶Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, 102206, PR China
| | - Daniel M Czajkowsky
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junbiao Dai
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China;
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China;
| |
Collapse
|
54
|
Coenzyme A, protein CoAlation and redox regulation in mammalian cells. Biochem Soc Trans 2018; 46:721-728. [PMID: 29802218 PMCID: PMC6008590 DOI: 10.1042/bst20170506] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
In a diverse family of cellular cofactors, coenzyme A (CoA) has a unique design to function in various biochemical processes. The presence of a highly reactive thiol group and a nucleotide moiety offers a diversity of chemical reactions and regulatory interactions. CoA employs them to activate carbonyl-containing molecules and to produce various thioester derivatives (e.g. acetyl CoA, malonyl CoA and 3-hydroxy-3-methylglutaryl CoA), which have well-established roles in cellular metabolism, production of neurotransmitters and the regulation of gene expression. A novel unconventional function of CoA in redox regulation, involving covalent attachment of this coenzyme to cellular proteins in response to oxidative and metabolic stress, has been recently discovered and termed protein CoAlation (S-thiolation by CoA or CoAthiolation). A diverse range of proteins was found to be CoAlated in mammalian cells and tissues under various experimental conditions. Protein CoAlation alters the molecular mass, charge and activity of modified proteins, and prevents them from irreversible sulfhydryl overoxidation. This review highlights the role of a key metabolic integrator CoA in redox regulation in mammalian cells and provides a perspective of the current status and future directions of the emerging field of protein CoAlation.
Collapse
|
55
|
Sutton TR, Minnion M, Barbarino F, Koster G, Fernandez BO, Cumpstey AF, Wischmann P, Madhani M, Frenneaux MP, Postle AD, Cortese-Krott MM, Feelisch M. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biol 2018; 16:359-380. [PMID: 29627744 PMCID: PMC5953223 DOI: 10.1016/j.redox.2018.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Several diseases are associated with perturbations in redox signaling and aberrant hydrogen sulfide metabolism, and numerous analytical methods exist for the measurement of the sulfur-containing species affected. However, uncertainty remains about their concentrations and speciation in cells/biofluids, perhaps in part due to differences in sample processing and detection principles. Using ultrahigh-performance liquid chromatography in combination with electrospray-ionization tandem mass spectrometry we here outline a specific and sensitive platform for the simultaneous measurement of 12 analytes, including total and free thiols, their disulfides and sulfide in complex biological matrices such as blood, saliva and urine. Total assay run time is < 10 min, enabling high-throughput analysis. Enhanced sensitivity and avoidance of artifactual thiol oxidation is achieved by taking advantage of the rapid reaction of sulfhydryl groups with N-ethylmaleimide. We optimized the analytical procedure for detection and separation conditions, linearity and precision including three stable isotope labelled standards. Its versatility for future more comprehensive coverage of the thiol redox metabolome was demonstrated by implementing additional analytes such as methanethiol, N-acetylcysteine, and coenzyme A. Apparent plasma sulfide concentrations were found to vary substantially with sample pretreatment and nature of the alkylating agent. In addition to protein binding in the form of mixed disulfides (S-thiolation) a significant fraction of aminothiols and sulfide appears to be also non-covalently associated with proteins. Methodological accuracy was tested by comparing the plasma redox status of 10 healthy human volunteers to a well-established protocol optimized for reduced/oxidized glutathione. In a proof-of-principle study a deeper analysis of the thiol redox metabolome including free reduced/oxidized as well as bound thiols and sulfide was performed. Additional determination of acid-labile sulfide/thiols was demonstrated in human blood cells, urine and saliva. Using this simplified mass spectrometry-based workflow the thiol redox metabolome can be determined in samples from clinical and translational studies, providing a novel prognostic/diagnostic platform for patient stratification, drug monitoring, and identification of new therapeutic approaches in redox diseases.
Collapse
Affiliation(s)
- T R Sutton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - F Barbarino
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology & Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - G Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - B O Fernandez
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - A F Cumpstey
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - P Wischmann
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology & Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - M Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - M P Frenneaux
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - A D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology & Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - M Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
56
|
Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. Biochem J 2017; 474:2489-2508. [PMID: 28341808 PMCID: PMC5509381 DOI: 10.1042/bcj20170129] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions.
Collapse
|
57
|
Németh B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, Mócsai A, Csépányi-Kömi R, Iordanov I, Adam-Vizi V, Chinopoulos C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J 2015; 30:286-300. [PMID: 26358042 DOI: 10.1096/fj.15-279398] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/31/2015] [Indexed: 01/28/2023]
Abstract
Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the α-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.
Collapse
Affiliation(s)
- Beáta Németh
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Doczi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Csete
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kacso
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dora Ravasz
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel Adams
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kiss
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam M Nagy
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergo Horvath
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Laszlo Tretter
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Mócsai
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roland Csépányi-Kömi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Iordan Iordanov
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vera Adam-Vizi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christos Chinopoulos
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
58
|
Eraly SA, Liu HC, Jamshidi N, Nigam SK. Transcriptome-based reconstructions from the murine knockout suggest involvement of the urate transporter, URAT1 (slc22a12), in novel metabolic pathways. Biochem Biophys Rep 2015; 3:51-61. [PMID: 26251846 PMCID: PMC4522937 DOI: 10.1016/j.bbrep.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
URAT1 (slc22a12) was identified as the transporter responsible for renal reabsorption of the medically important compound, uric acid. However, subsequent studies have indicated that other transporters make contributions to this process, and that URAT1 transports other organic anions besides urate (including several in common with the closely related multi-specific renal organic anion transporters, OAT1 (slc22a6) and OAT3 (slc22a8)). These findings raise the possibility that urate transport is not the sole physiological function of URAT1. We previously characterized mice null for the murine ortholog of URAT1 (mURAT1; previously cloned as RST), finding a relatively modest decrement in urate reabsorptive capacity. Nevertheless, there were shifts in the plasma and urinary concentrations of multiple small molecules, suggesting significant metabolic changes in the knockouts. Although these molecules remain unidentified, here we have computationally delineated the biochemical networks consistent with transcriptomic data from the null mice. These analyses suggest alterations in the handling of not only urate but also other putative URAT1 substrates comprising intermediates in nucleotide, carbohydrate, and steroid metabolism. Moreover, the analyses indicate changes in multiple other pathways, including those relating to the metabolism of glycosaminoglycans, methionine, and coenzyme A, possibly reflecting downstream effects of URAT1 loss. Taken together with the available substrate and metabolomic data for the other OATs, our findings suggest that the transport and biochemical functions of URAT1 overlap those of OAT1 and OAT3, and could contribute to our understanding of the relationship between uric acid and the various metabolic disorders to which it has been linked. URAT1 handles multiple substrates suggesting functions beyond urate transport We determined metabolic constraints of gene expression changes in URAT1 null mice These suggest URAT1 involvement in multiple bioenergtic and biosynthetic pathways
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Henry C Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Neema Jamshidi
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Sanjay K Nigam
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 ; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093 ; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
59
|
Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 2015; 33:125-31. [PMID: 25703630 PMCID: PMC4380630 DOI: 10.1016/j.ceb.2015.02.003] [Citation(s) in RCA: 582] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Acetyl-CoA represents a key node in metabolism due to its intersection with many metabolic pathways and transformations. Emerging evidence reveals that cells monitor the levels of acetyl-CoA as a key indicator of their metabolic state, through distinctive protein acetylation modifications dependent on this metabolite. We offer the following conceptual model for understanding the role of this sentinel metabolite in metabolic regulation. High nucleocytosolic acetyl-CoA amounts are a signature of a “growth” or “fed” state and promote its utilization for lipid synthesis and histone acetylation. In contrast, under “survival” or “fasted” states, acetyl-CoA is preferentially directed into the mitochondria to promote mitochondrial-dependent activities such as the synthesis of ATP and ketone bodies. Fluctuations in acetyl-CoA within these subcellular compartments enable the substrate-level regulation of acetylation modifications, but also necessitates the function of sirtuin deacetylases to catalyze removal of spontaneous modifications that might be unintended. Thus, understanding the sources, fates, and consequences of acetyl-CoA as a carrier of two-carbon units has started to reveal its underappreciated but profound influence on the regulation of numerous life processes.
Collapse
Affiliation(s)
- Lei Shi
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States.
| |
Collapse
|