51
|
Bannasch D, Mädge B, Schwab M. Functional interaction of Yaf2 with the central region of MycN. Oncogene 2001; 20:5913-9. [PMID: 11593398 DOI: 10.1038/sj.onc.1204747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 06/13/2001] [Accepted: 06/18/2001] [Indexed: 11/09/2022]
Abstract
MYCN is often amplified in advanced-stage neuroblastomas with the consequence of enhanced MycN protein expression. By employing the yeast two-hybrid system we found that Yaf2 binds to the central region of MycN. Binding was also seen in vitro and in vivo. Ectopically expressed Yaf2, like MycN, is localized in the nuclei of neuroblastoma cells. Endogenous Yaf2 is expressed in all three tested neuroblastoma cell lines, all of which also express MycN. Yaf2 was able to enhance MycN-mediated transactivation from an E-box promoter, deletion of the Yaf2 binding region in MycN abrogates this effect. Thus, the binding of Yaf2 to the central region of MycN is functional in mammalian cells.
Collapse
Affiliation(s)
- D Bannasch
- Division of Cytogenetics-H0400, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
52
|
Takayama M, Taira T, Iguchi-Ariga SM, Ariga H. CDC6 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc/Max complex. FEBS Lett 2000; 477:43-8. [PMID: 10899308 DOI: 10.1016/s0014-5793(00)01756-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The c-myc oncogene product (c-Myc) is a transcription factor that dimerizes with Max and recognizes the E-box sequence. It plays key functions in cell proliferation, differentiation and apoptosis. It is generally thought that c-Myc transactivates genes encoding proteins essential to cell-cycle progression by binding to the E-boxes that control them. The functions of c-Myc are also thought to be modulated by its associated proteins, several of which have recently been identified. In this study, we found that c-Myc directly bound in vivo and in vitro to the N-terminal region of human CDC6, a component of the pre-replication complex, and that both co-localized in cell nuclei. CDC6 bound to the C-proximal region of c-Myc, thereby competing with Max on the E-box sequence and changing c-Myc/Max heterodimer to a Max/Max homodimer. In consequence, the E-box-dependent transcription activity of c-Myc was abrogated. These results suggest that, in addition to its DNA replication activity, CDC6 also has a role as a transcriptional suppressor of c-Myc.
Collapse
Affiliation(s)
- M Takayama
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | |
Collapse
|
53
|
Takayama MA, Taira T, Tamai K, Iguchi-Ariga SM, Ariga H. ORC1 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc-SNF5/INI1 interaction. Genes Cells 2000; 5:481-90. [PMID: 10886373 DOI: 10.1046/j.1365-2443.2000.00338.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The c-myc oncogene product (c-Myc) is a transcription factor that forms a complex with Max and recognizes the E-box sequence. c-Myc plays key functions in cell proliferation, differentiation and apoptosis. As for its activity towards cell proliferation, it is generally thought that c-Myc transactivates the E-box-containing genes that encode proteins essential to cell-cycle progression. Despite the characterization of candidate genes regulated by c-Myc in culture cells, these have still not been firmly recognized as real target genes for c-Myc. RESULTS We found that c-Myc directly bound to the N-terminal region of origin recognition complex-1 (ORC1), a region that is responsible for gene silencing, in a state of complex containing other ORC subunits and Max in vivo and in vitro. Furthermore, ORC1 inhibited E-box-dependent transcription activity of c-Myc by competitive binding to the C-terminal region of c-Myc with SNF5, a component of chromatin remodelling complex SNF/Swi1. CONCLUSIONS These results suggest that ORC1 suppresses the transcription activity of c-Myc by its recruitment into an inactive form of chromatin during some stage of the cell cycle.
Collapse
Affiliation(s)
- M A Takayama
- Graduate School of Pharmaceutical Sciences; College of Medical Technology, Hokkaido University, Kita-ku, Sapporo 060, Japan
| | | | | | | | | |
Collapse
|
54
|
Kitaura H, Shinshi M, Uchikoshi Y, Ono T, Iguchi-Ariga SM, Ariga H. Reciprocal regulation via protein-protein interaction between c-Myc and p21(cip1/waf1/sdi1) in DNA replication and transcription. J Biol Chem 2000; 275:10477-83. [PMID: 10744738 DOI: 10.1074/jbc.275.14.10477] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myc protooncogene product (c-Myc) is a transcription factor and is rapidly induced in resting cells following various mitogenic stimuli. c-Myc is thus suggested to play an important role in the transition from quiescence to proliferation. Despite numerous studies, including those on the connection between cyclin E/cyclin-dependent kinase 2 and c-Myc, little has been clarified about c-Myc in terms of the cell cycle regulation. Here we show that c-Myc can directly bind to the carboxyl-terminal region of the cyclin-dependent kinase inhibitor p21(cip1/waf1/sdi1) and thus partially relieves the p21 of the inhibitory effect on DNA synthesis directed by the proliferating cell nuclear antigen-dependent DNA polymerase delta. As for transcription, on the other hand, the p21 binding to the Myc box II region of c-Myc blocks c-Myc-Max complex formation on the E-box and thereby suppresses the transcriptional activation from the E-box by c-Myc. These results suggest that c-Myc activates DNA replication via inactivation of p21 and that p21, vice versa, represses the transcriptional activity of c-Myc. The balance of the reciprocal inactivation between c-Myc and p21 may determine the course of cellular processes such as cell proliferation, differentiation, and apoptosis.
Collapse
Affiliation(s)
- H Kitaura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M, Ariga H, Inoue M. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28:669-77. [PMID: 10637317 PMCID: PMC102554 DOI: 10.1093/nar/28.3.669] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomerase activation is thought to be a critical step in cellular immortalization and carcinogenesis. The human telomerase catalytic subunit (hTERT) is a rate limiting determinant of the enzymatic activity of human telomerase. In the previous study, we identified the proximal 181 bp core promoter responsible for transcriptional activity of the hTERT gene. To identify the regulatory factors of transcription, transient expression assays were performed using hTERT promoter reporter plasmids. Serial deletion assays of the core promoter revealed that the 5'-region containing the E-box, which binds Myc/Max, as well as the 3'-region containing the GC-box, which binds Sp1, are essential for transactivation. The mutations introduced in the E-box or GC-box significantly decreased transcriptional activity of the promoter. Overexpression of Myc/Max or Sp1 led to significant activation of transcription in a cell type-specific manner, while Mad/Max introduction repressed it. However, the effects of Myc/Max on transactivation were marginal when Sp1 sites were mutated. Western blot analysis using various cell lines revealed a positive correlation between c-Myc and Sp1 expression and transcriptional activity of hTERT. Using fibroblast lineages in different stages of transformation, we found that c-Myc and Sp1 were induced to a dramatic extent when cells overcame replicative senescence and obtained immortal characteristics, in association with telomerase activation. These findings suggest that c-Myc and Sp1 cooperatively function as the major determinants of hTERT expression, and that the switching functions of Myc/Max and Mad/Max might also play roles in telomerase regulation.
Collapse
Affiliation(s)
- S Kyo
- Department of Obstetrics and Gynecology, Kanazawa University, School of Medicine, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K. Function of the c-Myc oncogenic transcription factor. Exp Cell Res 1999; 253:63-77. [PMID: 10579912 DOI: 10.1006/excr.1999.4686] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The c-myc gene and the expression of the c-Myc protein are frequently altered in human cancers. The c-myc gene encodes the transcription factor c-Myc, which heterodimerizes with a partner protein, termed Max, to regulate gene expression. Max also heterodimerizes with the Mad family of proteins to repress transcription, antagonize c-Myc, and promote cellular differentiation. The constitutive activation of c-myc expression is key to the genesis of many cancers, and hence the understanding of c-Myc function depends on our understanding of its target genes. In this review, we attempt to place the putative target genes of c-Myc in the context of c-Myc-mediated phenotypes. From this perspective, c-Myc emerges as an oncogenic transcription factor that integrates the cell cycle machinery with cell adhesion, cellular metabolism, and the apoptotic pathways.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Taira T, Sawai M, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H. Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J Biol Chem 1999; 274:24270-9. [PMID: 10446203 DOI: 10.1074/jbc.274.34.24270] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A CCAAT box-binding protein subunit, CBF-C/NF-YC, was cloned as a protein involved in the c-Myc complex formed on the G(1)-specific enhancer in the human hsp70 gene. CBF-C/NF-YC directly bound to c-Myc in vitro and in vivo in cultured cells. The CBF/NF-Y.c-Myc complex required the HSP-MYC-B element as well as CCAAT in the hsp70 G(1)-enhancer, while the purified CBF subunits recognized only CCAAT even in the presence of c-Myc. Both the HSP-MYC-B and CCAAT elements were also required for the enhancer activity. In transient transfection experiments, the CBF/NF-Y.c-Myc complex, as well as transcription due to the G(1)-enhancer, was increased by the introduction of c-Myc at low doses but decreased at high doses. The repression of both complex formation and transcription by c-Myc at high doses was abrogated by the introduction of CBF/NF-Y in a dose-dependent manner. Furthermore, the CBF/NF-Y.c-Myc complex bound to the G(1)-enhancer appeared in the early G(1) phase of the cell cycle when c-Myc was not higly expressed and gradually disappeared after the c-Myc expression reached its maximum. The results indicate that the cell cycle-dependent expression of the hsp70 gene is regulated by the intracellular amount of c-Myc through the complex formation states between CBF/NF-Y and c-Myc.
Collapse
Affiliation(s)
- T Taira
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Kuramoto N, Ogita K, Yoneda Y. Gene transcription through Myc family members in eukaryotic cells. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:103-9. [PMID: 10440528 DOI: 10.1254/jjp.80.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
c-Myc family proteins, encoded by c-myc family proto-oncogenes, play critical roles in mechanisms associated with proliferation, differentiation and apoptotic death in eukaryotic cells. These functions are mediated by transcriptional activity of these proteins through binding to the E-box core sequence CACGTG referred to as a Myc core element located at a promoter or enhancer region of the individual target genes in the nucleus. Recent studies have demonstrated the presence of novel nuclear proteins that specifically recognize a Myc core element, in addition to c-Myc, Max, Mad and Mxi1. On the other hand, a Myc core element has alternating purine/pyrimidine repeats which could undergo a conformational transition from right-handed (B-DNA) to left-handed (Z-DNA) forms in the presence of a high concentration of salts such as Mg2+ and polyamines. Similarly, a Myc element has a homopurine-homopyrimidine site that may take a triplex configuration in particular situations. We have searched for nuclear proteins that can specifically recognize a Myc core element in different topological variations in murine brain.
Collapse
Affiliation(s)
- N Kuramoto
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | |
Collapse
|
59
|
Abstract
Much recent research on c-Myc has focused on how it drives apoptosis. c-Myc is widely known as a crucial regulator of cell proliferation in normal and neoplastic cells, but until relatively recently its apoptotic properties, which appear to be intrinsic, were not fully appreciated. Its death-dealing aspects have gained wide attention in part because of their potential therapeutic utility in advanced malignancy, where c-Myc is frequently deregulated and where novel modalities are badly needed. Although its exact function remains obscure, c-Myc is a transcription factor and advances have been made in characterizing target genes which may mediate its apoptotic properties. Candidate regulators and effectors are also emerging. Among recent findings are connections to the CD95/Fas and TNF pathways and roles for the tumor suppressor p19ARF and the c-Myc-interacting adaptor protein Binl in mediating cell death. In this review I summarize the data establishing a role for c-Myc in apoptosis in diverse settings and present a modified dual signal model for c-Myc function. It is proposed that c-Myc induces apoptosis through separate 'death priming' and 'death triggering' mechanisms in which 'death priming' and mitogenic signals are coordinated. Investigation of the mechanisms that underlie the triggering steps may offer new therapeutic opportunities.
Collapse
|
60
|
Abstract
Despite its intensive investigation for almost two decades, c-Myc remains a fascinating and enigmatic subject. A large and compelling body of evidence indicates that c-Myc is a transcription factor with central roles in the regulation of cell proliferation, differentiation, and apoptosis, but its exact function has remained elusive. In this review we survey recent advances in the identification and analysis of c-Myc-binding proteins, which suggest insights into the transcriptional roles of c-Myc but which also extend the existing functional paradigms. The C-terminal domain (CTD) of c-Myc mediates interaction with Max and physiological recognition of DNA target sequences, events needed for all biological actions. Recently described interactions between the CTD and other cellular proteins, including YY-1, AP-2, BRCA-1, TFII-I, and Miz-1, suggest levels of regulatory complexity beyond Max in controlling DNA recognition by c-Myc. The N-terminal domain (NTD), which includes the evolutionarily conserved and functionally crucial Myc Box sequences (MB1 and MB2), contains the transcription activation domain (TAD) of c-Myc as well as regions required for transcriptional repression, cell cycle regulation, transformation, and apoptosis. In addition to interaction with the retinoblastoma family protein p107, the NTD has been shown to interact with alpha-tubulin and the novel adaptor proteins Binl, MM-1, Pam, TRRAP, and AMY-1. The structure of these proteins and their effects on c-Myc actions suggest links to the transcriptional regulatory machinery as well as to cell cycle regulation, chromatin modeling, and apoptosis. Investigations of this emerging NTD-based network may reveal how c-Myc is regulated and how it affects cell fate, as well as providing tools to distinguish the physiological roles of various Myc target genes.
Collapse
Affiliation(s)
- D Sakamuro
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|