51
|
Rendeiro C, Rhodes JS. A new perspective of the hippocampus in the origin of exercise-brain interactions. Brain Struct Funct 2018; 223:2527-2545. [PMID: 29671055 DOI: 10.1007/s00429-018-1665-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Exercising regularly is a highly effective strategy for maintaining cognitive health throughout the lifespan. Over the last 20 years, many molecular, physiological and structural changes have been documented in response to aerobic exercise training in humans and animals, particularly in the hippocampus. However, how exercise produces such neurological changes remains elusive. A recent line of investigation has suggested that muscle-derived circulating factors cross into the brain and may be the key agents driving enhancement in synaptic plasticity and hippocampal neurogenesis from aerobic exercise. Alternatively, or concurrently, the signals might originate from within the brain itself. Physical activity also produces instantaneous and robust neuronal activation of the hippocampal formation and the generation of theta oscillations which are closely correlated with the force of movements. The repeated acute activation of the hippocampus during physical movement is likely critical for inducing the long-term neuroadaptations from exercise. Here we review the evidence which establishes the association between physical movement and hippocampal neuronal activation and discuss implications for long-term benefits of physical activity on brain function.
Collapse
Affiliation(s)
- Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA. .,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
52
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
53
|
Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum. J Neurosci 2018; 38:3265-3272. [PMID: 29467145 DOI: 10.1523/jneurosci.3216-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one's own body.SIGNIFICANCE STATEMENT Spatial computations using environmental boundaries are an integral part of the brain's spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum.
Collapse
|
54
|
Homeward bound: The capacity of the food hoarding task to assess complex cognitive processes. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Abstract
Our location in space is represented by a spectrum of space and direction-responsive cell types in medial entorhinal cortex and hippocampus. Many cells in these areas respond also to running speed. The presence of local speed-tuned cells is considered a requirement for position to be encoded in a self-motion–dependent manner; however, whether and how speed-responsive cells in entorhinal cortex and hippocampus are functionally connected have not been determined. The present study shows that a large proportion of entorhinal speed cells are fast-spiking with properties similar to those of GABAergic interneurons and that outputs from a subset of these cells, particularly the parvalbumin-expressing subset, form a component of the medial entorhinal input to the hippocampus. The mammalian positioning system contains a variety of functionally specialized cells in the medial entorhinal cortex (MEC) and the hippocampus. In order for cells in these systems to dynamically update representations in a way that reflects ongoing movement in the environment, they must be able to read out the current speed of the animal. Speed is encoded by speed-responsive cells in both MEC and hippocampus, but the relationship between the two populations has not been determined. We show here that many entorhinal speed cells are fast-spiking putative GABAergic neurons. Using retrograde viral labeling from the hippocampus, we find that a subset of these fast-spiking MEC speed cells project directly to hippocampal areas. This projection contains parvalbumin (PV) but not somatostatin (SOM)-immunopositive cells. The data point to PV-expressing GABAergic projection neurons in MEC as a source for widespread speed modulation and temporal synchronization in entorhinal–hippocampal circuits for place representation.
Collapse
|
56
|
Abstract
The mammalian brain has neurons that specifically represent the animal’s location in the environment. Place cells in the hippocampus encode position, whereas grid cells in the medial entorhinal cortex, one synapse away, also express information about the distance and direction that the animal is moving. In this study, we show that, in 2.5–3-wk-old rat pups, place cells have firing fields whose positions depend on distance travelled, despite the immature state of grid fields at this age. The results suggest that place fields can be generated from self-motion–induced distance information in the absence of fully matured grid patterns. Place cells in the hippocampus and grid cells in the medial entorhinal cortex rely on self-motion information and path integration for spatially confined firing. Place cells can be observed in young rats as soon as they leave their nest at around 2.5 wk of postnatal life. In contrast, the regularly spaced firing of grid cells develops only after weaning, during the fourth week. In the present study, we sought to determine whether place cells are able to integrate self-motion information before maturation of the grid-cell system. Place cells were recorded on a 200-cm linear track while preweaning, postweaning, and adult rats ran on successive trials from a start wall to a box at the end of a linear track. The position of the start wall was altered in the middle of the trial sequence. When recordings were made in complete darkness, place cells maintained fields at a fixed distance from the start wall regardless of the age of the animal. When lights were on, place fields were determined primarily by external landmarks, except at the very beginning of the track. This shift was observed in both young and adult animals. The results suggest that preweaning rats are able to calculate distances based on information from self-motion before the grid-cell system has matured to its full extent.
Collapse
|
57
|
Tsanov M. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Eur J Neurosci 2017; 48:2783-2794. [DOI: 10.1111/ejn.13746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
58
|
Abstract
Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.
Collapse
|
59
|
Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 2017; 20:1434-1447. [PMID: 29073641 PMCID: PMC5943637 DOI: 10.1038/nn.4661] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hippocampus serves a critical function in memory, navigation, and cognition. Nature Neuroscience asked John Lisman to lead a group of researchers in a dialog on shared and distinct viewpoints on the hippocampus. There has been a long history of studying the hippocampus, but recent work has made it possible to study the cellular and network basis of defined operations—operations that include cognitive processes that have been otherwise difficult to study (see Box 1 for useful terminology). These operations deal with the context-dependent representation of complex memories, the role of mental exploration based on imagined rather than real movements, and the use of recalled information for navigation and decision-making. The progress that has been made in understanding the hippocampus has motivated the study of other brain regions that provide hippocampal input or receive hippocampal output; the hippocampus is thus serving as a nucleating point for the larger goal of understanding the neural codes that allow inter-regional communication and more generally, understanding how memory-guided behavior is achieved by large scale integration of brain regions. In generating a discussion among experts in the study of the cognitive processes of the hippocampus, the editors and I have posed questions that probe important principles of hippocampal function. We hope that the resulting discussion will make clear to readers the progress that has been made, while also identifying issues where consensus has not yet been achieved and that should be pursued in future research. – John Lisman
Collapse
Affiliation(s)
- John Lisman
- Department of Biology at Brandeis University, Waltham, Massachusetts, USA
| | - György Buzsáki
- NYU Neuroscience Institute at New York University, New York, New York, USA
| | - Howard Eichenbaum
- Center for Memory and Brain at Boston University, Boston, Massachusetts, USA
| | - Lynn Nadel
- Department of Psychology and Cognitive Science Program at University of Arizona, Tucson, Arizona, USA
| | - Charan Ranganath
- Center for Neuroscience and Department of Psychology at the University of California, Davis, California, USA
| | - A David Redish
- Department of Neuroscience at the University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
60
|
Tsanov M. Speed and Oscillations: Medial Septum Integration of Attention and Navigation. Front Syst Neurosci 2017; 11:67. [PMID: 28979196 PMCID: PMC5611363 DOI: 10.3389/fnsys.2017.00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/04/2017] [Indexed: 11/13/2022] Open
Abstract
Several cortical and diencephalic limbic brain regions incorporate neurons that fire in correlation with the speed of whole-body motion, also known as linear velocity. Besides the field mapping and head-directional information, the linear velocity is among the major signals that guide animal’s spatial navigation. Large neuronal populations in the same limbic regions oscillate with theta rhythm during spatial navigation or attention episodes; and the frequency of theta also correlates with linear velocity. A functional similarity between these brain areas is that their inactivation impairs the ability to form new spatial memories; whereas an anatomical similarity is that they all receive projections from medial septum-diagonal band of Broca complex. We review recent findings supporting the model that septal theta rhythm integrates different sensorimotor signals necessary for spatial navigation. The medial septal is described here as a circuitry that mediates experience-dependent balance of sustained attention and path integration during navigation. We discuss the hypothesis that theta rhythm serves as a key mechanism for the aligning of intrinsic spatial representation to: (1) rapid change of position in the spatial environment; (2) continuous alteration of sensory signals throughout navigation; and (3) adapting levels of attentional behavior. The synchronization of these spatial, somatosensory and neuromodulatory signals is proposed here to be anatomically and physiologically mediated by the medial septum.
Collapse
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Ireland
| |
Collapse
|
61
|
Boehringer R, Polygalov D, Huang AJ, Middleton SJ, Robert V, Wintzer ME, Piskorowski RA, Chevaleyre V, McHugh TJ. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability. Neuron 2017; 94:642-655.e9. [DOI: 10.1016/j.neuron.2017.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 02/16/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
62
|
Dumitru I, Neitz A, Alfonso J, Monyer H. Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis. Neuron 2017; 94:125-137.e5. [PMID: 28343864 DOI: 10.1016/j.neuron.2017.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.
Collapse
Affiliation(s)
- Ionut Dumitru
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Angela Neitz
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
63
|
Bohbot VD, Copara MS, Gotman J, Ekstrom AD. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat Commun 2017; 8:14415. [PMID: 28195129 PMCID: PMC5316881 DOI: 10.1038/ncomms14415] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022] Open
Abstract
Low-Frequency Oscillations (LFO) in the range of 7-9 Hz, or theta rhythm, has been recorded in rodents ambulating in the real world. However, intra-hippocampus EEG recordings during virtual navigation in humans have consistently reported LFO that appear to predominate around 3-4 Hz. Here we report clear evidence of 7-9 Hz rhythmicity in raw intra-hippocampus EEG traces during real as well as virtual movement. Oscillations typically occur at a lower frequency in virtual than real world navigation. This study highlights the possibility that human and rodent hippocampal EEG activity are not as different as previously reported and this difference may arise, in part, due to the lack of actual movement in previous human navigation studies, which were virtual.
Collapse
Affiliation(s)
- Véronique D Bohbot
- Douglas Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, Verdun, Quebec, Canada H4H 1R3
| | - Milagros S Copara
- Neuroscience Graduate Group, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - Arne D Ekstrom
- Neuroscience Graduate Group, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA.,Center for Neuroscience, University of California, Davis, 1 Shields Avenue, Davis, California 95618, USA.,Department of Psychology, University of California, Davis, 1 Shields Avenue, Davis, California 95618, USA
| |
Collapse
|
64
|
Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Processes 2017; 135:113-131. [DOI: 10.1016/j.beproc.2016.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
|
65
|
Movement Enhances the Nonlinearity of Hippocampal Theta. J Neurosci 2016; 36:4218-30. [PMID: 27076421 DOI: 10.1523/jneurosci.3564-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single-neuron activity and propagation of theta through the hippocampus. This work is significant because it will encourage others to consider the nonlinear nature of the nervous system and higher-order spectral analyses when examining oscillatory interactions.
Collapse
|
66
|
Banoujaafar H, Monnier A, Pernet N, Quirié A, Garnier P, Prigent-Tessier A, Marie C. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur J Neurosci 2016; 44:2226-35. [PMID: 27306299 DOI: 10.1111/ejn.13301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production.
Collapse
Affiliation(s)
- Hayat Banoujaafar
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Alice Monnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,Department of Rehabilitation, University Hospital, Dijon, France
| | - Nicolas Pernet
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurore Quirié
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Philippe Garnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,IUT de Dijon, Département de Génie Biologique, Université de Bourgogne, Dijon, France
| | - Anne Prigent-Tessier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Christine Marie
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| |
Collapse
|
67
|
Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA. Prevention by Regular Exercise of Acute Sleep Deprivation-Induced Impairment of Late Phase LTP and Related Signaling Molecules in the Dentate Gyrus. Mol Neurobiol 2016; 53:2900-2910. [PMID: 25902862 DOI: 10.1007/s12035-015-9176-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
The dentate gyrus (DG) and CA1 regions of the hippocampus are intimately related physically and functionally, yet they react differently to insults. The purpose of this study was to determine the protective effects of regular treadmill exercise on late phase long-term potentiation (L-LTP) and its signaling cascade in the DG region of the hippocampus of rapid eye movement (REM) sleep-deprived rats. Adult Wistar rats ran on treadmills for 4 weeks then were acutely sleep deprived for 24 h using the modified multiple platform method. After sleep deprivation, the rats were anesthetized and L-LTP was induced in the DG region. Extracellular field potentials from the DG were recorded in vivo, and levels of L-LTP-related signaling proteins were assessed both before and after L-LTP expression using immunoblot analysis. Sleep deprivation reduced the basal levels of phosphorylated cAMP response element-binding protein (P-CREB) as well as other upstream modulators including calcium/calmodulin kinase IV (CaMKIV) and brain-derived neurotrophic factor (BDNF) in the DG of the hippocampus. Regular exercise prevented impairment of the basal levels of P-CREB and total CREB as well as those of CaMKIV in sleep-deprived animals. Furthermore, regular exercise prevented sleep deprivation-induced inhibition of L-LTP and post-L-LTP downregulation of P-CREB and BDNF levels in the DG. The current findings show that our exercise regimen prevents sleep deprivation-induced deficits in L-LTP as well as the basal and poststimulation levels of key signaling molecules.
Collapse
Affiliation(s)
- Munder A Zagaar
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - An T Dao
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Ibrahim A Alhaider
- College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Karim A Alkadhi
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| |
Collapse
|
68
|
Chomiak T, Block EW, Brown AR, Teskey GC, Hu B. Development and testing of a new system for assessing wheel-running behaviour in rodents. BMC Res Notes 2016; 9:262. [PMID: 27150120 PMCID: PMC4858930 DOI: 10.1186/s13104-016-2059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Findings Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. Conclusions This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2059-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Experimental Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330, Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Edward W Block
- Division of Experimental Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330, Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Andrew R Brown
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bin Hu
- Division of Experimental Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330, Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
69
|
Márton G, Baracskay P, Cseri B, Plósz B, Juhász G, Fekete Z, Pongrácz A. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats. J Neural Eng 2016; 13:026025. [PMID: 26924827 DOI: 10.1088/1741-2560/13/2/026025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Exploring neural activity behind synchronization and time locking in brain circuits is one of the most important tasks in neuroscience. Our goal was to design and characterize a microelectrode array (MEA) system specifically for obtaining in vivo extracellular recordings from three deep-brain areas of freely moving rats, simultaneously. The target areas, the deep mesencephalic reticular-, pedunculopontine tegmental-and pontine reticular nuclei are related to the regulation of sleep-wake cycles. APPROACH The three targeted nuclei are collinear, therefore a single-shank MEA was designed in order to contact them. The silicon-based device was equipped with 3 × 4 recording sites, located according to the geometry of the brain regions. Furthermore, a microdrive was developed to allow fine actuation and post-implantation relocation of the probe. The probe was attached to a rigid printed circuit board, which was fastened to the microdrive. A flexible cable was designed in order to provide not only electronic connection between the probe and the amplifier system, but sufficient freedom for the movements of the probe as well. MAIN RESULTS The microdrive was stable enough to allow precise electrode targeting into the tissue via a single track. The microelectrodes on the probe were suitable for recording neural activity from the three targeted brainstem areas. SIGNIFICANCE The system offers a robust solution to provide long-term interface between an array of precisely defined microelectrodes and deep-brain areas of a behaving rodent. The microdrive allowed us to fine-tune the probe location and easily scan through the regions of interest.
Collapse
Affiliation(s)
- G Márton
- Comparative Psychophysiology Department, Institute of Cognitive Neuroscience and Physiology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudósok Blvd., H-1117, Budapest, Hungary. MEMS Laboratory, Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly Thege Miklós st., H-1121, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
70
|
Vass LK, Copara MS, Seyal M, Shahlaie K, Farias ST, Shen PY, Ekstrom AD. Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation. Neuron 2016; 89:1180-1186. [PMID: 26924436 DOI: 10.1016/j.neuron.2016.01.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Low-frequency (delta/theta band) hippocampal neural oscillations play prominent roles in computational models of spatial navigation, but their exact function remains unknown. Some theories propose they are primarily generated in response to sensorimotor processing, while others suggest a role in memory-related processing. We directly recorded hippocampal EEG activity in patients undergoing seizure monitoring while they explored a virtual environment containing teleporters. Critically, this manipulation allowed patients to experience movement through space in the absence of visual and self-motion cues. The prevalence and duration of low-frequency hippocampal oscillations were unchanged by this manipulation, indicating that sensorimotor processing was not required to elicit them during navigation. Furthermore, the frequency-wise pattern of oscillation prevalence during teleportation contained spatial information capable of classifying the distance teleported. These results demonstrate that movement-related sensory information is not required to drive spatially informative low-frequency hippocampal oscillations during navigation and suggest a specific function in memory-related spatial updating.
Collapse
Affiliation(s)
- Lindsay K Vass
- Center for Neuroscience, University of California, Davis, 1 Shields Avenue, Davis, CA 95618, USA
| | - Milagros S Copara
- Center for Neuroscience, University of California, Davis, 1 Shields Avenue, Davis, CA 95618, USA
| | - Masud Seyal
- Department of Neurology, University of California, Davis Medical Center, 4860 Y Street, Suite 0100, Sacramento, CA 95817, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis Medical Center, 4860 Y Street, Suite 0100, Sacramento, CA 95817, USA
| | - Sarah Tomaszewski Farias
- Department of Neurology, University of California, Davis Medical Center, 4860 Y Street, Suite 0100, Sacramento, CA 95817, USA
| | - Peter Y Shen
- Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, 1 Shields Avenue, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, 1 Shields Avenue, Davis, CA 95618, USA.
| |
Collapse
|
71
|
Bolz L, Heigele S, Bischofberger J. Running Improves Pattern Separation during Novel Object Recognition. Brain Plast 2015; 1:129-141. [PMID: 29765837 PMCID: PMC5928530 DOI: 10.3233/bpl-150010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
Collapse
Affiliation(s)
- Leoni Bolz
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| | - Stefanie Heigele
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| |
Collapse
|
72
|
Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature 2015; 523:419-24. [PMID: 26176924 DOI: 10.1038/nature14622] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/03/2015] [Indexed: 01/17/2023]
Abstract
Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ∼50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex.
Collapse
Affiliation(s)
- Emilio Kropff
- 1] Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway [2] Leloir Institute, IIBBA - CONICET, Buenos Aires, C1405BWE, Argentina
| | - James E Carmichael
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway
| |
Collapse
|
73
|
Chalimoniuk M, Chrapusta SJ, Lukačova N, Langfort J. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3',5'-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res 2015; 1618:29-40. [PMID: 26006108 DOI: 10.1016/j.brainres.2015.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) brain pathway plays an important role in motor control. We studied the effects of 6-week endurance training (running) of moderate intensity on this pathway by comparing, between sedentary and endurance-trained young adult male Wistar rats, the expression of endothelial (eNOS) and neuronal (nNOS) NO synthases and of α1, α2 and β1 GC subunits, as well as cGMP levels, in the brain cortex, hippocampus, striatum, midbrain and cerebellum. Additionally, we compared the respective regional expressions of BDNF and the BDNF receptor TrkB. Twenty-four hours after the last training session, the endurance-trained rats showed 3-fold higher spontaneous locomotor activity than their sedentary counterparts in an open-field test. Forty-eight hours after the completion of the training, the trained rats showed significantly elevated BDNF and TrKB mRNAs in the hippocampus, midbrain and striatum, and significantly increased BDNF levels in the hippocampus and striatum. Simultaneously, significant increases were found in mRNA and protein levels and activities of nNOS and eNOS as well as in mRNA and protein levels of GCα2 and GCβ1, but not GCα1, in the striatum, midbrain and cerebellum; no change in these variables was found in the cortex and hippocampus except for marked elevations in cortical GCβ1 mRNA and protein. Changes in regional cGMP levels paralleled those in eNOS, nNOS and GCα2 expression and NOSs' activities. These results suggest that favorable extrapyramidal motor effects of physical training are related to the enhanced activity of the NO/sGC/cGMP pathway in certain motor control-related subcortical brain regions.
Collapse
Affiliation(s)
- Małgorzata Chalimoniuk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław J Chrapusta
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nadežda Lukačova
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Józef Langfort
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
74
|
Septo-hippocampal signal processing: breaking the code. PROGRESS IN BRAIN RESEARCH 2015; 219:103-20. [PMID: 26072236 DOI: 10.1016/bs.pbr.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The septo-hippocampal connections appear to be a key element in the neuromodulatory cholinergic control of the hippocampal neurons. The cholinergic neuromodulation is well established in shifting behavioral states of the brain. The pacemaker role of medial septum in the limbic theta rhythm is demonstrated by lesions and pharmacological manipulations of GABAergic neurons, yet the link between the activity of different septal neuronal classes and limbic theta rhythm is not fully understood. We know even less about the information transfer between the medial septum and hippocampus--is there a particular kind of processed information that septo-hippocampal pathways transmit? This review encompasses fundamental findings together with the latest data of septo-hippocampal signal processing to tackle the frontiers of our understanding about the functional significance of medial septum to the hippocampal formation.
Collapse
|
75
|
Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron 2015; 86:1253-64. [PMID: 25982367 DOI: 10.1016/j.neuron.2015.05.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022]
Abstract
Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Falko Fuhrmann
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniel Justus
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Liudmila Sosulina
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Hiroshi Kaneko
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Tatjana Beutel
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Detlef Friedrichs
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, 53127 Bonn, Germany; Section of Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, 53127 Bonn, Germany
| | - Martin Karl Schwarz
- Functional Neuroconnectomics Group, Department of Epileptology, Life & Brain Center, University of Bonn, Medical School, Sigmund-Freud Strasse 25, D-53105 Bonn, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stefan Remy
- Neuronal Networks Group, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany; Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, 53127 Bonn, Germany.
| |
Collapse
|
76
|
Chadwick A, van Rossum MCW, Nolan MF. Independent theta phase coding accounts for CA1 population sequences and enables flexible remapping. eLife 2015; 4. [PMID: 25643396 PMCID: PMC4383210 DOI: 10.7554/elife.03542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 02/01/2015] [Indexed: 12/27/2022] Open
Abstract
Hippocampal place cells encode an animal's past, current, and future location
through sequences of action potentials generated within each cycle of the network
theta rhythm. These sequential representations have been suggested to result from
temporally coordinated synaptic interactions within and between cell assemblies.
Instead, we find through simulations and analysis of experimental data that rate and
phase coding in independent neurons is sufficient to explain the organization of CA1
population activity during theta states. We show that CA1 population activity can be
described as an evolving traveling wave that exhibits phase coding, rate coding,
spike sequences and that generates an emergent population theta rhythm. We identify
measures of global remapping and intracellular theta dynamics as critical for
distinguishing mechanisms for pacemaking and coordination of sequential population
activity. Our analysis suggests that, unlike synaptically coupled assemblies,
independent neurons flexibly generate sequential population activity within the
duration of a single theta cycle. DOI:http://dx.doi.org/10.7554/eLife.03542.001 When we explore a new place, we naturally create a mental map of the location as we
go. This mental map is stored in a region of the brain called the hippocampus, which
contains cells called place cells. These cells can carry information about our past,
present, and future location in the form of electrical signals. They connect to each
other to form networks and it has been proposed that these connections can store the
information needed for the mental maps. Real-time maps are represented in the information carried by the electrical signals
themselves. A physical location is specified by the individual place cell that is
activated, and by the timing of the electrical signal it produces relative to a
‘brain wave’ called the theta rhythm. Brain waves are patterns of
electrical signals activated in sets of brain cells and the theta rhythm is produced
in the hippocampus of an animal as it explores its surroundings. Previous experiments suggested that when a rat explores an area, several sets of
brain cells in the hippocampus are activated in sequence within each cycle of the
theta rhythm. As the rat moves forward, the sequence shifts to different sets of
cells to reflect the upcoming locations ahead of the rat. It has been thought that
these sequences are triggered by the individual connections between the place
cells. Here, Chadwick et al. developed mathematical models of the electrical activity in the
brains of rats as they explored. They used these models to analyze data from previous
experiments and found that the sequences of electrical activity arise from the timing
of each cell's activity relative to the theta rhythm, rather than from the
connections between the cells. Chadwick et al.'s findings suggest that the mental map may be highly flexible,
allowing vast numbers of distinct memories to be stored within the same network of
place cells without interference. Future studies will involve investigating the role
of brain waves in the forming new mental maps and creating new memories. DOI:http://dx.doi.org/10.7554/eLife.03542.002
Collapse
Affiliation(s)
- Angus Chadwick
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark C W van Rossum
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew F Nolan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
77
|
Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E. Theta sequences are essential for internally generated hippocampal firing fields. Nat Neurosci 2014; 18:282-8. [PMID: 25531571 DOI: 10.1038/nn.3904] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/24/2014] [Indexed: 11/09/2022]
Abstract
Sensory cue inputs and memory-related internal brain activities govern the firing of hippocampal neurons, but which specific firing patterns are induced by either of the two processes remains unclear. We found that sensory cues guided the firing of neurons in rats on a timescale of seconds and supported the formation of spatial firing fields. Independently of the sensory inputs, the memory-related network activity coordinated the firing of neurons not only on a second-long timescale, but also on a millisecond-long timescale, and was dependent on medial septum inputs. We propose a network mechanism that might coordinate this internally generated firing. Overall, we suggest that two independent mechanisms support the formation of spatial firing fields in hippocampus, but only the internally organized system supports short-timescale sequential firing and episodic memory.
Collapse
Affiliation(s)
| | - Sandro Romani
- 1] Janelia Research Campus, Ashburn, Virginia, USA. [2] Center for Theoretical Neuroscience, Columbia University, New York, New York, USA
| | - Brian Lustig
- 1] Janelia Research Campus, Ashburn, Virginia, USA. [2] University of Chicago, Neuroscience Graduate Program, Chicago, Illinois, USA
| | | | | |
Collapse
|
78
|
Aronov D, Tank DW. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 2014; 84:442-56. [PMID: 25374363 DOI: 10.1016/j.neuron.2014.08.042] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.
Collapse
Affiliation(s)
- Dmitriy Aronov
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ 08544, USA
| | - David W Tank
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
79
|
Moderate Treadmill Exercise Protects Synaptic Plasticity of the Dentate Gyrus and Related Signaling Cascade in a Rat Model of Alzheimer's Disease. Mol Neurobiol 2014; 52:1067-1076. [PMID: 25288155 DOI: 10.1007/s12035-014-8916-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022]
Abstract
The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.
Collapse
|
80
|
Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats. J Cereb Blood Flow Metab 2014; 34:1681-7. [PMID: 25052557 PMCID: PMC4269729 DOI: 10.1038/jcbfm.2014.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
We investigated the contribution of blood flow elevation in the cerebrovasculature to physical training-induced brain-derived neurotrophic factor (BDNF) levels elevation in the brain. Brain-derived neurotrophic factor protein levels were measured in the motor cortex 24 h after the last session of a forced treadmill walking (30 minutes a day, 18 m/minute for 7 consecutive days). Unilateral common carotid artery occlusion and modulation of exercise intensity (0 versus -10% inclination of the treadmill) were used as strategies to reduce the (normal) elevation of flow in the cerebrovasculature occurring during exercise. Administration of N-nitro-L-arginine methyl ester (L-NAME, 60 mg/kg before each exercise sessions) and genetic hypertension (spontaneously hypertensive rats) were used as approaches to reduce stimulation of nitric oxide production in response to shear stress elevation. Vascular occlusion totally and partially abolished the effect of physical training on BDNF levels in the hemisphere ipsilateral and contralateral to occlusion, respectively. BDNF levels were higher after high than low exercise intensity. In addition, both genetic hypertension and L-NAME treatment blunted the effects of physical training on BDNF. From these results, we propose that elevation of brain BDNF levels elicited by physical training involves changes in cerebral hemodynamics.
Collapse
|
81
|
Balakrishnan S, Pearce RA. Midazolam and atropine alter theta oscillations in the hippocampal CA1 region by modulating both the somatic and distal dendritic dipoles. Hippocampus 2014; 24:1212-31. [PMID: 24862458 DOI: 10.1002/hipo.22307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 11/09/2022]
Abstract
Theta (4-12 Hz) oscillations in the hippocampus play an important role in learning and memory. They are altered by a wide variety of drugs that impair memory, and these effects may underlie or contribute to drug-induced amnesia. However, the network mechanisms linking drug actions with changes in memory formation remain poorly defined. Here, we used a multisite linear electrode array to measure local field potentials simultaneously across the CA1 layers of the hippocampus during active exploration, and employed current source density analysis and computational modeling to investigate how midazolam and atropine-two amnestic drugs that are used clinically and experimentally-change the relative timing and strength of the drivers of θ-oscillations. We found that two dipoles are present, with active inputs that are centered at the soma and the distal apical dendrite and passive return pathways that overlap in the mid-apical dendrite. Both drugs shifted the position of the phase reversal in the local field potential that occurred in the mid-apical dendritic region, but in opposite directions, by changing the strength of the dendritic pole, without altering the somatic pole or relative timing. Computational modeling showed that this constellation of changes, as well as an additional effect on a variably present mid-apical pole, could be produced by simultaneous changes in the active somatic and distal dendritic inputs. These network-level changes, produced by two amnestic drugs that target different types of receptors, may thus serve as a common basis for impaired memory encoding.
Collapse
Affiliation(s)
- Shilpashree Balakrishnan
- Neuroscience Training Program and Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
82
|
MacIntosh BJ, Crane DE, Sage MD, Rajab AS, Donahue MJ, McIlroy WE, Middleton LE. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One 2014; 9:e85163. [PMID: 24416356 PMCID: PMC3885687 DOI: 10.1371/journal.pone.0085163] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/24/2013] [Indexed: 02/03/2023] Open
Abstract
Purpose Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfusion and neuronal activation. Methods Healthy adults (n = 16; age range: 20–35 yrs) were scanned using Magnetic Resonance Imaging (MRI) before and after 20 minutes of exercise at 70% of their age-predicted maximal heart rate. Pseudo-continuous arterial spin labeling (pcASL) was used to measure absolute cerebral blood flow (CBF) prior to exercise (pre) and at 10 min (post-10) and 40 min (post-40) post-exercise. Blood oxygenation level dependent (BOLD) functional MRI (fMRI) was performed pre and post-exercise to characterize activation differences related to a go/no-go reaction time task. Results Compared to pre-exercise levels, grey matter CBF was 11% (±9%) lower at post-10 (P<0.0004) and not different at post-40 (P = 0.12), while global WM CBF was increased at both time points post-exercise (P<0.0006). Regionally, the hippocampus and insula showed a decrease in perfusion in ROI-analysis at post-10 (P<0.005, FDR corrected), whereas voxel-wise analysis identified elevated perfusion in the left medial postcentral gyrus at post-40 compared to pre (pcorrected = 0.05). BOLD activations were consistent between sessions, however, the left parietal operculum showed reduced BOLD activation after exercise. Conclusion This study provides preliminary evidence of regionalized brain effects associated with a single bout of aerobic exercise. The observed acute cerebrovascular responses may provide some insight into the brain’s ability to change in relation to chronic interventions.
Collapse
Affiliation(s)
- Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail:
| | - David E. Crane
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Michael D. Sage
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - A. Saeed Rajab
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Manus J. Donahue
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - William E. McIlroy
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura E. Middleton
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
83
|
Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA. Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology. Curr Alzheimer Res 2014; 10:507-15. [PMID: 23627709 DOI: 10.2174/1567205011310050006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive memory loss. In contrast, accumulating evidence suggests a neuroprotective role of regular exercise in aging associated memory impairment. In this study, we investigated the ability of regular exercise to prevent impairments of short-term memory (STM) and early long-term potentiation (E-LTP) in area CA1 of the hippocampus in a rat model of AD (i.c.v. infusion of 250 pmol/day Aβ1-42 peptides). We utilized behavioral assessment, in vivo electrophysiological recording, and immunoblotting in 4 groups of adult Wistar rats: control, treadmill exercise (Ex), β-amyloid-infused (Aβ), and amyloid-infused/treadmill exercised (Ex/Aβ). Our findings indicated that Aβ rats made significantly more errors in the radial arm water maze (RAWM) compared to all other groups and exhibited suppressed E-LTP in area CA1, which correlated with deleterious alterations in the levels of memory and E-LTP-related signaling molecules including calcineurin (PP2B), brain derivedneurotrophic factor (BDNF) and phosphorylated CaMKII (p-CaMKII). Compared to controls, Ex and Ex/Aβ rats showed a similar behavioral performance and a normal E-LTP with no detrimental changes in the levels of PP2B, BDNF, and p- CaMKII. We conclude that treadmill exercise maybe able to prevent cognitive impairment associated with AD pathology.
Collapse
Affiliation(s)
- An T Dao
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
| | - Munder A Zagaar
- Texas Southern University Department of Pharmacy Practice and Clinical Health Sciences Houston, TX 77004
| | | | | | | | | |
Collapse
|
84
|
Gutiérrez M, Ferreri M, Gravielle M. GABA-induced uncoupling of GABA/benzodiazepine site interactions is mediated by increased GABAA receptor internalization and associated with a change in subunit composition. Neuroscience 2014; 257:119-29. [DOI: 10.1016/j.neuroscience.2013.10.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023]
|
85
|
Tsanov M, Chah E, Reilly R, O'Mara SM. Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm. Eur J Neurosci 2013; 39:957-974. [PMID: 24329896 PMCID: PMC4165309 DOI: 10.1111/ejn.12449] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/03/2022]
Abstract
Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing–theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle.
Collapse
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, 2, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
86
|
La Corte G, Wei Y, Chernyy N, Gluckman BJ, Schiff SJ. Frequency dependence of behavioral modulation by hippocampal electrical stimulation. J Neurophysiol 2013; 111:470-80. [PMID: 24198322 DOI: 10.1152/jn.00523.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4-12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation.
Collapse
Affiliation(s)
- Giorgio La Corte
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, Pennsylvania
| | | | | | | | | |
Collapse
|
87
|
Burke SN, Maurer AP, Hartzell AL, Nematollahi S, Uprety A, Wallace JL, Barnes CA. Representation of three-dimensional objects by the rat perirhinal cortex. Hippocampus 2013; 22:2032-44. [PMID: 22987680 DOI: 10.1002/hipo.22060] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, three-dimensional objects. Rats in the present study were exposed to three-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions, the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated "object fields" (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats' previous experience with the objects. Together, these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment; but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition.
Collapse
Affiliation(s)
- S N Burke
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Ekstrom AD, Watrous AJ. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. Neuroimage 2013; 85 Pt 2:667-77. [PMID: 23792985 DOI: 10.1016/j.neuroimage.2013.06.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023] Open
Abstract
A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, USA; Department of Psychology, University of California, Davis, CA, USA; Neuroscience Graduate Group, University of California, Davis, USA.
| | | |
Collapse
|
89
|
Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD. A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 2013; 23:656-661. [PMID: 23520039 DOI: 10.1002/hipo.22124] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2013] [Indexed: 11/09/2022]
Abstract
Rhythmic oscillations within the 3-12 Hz theta frequency band manifest in the rodent hippocampus during a variety of behaviors and are particularly well characterized during spatial navigation. In contrast, previous studies of rhythmic hippocampal activity in primates under comparable behavioral conditions suggest it may be less apparent and possibly less prevalent, or even absent, compared with the rodent. We compared the relative presence of low-frequency oscillations in rats and humans during spatial navigation by using an oscillation detection algorithm ("P-episode" or "BOSC") to better characterize their presence in microelectrode local field potential (LFP) recordings. This method quantifies the proportion of time the LFP exceeds both a power and cycle duration threshold at each frequency, characterizing the presence of (1) oscillatory activity compared with background noise, (2) the peak frequency of oscillatory activity, and (3) the duration of oscillatory activity. Results demonstrate that both humans and rodents have hippocampal rhythmic fluctuations lasting, on average, 2.75 and 4.3 cycles, respectively. Analyses further suggest that human hippocampal rhythmicity is centered around ∼3 Hz while that of rats is centered around ∼8 Hz. These results establish that low-frequency rhythms relevant to spatial navigation are present in both the rodent and human hippocampus, albeit with different properties under the behavioral conditions tested.
Collapse
Affiliation(s)
- Andrew J Watrous
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA
| | - Darrin J Lee
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA.,Department of Neurological Surgery, University of California, Davis, CA
| | - Ali Izadi
- Department of Neurological Surgery, University of California, Davis, CA
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California, Davis, CA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, CA
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA.,Department of Psychology, University of California, Davis, CA
| |
Collapse
|
90
|
Fernández-Ruiz A, Herreras O. Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Front Comput Neurosci 2013; 7:5. [PMID: 23408586 PMCID: PMC3569616 DOI: 10.3389/fncom.2013.00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/26/2013] [Indexed: 11/13/2022] Open
Abstract
Although intracerebral field potential oscillations are commonly used to study information processing during cognition and behavior, the cellular and network processes underlying such events remain unclear. The limited spatial resolution of standard single-point recordings does not clarify whether field oscillations reflect the activity of one or many afferent presynaptic populations. However, multi-site recording devices now provide high-resolution spatial profiles of local field potentials (LFPs) and when coupled to modern mathematical analyses that discriminate signals with distinct but overlapping spatial distributions, they open the door to better understand these potentials. Here we review recent insights that help disentangle certain pathway-specific activities. Accordingly, some oscillatory patterns can now be viewed as a periodic succession of synchronous synaptic currents that reflect the time envelope of spiking activity in given presynaptic populations. These analyses modify our concept of brain rhythms as abstract entities, molding them into mechanistic representations of network activity and allowing us to work in the time domain, reducing the loss of information inherent to data-chopping frequency treatment.
Collapse
Affiliation(s)
- Antonio Fernández-Ruiz
- Experimental and Computational Neurophysiology, Department of Systems Neuroscience, Cajal Institute - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | |
Collapse
|
91
|
Takahashi S. Hierarchical organization of context in the hippocampal episodic code. eLife 2013; 2:e00321. [PMID: 23390588 PMCID: PMC3564448 DOI: 10.7554/elife.00321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/26/2012] [Indexed: 02/05/2023] Open
Abstract
The hippocampal system appears to be critically important in establishing episodic memory of both internal and external events within contexts as well as spatial memory, which enables flexible spatial navigation. However, the neuronal substrates that function across different memories in the hippocampal system are poorly understood. I monitored large-scale activity patterns of hippocampal neuronal ensembles in rats performing a novel, continuous task that combined one visually guided and two memory-guided types of navigations in a constant environment. I found that the activity patterns of the hippocampal ensemble represent spatiotemporal contexts (journeys) constructed by temporally ordered past, present and expected future places in tandem with visually or mnemonically guided non-spatial contexts (task-demands) to form episodes. This finding therefore suggests that the hierarchical organization of contexts based on pattern separation and completion enables the hippocampus to play a dual role in spatial navigation and recall of episodic memory. DOI:http://dx.doi.org/10.7554/eLife.00321.001 A little over 10 years ago, researchers discovered that a brain region called the hippocampus is larger in London taxi drivers than it is in the general population. This tied in with results from animal studies, which had revealed a key role for the hippocampus in spatial navigation and memory. However, other work has shown that the hippocampus is equally important for remembering personal experiences—a form of memory known as episodic memory. Many neurons in the hippocampus display ‘place fields', which means that they fire bursts of action potentials whenever an animal is in a specific location. Place fields tend to remain stable during repeated visits to an environment: the same cells fire whenever the animal returns to a particular place. However, if the animal enters a new environment, a neuron might adopt a different place field or not show any place field at all. This phenomenon is known as remapping. Now, Takahashi has provided further insight into the circumstances under which such remapping occurs. He recorded from large numbers of neurons in the rat hippocampus—in a subregion called CA1—as the animals moved through a maze shaped like a digital figure ‘8'. The rats had to perform three tasks within the maze: one guided by visual cues, and two that were memory-based. In the visual task, a light informed the rats to turn either left or right to obtain a reward. In the first memory task, the rats had to alternate their choices to obtain the reward, running through the maze from right-to-left and then from left-to-right (non-delayed spatial alternation). The second memory task worked the same way, except that the rats had to wait 5 s before turning left or right (delayed spatial alternation). Takahashi compared the responses of hippocampal CA1 neurons as rats performed the three tasks. As expected, he found that neurons tended to remap their place fields based on the animal's initial and final locations in the maze, regardless of which task the animal was performing. Surprisingly, however, neurons with specific place fields distinguished between the three tasks by firing at different rates in each. By combining information about the locations and rates at which large assemblies of neurons fired, Takahashi found that he could accurately predict which task a rat had been performing, where it had come from, and where it had ended up, because the place field remapping was hierarchically organized. Moreover, the prediction could be made even before the rat had completed the task. Overall, these results add to our understanding of how the hippocampus performs its dual roles in spatial navigation and episodic memory. DOI:http://dx.doi.org/10.7554/eLife.00321.002
Collapse
Affiliation(s)
- Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain Science , Doshisha University , Kizugawa , Japan ; Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency , Kawaguchi , Japan ; Faculty of Computer Science and Engineering , Kyoto Sangyo University , Kyoto , Japan
| |
Collapse
|
92
|
Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol 2013; 167:1-12. [PMID: 22486393 DOI: 10.1111/j.1476-5381.2012.01970.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The beneficial effects of regular exercise for the promotion of health and cure of diseases have been clearly shown. In this review, we would like to postulate the idea that exercise can be considered as a drug. Exercise causes a myriad of beneficial effects for health, including the promotion of health and lifespan, and these are reviewed in the first section of this paper. Then we deal with the dosing of exercise. As with many drugs, dosing is extremely important to get the beneficial effects of exercise. To this end, the organism adapts to exercise. We review the molecular signalling pathways involved in these adaptations because understanding them is of great importance to be able to prescribe exercise in an appropriate manner. Special attention must be paid to the psychological effects of exercise. These are so powerful that we would like to propose that exercise may be considered as a psychoactive drug. In moderate doses, it causes very pronounced relaxing effects on the majority of the population, but some persons may even become addicted to exercise. Finally, there may be some contraindications to exercise that arise when people are severely ill, and these are described in the final section of the review. Our general conclusion is that exercise is so effective that it should be considered as a drug, but that more attention should be paid to the dosing and to individual variations between patients.
Collapse
Affiliation(s)
- J Vina
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain.
| | | | | | | |
Collapse
|
93
|
How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A 2012; 110:378-83. [PMID: 23256159 DOI: 10.1073/pnas.1215834110] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How do external environmental and internal movement-related information combine to tell us where we are? We examined the neural representation of environmental location provided by hippocampal place cells while mice navigated a virtual reality environment in which both types of information could be manipulated. Extracellular recordings were made from region CA1 of head-fixed mice navigating a virtual linear track and running in a similar real environment. Despite the absence of vestibular motion signals, normal place cell firing and theta rhythmicity were found. Visual information alone was sufficient for localized firing in 25% of place cells and to maintain a local field potential theta rhythm (but with significantly reduced power). Additional movement-related information was required for normally localized firing by the remaining 75% of place cells. Trials in which movement and visual information were put into conflict showed that they combined nonlinearly to control firing location, and that the relative influence of movement versus visual information varied widely across place cells. However, within this heterogeneity, the behavior of fully half of the place cells conformed to a model of path integration in which the presence of visual cues at the start of each run together with subsequent movement-related updating of position was sufficient to maintain normal fields.
Collapse
|
94
|
Swain RA, Berggren KL, Kerr AL, Patel A, Peplinski C, Sikorski AM. On aerobic exercise and behavioral and neural plasticity. Brain Sci 2012; 2:709-44. [PMID: 24961267 PMCID: PMC4061809 DOI: 10.3390/brainsci2040709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.
Collapse
Affiliation(s)
- Rodney A Swain
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Kiersten L Berggren
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61702, USA.
| | - Ami Patel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Caitlin Peplinski
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Angela M Sikorski
- Department of Psychology, Texas A & M University-Texarkana, Texarkana, TX 75503, USA.
| |
Collapse
|
95
|
Amygdalar stimulation produces alterations on firing properties of hippocampal place cells. J Neurosci 2012; 32:11424-34. [PMID: 22895724 DOI: 10.1523/jneurosci.1108-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stress is a biologically ubiquitous factor that, when perceived uncontrollable by humans and animals, can have lingering adverse effects on brain and cognitive functions. We have previously reported that rats that experienced inescapable-unpredictable stress subsequently exhibited decreased stability of firing rates of place cells in the CA1 hippocampus, accompanied by impairments in CA1 long-term synaptic potentiation and spatial memory consolidation. Because the elevated level of glucocorticoid hormones and the heightened amygdalar activity have been implicated in the emergence of stress effects on the hippocampus, we investigated whether administration of corticosterone and electrical stimulation of the amygdala can produce stress-like alterations on hippocampal place cells. To do so, male Long-Evans rats chronically implanted with tetrodes in the hippocampus and stimulating electrodes in the amygdala were placed on a novel arena to forage for randomly dispersed food pellets while CA1 place cells were monitored across two recording sessions. Between sessions, animals received either corticosterone injection or amygdalar stimulation. We found that amygdalar stimulation reliably evoked distress behaviors and subsequently reduced the pixel-by-pixel correlation of place maps across sessions, while corticosterone administration did not. Also, the firing rates of place cells between preamygdalar and postamygdalar stimulation recording sessions were pronouncedly different, whereas those between precorticosterone and postcorticosterone injection recording sessions were not. These results suggest that the heightened amygdalar activity, but not the elevated level of corticosterone per se, reduces the stability of spatial representation in the hippocampus by altering the firing rates of place cells in a manner similar to behavioral stress.
Collapse
|
96
|
Molter C, O'Neill J, Yamaguchi Y, Hirase H, Leinekugel X. Rhythmic Modulation of Theta Oscillations Supports Encoding of Spatial and Behavioral Information in the Rat Hippocampus. Neuron 2012; 75:889-903. [DOI: 10.1016/j.neuron.2012.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 10/27/2022]
|
97
|
Abstract
Successful spatial navigation is thought to employ a combination of at least two strategies: the following of landmark cues and path integration. Path integration requires that the brain use the speed and direction of movement in a meaningful way to continuously compute the position of the animal. Indeed, the running speed of rats modulates both the firing rate of neurons and the spectral properties of low frequency, theta oscillations seen in the local field potential (LFP) of the hippocampus, a region important for spatial memory formation. Higher frequency, gamma-band LFP oscillations are usually associated with decision-making, increased attention, and improved reaction times. Here, we show that increased running speed is accompanied by large, systematic increases in the frequency of hippocampal CA1 network oscillations spanning the entire gamma range (30-120 Hz) and beyond. These speed-dependent changes in frequency are seen on both linear tracks and two-dimensional platforms, and are thus independent of the behavioral task. Synchrony between anatomically distant CA1 regions also shifts to higher gamma frequencies as running speed increases. The changes in frequency are strongly correlated with changes in the firing rates of individual interneurons, consistent with models of gamma generation. Our results suggest that as a rat runs faster, there are faster gamma frequency transitions between sequential place cell-assemblies. This may help to preserve the spatial specificity of place cells and spatial memories at vastly different running speeds.
Collapse
|
98
|
Drumond LE, Mourão FAG, Leite HR, Abreu RV, Reis HJ, Moraes MFD, Pereira GS, Massensini AR. Differential effects of swimming training on neuronal calcium sensor-1 expression in rat hippocampus/cortex and in object recognition memory tasks. Brain Res Bull 2012; 88:385-91. [PMID: 22521426 DOI: 10.1016/j.brainresbull.2012.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
Abstract
Physical activity has been proposed as a behavioral intervention that improves learning and memory; nevertheless, the mechanisms underlying these health benefits are still not well understood. Neuronal Calcium Sensor-1 (NCS-1) is a member of a superfamily of proteins that respond to local Ca(2+) changes shown to have an important role in learning and memory. The aim of the present study was to investigate the effects of swimming training on NCS-1 levels in the rat brain after accessing cognitive performance. Wistar rats were randomly assigned to sedentary (SG) or exercised groups (EG). The EG was subject to forced swimming activity, 30 min/day, 5 days/week, during 8 weeks. Progressive load trials were performed in the first and last week in order to access the efficiency of the training. After the 8 week training protocol, memory performance was evaluated by the novel object preference and object location tasks. NCS-1 levels were measured in the cortex and hippocampus using immunoblotting. The EG performed statistically better for the spatial short-term memory (0.73 ± 0.01) when compared to the SG (0.63 ± 0.02; P<0.05). No statistically significant exercise-effect was observed in the novel object preference task (SG 0.65 ± 0.02 and EG 0.68 ± 0.02; p>0.05). In addition, chronic exercise promoted a significant increase in hippocampal NCS-1 levels (1.8 ± 0.1) when compared to SG (1.17 ± 0.08; P<0,05), but had no effect on cortical NCS-1 levels (SG 1.6 ± 0.1 and EG 1.5 ± 0.1; p>0.05). Results suggest that physical exercise would modulate the state of the neural network regarding its potential for plastic changes: physical exercise could be modulating NCS-1 in an activity dependent manner, for specific neural substrates, thus enhancing the cellular/neuronal capability for plastic changes in these areas; which, in turn, would differentially effect ORM task performance for object recognition and displacement.
Collapse
Affiliation(s)
- Luciana Estefani Drumond
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Moving and being moved: Differences in cerebral activation during recollection of whole-body motion. Behav Brain Res 2012; 227:21-9. [DOI: 10.1016/j.bbr.2011.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/21/2022]
|
100
|
Pilly PK, Grossberg S. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. J Cogn Neurosci 2012; 24:1031-54. [PMID: 22288394 DOI: 10.1162/jocn_a_00200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatial learning and memory are important for navigation and formation of episodic memories. The hippocampus and medial entorhinal cortex (MEC) are key brain areas for spatial learning and memory. Place cells in hippocampus fire whenever an animal is located in a specific region in the environment. Grid cells in the superficial layers of MEC provide inputs to place cells and exhibit remarkable regular hexagonal spatial firing patterns. They also exhibit a gradient of spatial scales along the dorsoventral axis of the MEC, with neighboring cells at a given dorsoventral location having different spatial phases. A neural model shows how a hierarchy of self-organizing maps, each obeying the same laws, responds to realistic rat trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with unimodal firing fields that fit neurophysiological data about their development in juvenile rats. The hippocampal place fields represent much larger spaces than the grid cells to support navigational behaviors. Both the entorhinal and hippocampal self-organizing maps amplify and learn to categorize the most energetic and frequent co-occurrences of their inputs. Top-down attentional mechanisms from hippocampus to MEC help to dynamically stabilize these spatial memories in both the model and neurophysiological data. Spatial learning through MEC to hippocampus occurs in parallel with temporal learning through lateral entorhinal cortex to hippocampus. These homologous spatial and temporal representations illustrate a kind of "neural relativity" that may provide a substrate for episodic learning and memory.
Collapse
Affiliation(s)
- Praveen K Pilly
- Center for Adaptive Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | | |
Collapse
|