51
|
Guzun R, Pison C. Interactions gènes–environnement au cours de la bronchopneumopathie chronique obstructive et l'asthme. Relations avec la composition corporelle. NUTR CLIN METAB 2006. [DOI: 10.1016/j.nupar.2006.10.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Germenis AE, Karanikas V. Immunoepigenetics: the unseen side of cancer immunoediting. Immunol Cell Biol 2006; 85:55-9. [PMID: 17130900 DOI: 10.1038/sj.icb.7100006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer immunosurveillance representing, till recently, the explanatory framework relating cancer and the immune system, does not convincingly explain tumor escape. At the beginning of the decade, a new theory emerged, namely the immunoediting theory, and it comprehensively defines the role of the immune system in carcinogenesis. The core of this theory embraces the concept that the immune system on the one hand protects the body from cancer and on the other it shapes the immunogenicity of these cancers, thus presents a persuasive rationalization of the resistance of tumors against the immune response. With the immune system playing, in this context, such a pivotal role in shaping the tumor immune profile and in subsequent oncogenesis, it seems rather paradoxical to accept the immunocompetent host's immune system as a constant moiety. While DNA mutations of immune genes create a rather polymorphic condition, their frequency is much lower than that of other genetic events. Of these, epigenetic alterations give rise to new epialleles, which can reach up to 100% per locus. Bearing in mind that cancer is characterized by a tremendous amount of epigenetic aberrations, in both gene and global level, it is reasonable to postulate that, for the same unknown causes, analogous aberrations could affect the immune genes. Should this be the case, the relation between oncogenesis and the immune system appears much more dynamic and complex. Such an immunoepigenetic approach to carcinogenesis could improve our understanding of a series of common cancer-related aspects, such as environmental risk factors, effectiveness of demethylating agents, failure of current immunotherapies, etc. Moreover, this immunoepigenetic paradigm will take the current perception of the immune system and cancer interrelation further and beyond, constituting that the immunoresistant cancer cell phenotype is not shaped by the immune system acting as a steady and rigid evolutionary pressure, but rather as an extremely dynamic variable.
Collapse
Affiliation(s)
- A E Germenis
- Department of Immunology and Histocompatibity, School of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| | | |
Collapse
|
53
|
Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V, Figg WD, Murgo AJ, Steinberg SM. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 2006; 12:5777-85. [PMID: 17020984 DOI: 10.1158/1078-0432.ccr-06-0669] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The DNA methylation paradox, manifested as derepression of cancer-testis antigens, and silencing of tumor suppressors during malignant transformation, provides the rationale for the utilization of chromatin remodeling agents for cancer therapy. A phase I trial was done to examine pharmacokinetics, toxicities, and gene expression mediated by 5-aza-2'-deoxycytidine (DAC) in patients with thoracic malignancies. EXPERIMENTAL DESIGN Thirty-five patients with cancers refractory to standard therapy received continuous 72-hour DAC infusions using a phase I dose-escalation schema. Each full course of therapy consisted of two identical 35-day cycles. Plasma DAC levels were evaluated by liquid chromatography-mass spectrometry techniques. Quantitative reverse transcription-PCR, methylation-specific PCR, and immunohistochemical techniques were used to evaluate NY-ESO-1, MAGE-3, and p16 expression in tumor biopsies. Long oligonucleotide arrays were used to evaluate gene expression profiles in laser-captured tumor cells before and after DAC exposure. RESULTS Thirty-five patients were evaluable for toxicities; 25 were evaluable for treatment response. Myelosuppression constituted dose-limiting toxicity. The maximum tolerated dose of DAC was 60 to 75 mg/m(2) depending on the number of prior cytotoxic chemotherapy regimens. No objective responses were observed. Plasma DAC concentrations approximated thresholds for gene induction in cultured cancer cells. Target gene induction was observed in 36% of patients. Posttreatment antibodies to NY-ESO-1 were detected in three patients exhibiting NY-ESO-1 induction in their tumor tissues. Complex, heterogeneous gene expression profiles were observed in pretreatment and posttreatment tissues. CONCLUSION Prolonged DAC infusions can modulate gene expression in primary thoracic malignancies. These findings support further evaluation of DNA-demethylating agents alone or in combination with other regimens targeting induced gene products for the treatment of these neoplasms.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- DNA Modification Methylases/antagonists & inhibitors
- Decitabine
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, p16/physiology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Maximum Tolerated Dose
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mesothelioma/drug therapy
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pleural Neoplasms/drug therapy
- Pleural Neoplasms/genetics
- Pleural Neoplasms/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section Surgery Branch, Cancer Therapy Evaluation Program, National Cancer Institute/NIH, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Loree J, Koturbash I, Kutanzi K, Baker M, Pogribny I, Kovalchuk O. Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 2006; 82:805-15. [PMID: 17148264 DOI: 10.1080/09553000600960027] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Ionizing radiation is a potent mammary gland carcinogen, yet the exact molecular etiology of radiation-induced breast cancer remains unknown. MATERIALS AND METHODS Our study utilized a rat model of breast carcinogenesis to analyse the molecular and epigenetic changes induced in mammary gland tissue upon exposure to ionizing radiation (IR). Using a methylation-sensitive cytosine extension assay we studied the IR-induced changes in DNA methylation. In parallel, we analysed the expression of proteins involved in DNA methylation, DNA repair and cell proliferation control. Molecular changes were related to cellular proliferation and apoptosis. RESULTS We found that IR led to a loss of genomic cytosine methylation in the exposed mammary tissue. Global DNA hypomethylation was paralleled by reduction in the levels of maintenance (DNMT1) and de novo (DNMT3a and 3b) DNA methyltransferases and methyl-binding protein MeCP2. The observed DNA hypomethylation was linked, at least in part, to activation of DNA repair processes. Concurrently, we observed increased levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated AKT kinase (p-AKT), cyclin D1 and proliferating cells nuclear antigen (PCNA) proteins, suggesting IR alters intra-cellular signaling and cell cycle control mechanisms in mammary tissue. We also noted a significant induction of apoptosis in the exposed tissue 6 hours after irradiation. The observed apoptosis levels were paralleled by the slight elevation of cellular proliferation. CONCLUSIONS We have demonstrated that a single exposure to 5 Gy of X rays leads to noticeable epigenetic changes in the rat mammary gland that occurred in the context of activation of DNA damage repair and alterations in the pro-survival growth-stimulatory cellular signaling pathways. The possible cellular repercussions of the observed changes in relationship to breast carcinogenesis are discussed.
Collapse
Affiliation(s)
- Jonathan Loree
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
55
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
56
|
Foltz G, Ryu GY, Yoon JG, Nelson T, Fahey J, Frakes A, Lee H, Field L, Zander K, Sibenaller Z, Ryken TC, Vibhakar R, Hood L, Madan A. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res 2006; 66:6665-74. [PMID: 16818640 DOI: 10.1158/0008-5472.can-05-4453] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Promoter hypermethylation and histone deacetylation are common epigenetic mechanisms implicated in the transcriptional silencing of tumor suppressor genes in human cancer. We treated two immortalized glioma cell lines, T98 and U87, and 10 patient-derived primary glioma cell lines with trichostatin A (TSA), a histone deacetylase inhibitor, or 5-aza-2'-deoxycytidine (5-AzaC), a DNA methyltransferase inhibitor, to comprehensively identify the cohort of genes reactivated through the pharmacologic reversal of these distinct but related epigenetic processes. Whole-genome microarray analysis identified genes induced by TSA (653) or 5-AzaC treatment (170). We selected a subset of reactivated genes that were markedly induced (greater than two-fold) after treatment with either TSA or 5-AzaC in a majority of glioma cell lines but not in cultured normal astrocytes. We then characterized the degree of promoter methylation and transcriptional silencing of selected genes in histologically confirmed human tumor and nontumor brain specimens. We identified two novel brain expressed genes, BEX1 and BEX2, which were silenced in all tumor specimens and exhibited extensive promoter hypermethylation. Viral-mediated reexpression of either BEX1 or BEX2 led to increased sensitivity to chemotherapy-induced apoptosis and potent tumor suppressor effects in vitro and in a xenograft mouse model. Using an integrated approach, we have established a novel platform for the genome-wide screening of epigenetically silenced genes in malignant glioma. This experimental paradigm provides a powerful new method for the identification of epigenetically silenced genes with potential function as tumor suppressors, biomarkers for disease diagnosis and detection, and therapeutically reversible modulators of critical regulatory pathways important in glioma pathogenesis.
Collapse
Affiliation(s)
- Greg Foltz
- Neurogenomic Research Laboratory, Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
|
58
|
Verma M, Manne U. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Crit Rev Oncol Hematol 2006; 60:9-18. [PMID: 16829121 DOI: 10.1016/j.critrevonc.2006.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 02/07/2023] Open
Abstract
Biomarkers present the normal and/or disease state in humans. Genetic and epigenetic biomarkers assessed in easily accessible biological materials are useful in diagnosis, early onset or risk of developing cancer or to predict the treatment efficacy or clinical outcome of different human malignancies. Moreover, some of these markers are expressed during early stages of the tumor development and hence provide an opportunity to develop intervention and treatment strategies. Attempts are being made to validate cancer biomarkers in non-invasively collected samples. Multiplexing of clinically validated markers is still a challenge. Once validated, these markers can be utilized in clinical settings and to identify high risk populations. In this review, the current status of the clinical genetic and epigenetic biomarkers and their implication in cancer diagnosis and risk assessment are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Analytic Epidemiology Research Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, United States.
| | | |
Collapse
|
59
|
Sporn MB. Dichotomies in cancer research: some suggestions for a new synthesis. ACTA ACUST UNITED AC 2006; 3:364-73. [PMID: 16826217 DOI: 10.1038/ncponc0536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/27/2006] [Indexed: 12/11/2022]
Abstract
Continuing high cancer incidence and mortality raise concern about the prevailing overall approach to the control of this disease. The purpose of this article is to elaborate on fundamental dichotomies between traditional and revisionist viewpoints and then to attempt a synthesis of these contrasting perspectives. Topics considered include the importance of controlling carcinogenesis in its earliest stages; consideration of epigenetic, as well as genetic, factors in cancer; development of appropriate genetic animal models of carcinogenesis; the need for multifunctional agents to prevent and treat cancer; and the limits of reductionism. The need for development of new preventive and therapeutic measures that will maintain quality of life, not merely extend life, is stressed. Finally, the importance of context in cancer biology is emphasized, as epitomized in Walt Whitman's famous quotation that "Nothing out of its place is good and nothing in its place is bad."
Collapse
Affiliation(s)
- Michael B Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA.
| |
Collapse
|
60
|
Jackson MA, Lea I, Rashid A, Peddada SD, Dunnick JK. Genetic alterations in cancer knowledge system: analysis of gene mutations in mouse and human liver and lung tumors. Toxicol Sci 2006; 90:400-18. [PMID: 16410370 DOI: 10.1093/toxsci/kfj101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutational incidence and spectra for genes examined in both human and mouse lung and liver tumors were analyzed using the National Institute of Environmental Health Sciences (NIEHS) Genetic Alterations in Cancer (GAC) knowledge system. GAC is a publicly available, web-based system for evaluating data obtained from peer-reviewed studies of genetic changes in tumors associated with exposure to chemical, physical, or biological agents, as well as spontaneous tumors. In mice, mutations in Kras2 and Hras-1 were the most common events reported for lung and liver tumors, respectively, whether chemically induced or spontaneous. There was a significant difference in Kras2 mutation incidence for spontaneous versus induced mouse lung tumors and in Hras-1 mutation incidence and spectrum for spontaneous versus induced mouse liver tumors. The major gene changes reported for human lung and liver tumors were in KRAS2 (lung only) and TP53. The KRAS2 mutation incidence was similar for spontaneous and asbestos-induced human lung tumors, while the TP53 mutation incidence differed significantly. Aflatoxin B1, hepatitis B virus, hepatitis C virus, and vinyl chloride all caused TP53 mutations in human liver tumors, but the mutation spectrum for each agent differed. The incidence of KRAS2 mutations in human compared to mouse lung tumors differed significantly, as did the incidence of Hras and p53 gene mutations in human compared to mouse liver tumors. Differences observed in the mutation spectra for agent-induced compared to spontaneous tumors and similarities in spectra for structurally similar agents support the concept that mutation spectra can serve as a "fingerprint" of exposure based on chemical structure.
Collapse
Affiliation(s)
- Marcus A Jackson
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
61
|
Becker JC, Kirkwood JM, Agarwala SS, Dummer R, Schrama D, Hauschild A. Molecularly targeted therapy for melanoma. Cancer 2006; 107:2317-27. [PMID: 17039502 DOI: 10.1002/cncr.22273] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Effective therapy for melanoma remains an unmet goal, with most traditional therapies representing inadequate trade-offs among the several goals of specificity, efficacy, and toxicity. Targeted molecular therapeutics are tailored to genetic abnormalities that are associated with tumor progression. Modulation of aberrant signaling pathways in cancer cells has the potential to provide more effective and potentially nontoxic therapy for a broad range of cancers, including melanoma. Among the possible targets in melanoma are the Ras-MAPK and PI3K/AKT signal transduction pathways, the proteasome, histone deacetylases, methyltransferases, and melanoma-induced angiogenesis.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Dermatology, Julius Maximilians University, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|