51
|
Akram MSH, Obata T, Suga M, Nishikido F, Yoshida E, Saito K, Yamaya T. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:62-70. [PMID: 28881235 DOI: 10.1016/j.jmr.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for using with the existing MRI system.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan.
| | - Takayuki Obata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Mikio Suga
- Center for Frontier Medical Engineering, Chiba University, Japan
| | - Fumihiko Nishikido
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan
| | - Kazuyuki Saito
- Center for Frontier Medical Engineering, Chiba University, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Japan.
| |
Collapse
|
52
|
Baxa J, Ferdova E, Ferda J. PET/MRI of the thorax, abdomen and retroperitoneum: Benefits of the breathing-synchronized scanning. Eur J Radiol 2017; 94:A35-A43. [PMID: 28274619 DOI: 10.1016/j.ejrad.2017.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023]
Abstract
Hybrid imaging using various radiopharmaceuticals is currently essential not only in detection and therapy response monitoring of tumors, but also in assessment of inflammatory or systemic diseases. Combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is still relatively new method with great prospects of comprehensive assessment using anatomical and multiple functional information. However, benefits of PET/MRI in thorax, abdomen and retroperitoneum are not completely defined. Breathing movements affect imaging of thoracic, abdominal and retroperitoneal organs and pathological structures using PET and MRI. Fast MRI sequences are performed using breath-hold technique; however, acquisition of longer sequences and PET scanning need to be breathing-synchronized. Review article summarizes concrete PET/MRI protocols and importance of concrete MRI sequences and radiopharmaceuticals in different pathological lesions with focus on benefit of breathing-synchronized techniques.
Collapse
Affiliation(s)
- Jan Baxa
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic.
| | - Eva Ferdova
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic
| | - Jiří Ferda
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
53
|
Hybrid imaging with PET/MRI: ready for clinical routine? Eur J Radiol 2017; 94:A1-A2. [DOI: 10.1016/j.ejrad.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
|
54
|
Küstner T, Schwartz M, Martirosian P, Gatidis S, Seith F, Gilliam C, Blu T, Fayad H, Visvikis D, Schick F, Yang B, Schmidt H, Schwenzer NF. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017; 42:129-144. [PMID: 28800546 DOI: 10.1016/j.media.2017.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop a motion correction for Positron-Emission-Tomography (PET) using simultaneously acquired magnetic-resonance (MR) images within 90 s. METHODS A 90 s MR acquisition allows the generation of a cardiac and respiratory motion model of the body trunk. Thereafter, further diagnostic MR sequences can be recorded during the PET examination without any limitation. To provide full PET scan time coverage, a sensor fusion approach maps external motion signals (respiratory belt, ECG-derived respiration signal) to a complete surrogate signal on which the retrospective data binning is performed. A joint Compressed Sensing reconstruction and motion estimation of the subsampled data provides motion-resolved MR images (respiratory + cardiac). A 1-POINT DIXON method is applied to these MR images to derive a motion-resolved attenuation map. The motion model and the attenuation map are fed to the Customizable and Advanced Software for Tomographic Reconstruction (CASToR) PET reconstruction system in which the motion correction is incorporated. All reconstruction steps are performed online on the scanner via Gadgetron to provide a clinically feasible setup for improved general applicability. The method was evaluated on 36 patients with suspected liver or lung metastasis in terms of lesion quantification (SUVmax, SNR, contrast), delineation (FWHM, slope steepness) and diagnostic confidence level (3-point Likert-scale). RESULTS A motion correction could be conducted for all patients, however, only in 30 patients moving lesions could be observed. For the examined 134 malignant lesions, an average improvement in lesion quantification of 22%, delineation of 64% and diagnostic confidence level of 23% was achieved. CONCLUSION The proposed method provides a clinically feasible setup for respiratory and cardiac motion correction of PET data by simultaneous short-term MRI. The acquisition sequence and all reconstruction steps are publicly available to foster multi-center studies and various motion correction scenarios.
Collapse
Affiliation(s)
- Thomas Küstner
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Department of Radiology, University of Tübingen, Tübingen, Germany.
| | - Martin Schwartz
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany; Section on Experimental Radiology, University of Tübingen, Germany
| | | | - Sergios Gatidis
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Ferdinand Seith
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Christopher Gilliam
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Thierry Blu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong
| | - Hadi Fayad
- INSERM U1101, LaTIM, University of Bretagne, Brest, France
| | | | - F Schick
- Section on Experimental Radiology, University of Tübingen, Germany
| | - B Yang
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| | - H Schmidt
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | - N F Schwenzer
- Department of Radiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
55
|
Mota-Cobian A, Alonso-Farto JC, Fernández-Friera L, Sánchez-González J, López-Melgar B, Jiménez-Borreguero LJ, Fuster V, Ruiz-Cabello J, España S. The effect of tissue-segmented attenuation maps on PET quantification with a special focus on large arteries. Rev Esp Med Nucl Imagen Mol 2017. [PMID: 28641952 DOI: 10.1016/j.remn.2017.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Accuracy on quantitative PET image analysis relies on the correct application of attenuation correction which is one of the major challenges for PET/MRI that remains to be solved. The purpose of this study is to evaluate the effect of MRI-based attenuation maps and the use of flexible coils on the quantitative accuracy of PET images with a special focus on large arteries. MATERIALS AND METHODS PET/CT data from eight oncologic patients was used. PET data was reconstructed using attenuation maps with different level of detail emulating several approaches available on current PET/MRI scanners. PET images obtained with CT-based and MRI-based attenuation maps were compared to evaluate the quantitative biases obtained. The quantitative effect produced by flexible MRI receiver coils on the attenuation maps was also studied. RESULTS The use of simpler attenuation maps produced increased biases between PET data reconstructed with CT-based and MRI-based attenuation maps for fat, non-fat soft-tissues and bone. Biases in lung were very high due to the large heterogeneity and inter-patient variability of the lung. The quantification on large arteries had small deviations except for the case when flexible coils were used. The TBR provided smaller biases in all cases as it cancelled out the similar deviations obtained for arteries and reference veins. CONCLUSIONS Simplified attenuation maps used on PET/MRI significantly increase the quantitative variability of PET images especially on lungs and bones. The quantification of PET images acquired with PET/MRI scanners applied to studies of atherosclerosis has small deviations, especially when the TBR is considered.
Collapse
Affiliation(s)
- A Mota-Cobian
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España
| | - J C Alonso-Farto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Hospital General Universitario Gregorio Marañón, Madrid, España
| | - L Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Hospital Universitario Montepríncipe, Madrid, España
| | | | - B López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Hospital Universitario Montepríncipe, Madrid, España
| | - L J Jiménez-Borreguero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Hospital Universitario La Princesa, Madrid, España
| | - V Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Mount Sinai School of Medicine, New York, NY, EE.UU
| | - J Ruiz-Cabello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, España
| | - S España
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España.
| |
Collapse
|
56
|
Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. Fully integrated 3D high-resolution multicontrast abdominal PET-MR with high scan efficiency. Magn Reson Med 2017; 79:900-911. [DOI: 10.1002/mrm.26757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare; Frimley UK
| | - Matthias Fenchel
- MR Oncology Application Development, Siemens Healthcare; Erlangen Germany
| | - Andrew Mallia
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Paul Marsden
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| |
Collapse
|
57
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:281-296. [DOI: 10.1016/j.mric.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
58
|
Systems, Physics, and Instrumentation of PET/MRI for Cardiovascular Studies. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
59
|
|
60
|
Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017; 94:A3-A13. [PMID: 28431784 DOI: 10.1016/j.ejrad.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
This paper highlights the origins of combined positron emission tomography (PET) and magnetic resonance imaging (MRI) whole-body systems that were first introduced for applications in humans in 2010. This text first covers basic aspects of each imaging modality before describing the technical and methodological challenges of combining PET and MRI within a single system. After several years of development, combined and even fully-integrated PET/MRI systems have become available and made their way into the clinic. This multi-modality imaging system lends itself to the advanced exploration of diseases to support personalized medicine in a long run. To that extent, this paper provides an introduction to PET/MRI methodology and important technical solutions.
Collapse
Affiliation(s)
- Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| | - Harald H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, Academisch Ziekenhuis Groningen, Groningen, The Netherlands
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
61
|
Li G, Wei J, Olek D, Kadbi M, Tyagi N, Zakian K, Mechalakos J, Deasy JO, Hunt M. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows. Int J Radiat Oncol Biol Phys 2017; 97:596-605. [PMID: 28011048 PMCID: PMC5288126 DOI: 10.1016/j.ijrobp.2016.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. METHODS AND MATERIALS A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. RESULTS Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. CONCLUSIONS Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jie Wei
- Department of Computer Science, City College of New York, New York, New York
| | - Devin Olek
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mo Kadbi
- Philips Healthcare, MR Therapy Cleveland, Ohio
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Zakian
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Mechalakos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
62
|
Boada FE, Koesters T, Block KT, Chandarana H. Improved Detection of Small Pulmonary Nodules Through Simultaneous MR/PET Imaging. Magn Reson Imaging Clin N Am 2017; 25:273-279. [PMID: 28390528 DOI: 10.1016/j.mric.2016.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance (MR)/PET scanners provide an imaging platform that enables simultaneous acquisition of MR and PET data in perfect spatial and temporal registration. This feature allows improving image quality for the MR and PET images obtained during the course of an examination. In this work the authors demonstrate the use of prospective MR-based motion tracking information for removing motion blur in MR/PET images of small pulmonary nodules. The theoretical basis for the algorithms is presented alongside clinical examples of its use.
Collapse
Affiliation(s)
- Fernando E Boada
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Thomas Koesters
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Kai Tobias Block
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
63
|
Ferda J, Ferdová E, Hes O, Mraček J, Kreuzberg B, Baxa J. PET/MRI: Multiparametric imaging of brain tumors. Eur J Radiol 2017; 94:A14-A25. [PMID: 28283219 DOI: 10.1016/j.ejrad.2017.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/01/2022]
Abstract
A combination of morphological imaging of the brain with microstructural and functional imaging provides a comprehensive overview of the properties of individual tissues. While diffusion weighted imaging provides information about tissue cellularity, spectroscopic imaging allows us to evaluate the integrity of neurons and possible anaerobic glycolysis during tumor hypoxia, in addition to the presence of accelerated synthesis or degradation of cellular membranes; on the other hand, PET metabolic imaging is used to evaluate major metabolic pathways, determining the overall extent of the tumor (18F-FET, 18F-FDOPA, 18F-FCH) or the degree of differentiation (18F-FDG, 18F-FLT, 18F-FDOPA and 18F-FET). Multi-parameter analysis of tissue characteristics and determination of the phenotype of the tumor tissue is a natural advantage of PET/MRI scanning. The disadvantages are higher cost and limited availability in all centers with neuro-oncology surgery. PET/MRI scanning of brain tumors is one of the most promising indications since the earliest experiments with integrated PET/MRI imaging systems, and along with hybrid imaging of neurodegenerative diseases, represent a new direction in the development of neuroradiology on the path towards comprehensive imaging at the molecular level.
Collapse
Affiliation(s)
- Jiří Ferda
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Eva Ferdová
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Ondřej Hes
- Sikl's Institute of Pathological Anatomy, University Hospital Plzen, Alej Svobody 80;304 60 Plzeň, Czech Republic.
| | - Jan Mraček
- Clinic of the Neurosurgery, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Boris Kreuzberg
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| | - Jan Baxa
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czech Republic.
| |
Collapse
|
64
|
Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D, Marsden P, Kellman P, Bluemke DA, Schaeffter T. Cardiac and Respiratory Motion Correction for Simultaneous Cardiac PET/MR. J Nucl Med 2017; 58:846-852. [PMID: 28183991 DOI: 10.2967/jnumed.115.171728] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac PET is a versatile imaging technique providing important diagnostic information about ischemic heart diseases. Respiratory and cardiac motion of the heart can strongly impair image quality and therefore diagnostic accuracy of cardiac PET scans. The aim of this study was to investigate a new cardiac PET/MR approach providing respiratory and cardiac motion-compensated MR and PET images in less than 5 min. Methods: Free-breathing 3-dimensional MR data were acquired and retrospectively binned into multiple respiratory and cardiac motion states. Three-dimensional cardiac and respiratory motion fields were obtained with a nonrigid registration algorithm and used in motion-compensated MR and PET reconstructions to improve image quality. The improvement in image quality and diagnostic accuracy of the technique was assessed in simultaneous 18F-FDG PET/MR scans of a canine model of myocardial infarct and was demonstrated in a human subject. Results: MR motion fields were successfully used to compensate for in vivo cardiac motion, leading to improvements in full width at half maximum of the canine myocardium of 13% ± 5%, similar to cardiac gating but with a 90% ± 57% higher contrast-to-noise ratio between myocardium and blood. Motion correction led to an improvement in MR image quality in all subjects, with an increase in sharpness of the canine coronary arteries of 85% ± 72%. A functional assessment showed good agreement with standard MR cine scans with a difference in ejection fraction of -2% ± 3%. MR-based respiratory and cardiac motion information was used to improve the PET image quality of a human in vivo scan. Conclusion: The MR technique presented here provides both diagnostic and motion information that can be used to improve MR and PET image quality. Reliable respiratory and cardiac motion correction could make cardiac PET results more reproducible.
Collapse
Affiliation(s)
- Christoph Kolbitsch
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom .,Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Mark A Ahlman
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Cynthia Davies-Venn
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Robert Evers
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Michael Hansen
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Devis Peressutti
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Paul Marsden
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Peter Kellman
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - David A Bluemke
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland; and
| | - Tobias Schaeffter
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| |
Collapse
|
65
|
Catalano OA, Masch WR, Catana C, Mahmood U, Sahani DV, Gee MS, Menezes L, Soricelli A, Salvatore M, Gervais D, Rosen BR. An overview of PET/MR, focused on clinical applications. Abdom Radiol (NY) 2017; 42:631-644. [PMID: 27624499 DOI: 10.1007/s00261-016-0894-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914-1922, 2011; Zaidi et al. in Phys Med Biol 56:3091-3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.
Collapse
Affiliation(s)
- Onofrio Antonio Catalano
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA.
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| | - William Roger Masch
- Department of Radiology, Abdominal Imaging, University of Michigan Health System, 1550E Medical Center Dr, SPC5030, Ann Arbor, MI, 48109, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
| | - Umar Mahmood
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
- Institute of Precision Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Dushyant Vasudeo Sahani
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Michael Stanley Gee
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Martinos Center for Pediatric Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Leon Menezes
- Institute of Nuclear Medicine, University College Hospital, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
| | - Andrea Soricelli
- University of Naples "Parthenope", Via Medina 40, 80133, Naples, Italy
| | - Marco Salvatore
- Medicina Nucleare, Fondazione SDN, Via Gianturco 113, Naples, 80113, Italy
| | - Debra Gervais
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Bruce Robert Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
| |
Collapse
|
66
|
Tavallaei MA, Johnson PM, Liu J, Drangova M. Design and evaluation of an MRI-compatible linear motion stage. Med Phys 2016; 43:62. [PMID: 26745900 DOI: 10.1118/1.4937780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To develop and evaluate a tool for accurate, reproducible, and programmable motion control of imaging phantoms for use in motion sensitive magnetic resonance imaging (MRI) appli cations. METHODS In this paper, the authors introduce a compact linear motion stage that is made of nonmagnetic material and is actuated with an ultrasonic motor. The stage can be positioned at arbitrary positions and orientations inside the scanner bore to move, push, or pull arbitrary phantoms. Using optical trackers, measuring microscopes, and navigators, the accuracy of the stage in motion control was evaluated. Also, the effect of the stage on image signal-to-noise ratio (SNR), artifacts, and B0 field homogeneity was evaluated. RESULTS The error of the stage in reaching fixed positions was 0.025 ± 0.021 mm. In execution of dynamic motion profiles, the worst-case normalized root mean squared error was below 7% (for frequencies below 0.33 Hz). Experiments demonstrated that the stage did not introduce artifacts nor did it degrade the image SNR. The effect of the stage on the B0 field was less than 2 ppm. CONCLUSIONS The results of the experiments indicate that the proposed system is MRI-compatible and can create reliable and reproducible motion that may be used for validation and assessment of motion related MRI applications.
Collapse
Affiliation(s)
- Mohammad Ali Tavallaei
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Patricia M Johnson
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Junmin Liu
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario N6A 5B9, Canada; and Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
67
|
|
68
|
Odenbach R, Boese A, Friebe M. Interactive monitoring system for visual respiratory biofeedback. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In almost any medical procedure respiratory motion is an issue and may result in image degradation. Most currently available devices and systems, which are intended to reduce respiratory influences do not come into operation however in clinics due to their high cost and complex operation. In our paper we evaluated an interactive breath hold control system that helps flat breathing to subsequently reduce respiratory motion during signal acquisitions or procedure treatments. With that the human subjects are enabled to regulate their own breath by following visual feedback via a specially designed display. That display shows biofeedback information about the respiratory excursion through air pressure deviations measured inside an air bellows belt. The system was assessed quantitatively in a laboratory setup and qualitatively by applications in real clinical procedures. The obtained results are very promising and can be further improved with additional developments to provide an easy to use and relatively inexpensive solution for respiratory motion related imaging problems.
Collapse
Affiliation(s)
- Robert Odenbach
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| | - Axel Boese
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| | - Michael Friebe
- Department of Medical Engineering, Otto-von-Guericke-University of Magdeburg, Germany
| |
Collapse
|
69
|
Carreras-Delgado JL, Pérez-Dueñas V, Riola-Parada C, García-Cañamaque L. PET/MRI: A luxury or a necessity? Rev Esp Med Nucl Imagen Mol 2016; 35:313-20. [PMID: 27349326 DOI: 10.1016/j.remn.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
PET/MRI is a new multimodality technique with a promising future in diagnostic imaging. Technical limitations are being overcome. Interference between the two systems (PET and MRI) seems to have been resolved. MRI-based PET attenuation correction can be performed safely. Scan time is acceptable and the study is tolerable, with claustrophobia prevalence similar to that of MRI. Quantification with common parameters, such as Standardized Uptake Value (SUV), shows a fairly good correlation between both systems. However, PET/CT currently provides better results in scan time, scan costs, and patient comfort. Less patient radiation exposure is a big advantage of PET/MRI over PET/CT, which makes it particularly recommended in paediatric and adolescent patients requiring one or more studies. PET/MRI indications are the same as those of PET/CT, given that in cases where MRI is superior to CT, PET/MRI is superior to PET/CT. This superiority is clear in many soft tissue tumours. Moreover, it is common to perform both PET/CT and MRI in neurological diseases, as well as in some tumours, such as breast cancer. A single PET/MRI study replaces both with obvious benefit. MRI also allows other MRI-based PET corrections, such as motion or partial volume effect corrections. The better spatial resolution of MRI allows the transfer of well-defined MRI areas or small volumes of interest to PET image, in order to measure PET biomarkers in these areas. The richness of information of both techniques opens up immense possibilities of synergistic correlation between them.
Collapse
Affiliation(s)
- J L Carreras-Delgado
- Servicio de Medicina Nuclear, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España; Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, España.
| | - V Pérez-Dueñas
- Servicio de Radiología, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España
| | - C Riola-Parada
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, España
| | - L García-Cañamaque
- Servicio de Medicina Nuclear, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España
| |
Collapse
|
70
|
Hope TA, Pampaloni MH, Flavell RR, Nakakura EK, Bergsland EK. Somatostatin receptor PET/MRI for the evaluation of neuroendocrine tumors. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0193-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
71
|
Chun SY. The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction. Nucl Med Mol Imaging 2016; 50:13-23. [PMID: 26941855 DOI: 10.1007/s13139-016-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.
Collapse
Affiliation(s)
- Se Young Chun
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
72
|
|
73
|
Izquierdo-Garcia D, Catana C. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging. PET Clin 2016; 11:129-49. [PMID: 26952727 DOI: 10.1016/j.cpet.2015.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA.
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| |
Collapse
|
74
|
Abstract
Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed.
Collapse
Affiliation(s)
- Charalampos Tsoumpas
- Division of Biomedical Imaging, Faculty of Medicine and Health, University of Leeds, 8.001a, Worsley Building, Clarendon Way, Leeds LS2 9JT, UK
| | - Dimitris Visvikis
- LaTIM UMR 1101, INSERM, University of Brest, Bat 1, 1er etage, 5 avenue Foch, Brest 29609, France
| | - George Loudos
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spiridonos 28, Egaleo, Athens 12210, Greece.
| |
Collapse
|
75
|
Andreychenko A, Raaijmakers A, Sbrizzi A, Crijns S, Lagendijk J, Luijten P, van den Berg C. Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor. Magn Reson Med 2016; 77:221-228. [DOI: 10.1002/mrm.26108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 01/26/2023]
Affiliation(s)
- A. Andreychenko
- Imaging DivisionUniversity Medical Center Utrecht Netherlands
| | | | - A. Sbrizzi
- Imaging DivisionUniversity Medical Center Utrecht Netherlands
| | - S.P.M. Crijns
- Imaging DivisionUniversity Medical Center Utrecht Netherlands
| | | | - P.R. Luijten
- Imaging DivisionUniversity Medical Center Utrecht Netherlands
| | | |
Collapse
|
76
|
Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys 2015; 2:21. [PMID: 26501822 PMCID: PMC4573645 DOI: 10.1186/s40658-015-0125-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Methods Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUVmax, SUVpeak, SUVmean, and Volisocontour. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Results Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUVmax 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUVmax 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Conclusions Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. .,Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA.
| | - Emily F Verdin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Bergsland
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Radiology, San Francisco General Hospital, San Francisco, CA, USA
| | - Carlos U Corvera
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Eric K Nakakura
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
77
|
Affiliation(s)
- Gustav K von Schulthess
- Department of Medical Radiology, Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department of Medical Radiology, Diagnostic and Interventional Radiology, Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|