51
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
52
|
Yen JL, Flick K, Papagiannis CV, Mathur R, Tyrrell A, Ouni I, Kaake RM, Huang L, Kaiser P. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol Cell 2012; 48:288-97. [PMID: 23000173 DOI: 10.1016/j.molcel.2012.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/03/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
Abstract
A large group of E3 ubiquitin ligases is formed by the multisubunit SCF complex, whose core complex (Rbx1/Cul1-Cdc53/Skp1) binds one of many substrate recruiting F-box proteins to form an array of SCF ligases with diverse substrate specificities. It has long been thought that ubiquitylation by SCF ligases is regulated at the level of substrate binding. Here we describe an alternative mechanism of SCF regulation by active dissociation of the F-box subunit. We show that cadmium stress induces selective recruitment of the AAA(+) ATPase Cdc48/p97 to catalyze dissociation of the F-box subunit from the yeast SCF(Met30) ligase to block substrate ubiquitylation and trigger downstream events. Our results not only provide an additional layer of ubiquitin ligase regulation but also suggest that targeted, signal-dependent dissociation of multisubunit enzyme complexes is an important mechanism in control of enzyme function.
Collapse
Affiliation(s)
- James L Yen
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Blackman RK, Cheung-Ong K, Gebbia M, Proia DA, He S, Kepros J, Jonneaux A, Marchetti P, Kluza J, Rao PE, Wada Y, Giaever G, Nislow C. Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 2012; 7:e29798. [PMID: 22253786 PMCID: PMC3256171 DOI: 10.1371/journal.pone.0029798] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/04/2011] [Indexed: 12/03/2022] Open
Abstract
Elesclomol is a first-in-class investigational drug currently undergoing clinical evaluation as a novel cancer therapeutic. The potent antitumor activity of the compound results from the elevation of reactive oxygen species (ROS) and oxidative stress to levels incompatible with cellular survival. However, the molecular target(s) and mechanism by which elesclomol generates ROS and subsequent cell death were previously undefined. The cellular cytotoxicity of elesclomol in the yeast S. cerevisiae appears to occur by a mechanism similar, if not identical, to that in cancer cells. Accordingly, here we used a powerful and validated technology only available in yeast that provides critical insights into the mechanism of action, targets and processes that are disrupted by drug treatment. Using this approach we show that elesclomol does not work through a specific cellular protein target. Instead, it targets a biologically coherent set of processes occurring in the mitochondrion. Specifically, the results indicate that elesclomol, driven by its redox chemistry, interacts with the electron transport chain (ETC) to generate high levels of ROS within the organelle and consequently cell death. Additional experiments in melanoma cells involving drug treatments or cells lacking ETC function confirm that the drug works similarly in human cancer cells. This deeper understanding of elesclomol's mode of action has important implications for the therapeutic application of the drug, including providing a rationale for biomarker-based stratification of patients likely to respond in the clinical setting.
Collapse
Affiliation(s)
- Ronald K. Blackman
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Kahlin Cheung-Ong
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
| | - David A. Proia
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Suqin He
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Jane Kepros
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Aurelie Jonneaux
- UMR 837 – INSERM, Université de Lille II & CHRU LILLE, Lille, France
| | | | - Jerome Kluza
- UMR 837 – INSERM, Université de Lille II & CHRU LILLE, Lille, France
| | - Patricia E. Rao
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Yumiko Wada
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Guri Giaever
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
54
|
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a process that clears the early secretory pathway of misfolded proteins. Though ERAD is of basic biological importance, the clinical importance of this pathway is emphasized by the fact that mutations that render a protein subject to the ERAD quality control pathway underlie the cause of several diseases. The yeast, Saccharomyces cerevisiae, is a valuable and frequently used model system to study biological processes, such as ERAD, as it is a relatively simple model system for which numerous biochemical and genetic tools are available. In addition, the ERAD system is highly conserved between yeast and man. In this chapter, we describe two methods for the analysis of model substrates that undergo catabolism via the ERAD pathway using S. cerevisiae. In particular, we will describe non-radioactive degradation assays and the analysis of substrate ubiquitylation in vivo with or without the use of ubiquitin overexpression systems. We also describe technical hurdles, which we have encountered in our research, and highlight remedies to overcome them.
Collapse
|
55
|
Costa IM, Nasser THT, Demasi M, Nascimento RMP, Netto LES, Miyamoto S, Prado FM, Monteiro G. The promoter of filamentation (POF1) protein from Saccharomyces cerevisiae is an ATPase involved in the protein quality control process. BMC Microbiol 2011; 11:268. [PMID: 22204397 PMCID: PMC3282682 DOI: 10.1186/1471-2180-11-268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/28/2011] [Indexed: 12/05/2022] Open
Abstract
Background The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
Collapse
Affiliation(s)
- Iris M Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo-SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
56
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
57
|
Uprety B, Lahudkar S, Malik S, Bhaumik SR. The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo. Nucleic Acids Res 2011; 40:1969-83. [PMID: 22086954 PMCID: PMC3300024 DOI: 10.1093/nar/gkr977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies have implicated SAGA (Spt-Ada-Gcn5-acetyltransferase) and TFIID (Transcription factor-IID)-dependent mechanisms of transcriptional activation in yeast. SAGA-dependent transcriptional activation is further regulated by the 19S proteasome subcomplex. However, the role of the 19S proteasome subcomplex in transcriptional activation of the TFIID-dependent genes has not been elucidated. Therefore, we have performed a series of chromatin immunoprecipitation, mutational and transcriptional analyses at the TFIID-dependent ribosomal protein genes such as RPS5, RPL2B and RPS11B. We find that the 19S proteasome subcomplex is recruited to the promoters of these ribosomal protein genes, and promotes the association of NuA4 (Nucleosome acetyltransferase of histone H4) co-activator, but not activator Rap1p (repressor-activator protein 1). These observations support that the 19S proteasome subcomplex enhances the targeting of co-activator at the TFIID-dependent promoter. Such an enhanced targeting of NuA4 HAT (histone acetyltransferase) promotes the recruitment of the TFIID complex for transcriptional initiation. Collectively, our data demonstrate that the 19S proteasome subcomplex enhances the targeting of NuA4 HAT to activator Rap1p at the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional stimulation, hence providing a new role of the 19S proteasome subcomplex in establishing a specific regulatory network at the TFIID-dependent promoter for productive transcriptional initiation in vivo.
Collapse
Affiliation(s)
- Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University-School of Medicine, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
58
|
Gräwert MA, Groll M. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Chem Commun (Camb) 2011; 48:1364-78. [PMID: 22039589 DOI: 10.1039/c1cc15273d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is the No. 2 cause of death in the Western world and one of the most expensive diseases to treat. Thus, it is not surprising, that every major pharmaceutical and biotechnology company has a blockbuster oncology product. In 2003, Millennium Pharmaceuticals entered the race with Velcade®, a first-in-class proteasome inhibitor that has been approved by the FDA for treatment of multiple myeloma and its sales have passed the billion dollar mark. Velcade®'s extremely toxic boronic acid pharmacophore, however, contributes to a number of severe side effects. Nevertheless, the launching of this product has validated the proteasome as a target in fighting cancer and further proteasome inhibitors have entered the market as anti-cancer drugs. Additionally, proteasome inhibitors have found application as crop protection agents, anti-parasitics, immunosuppressives, as well as in new therapies for muscular dystrophies and inflammation. Many of these compounds are based on microbial metabolites. In this review, we emphasize the important role of the structural elucidation of the various unique binding mechanisms of these compounds that have been optimized throughout evolution to target the proteasome. Based on this knowledge, medicinal chemists have further optimized these natural products, resulting in potential drugs with reduced off-target activities.
Collapse
Affiliation(s)
- Melissa Ann Gräwert
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | |
Collapse
|
59
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
60
|
Park S, Kim W, Tian G, Gygi SP, Finley D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 2011; 286:36652-66. [PMID: 21878652 DOI: 10.1074/jbc.m111.285924] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
61
|
Xu D, Ondeyka J, Harris GH, Zink D, Kahn JN, Wang H, Bills G, Platas G, Wang W, Szewczak AA, Liberator P, Roemer T, Singh SB. Isolation, structure, and biological activities of Fellutamides C and D from an undescribed Metulocladosporiella (Chaetothyriales) using the genome-wide Candida albicans fitness test. JOURNAL OF NATURAL PRODUCTS 2011; 74:1721-1730. [PMID: 21761939 DOI: 10.1021/np2001573] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a whole-cell mechanism of action (MOA)-based screening strategy for discovery of antifungal agents, Candida albicans was used, followed by testing of active extracts in the C. albicans fitness test (CaFT), which provides insight into the mechanism of action. A fermentation extract of an undescribed species of Metulocladosporiella that inhibited proteasome activity in a C. albicans fitness test was identified. The chemical genomic profile of the extract contained hypersensitivity of heterozygous deletion strains (strains that had one of the genes of the diploid genes knocked down) of genes represented by multiple subunits of the 25S proteasome. Two structurally related peptide aldehydes, named fellutamides C and D, were isolated from the extract. Fellutamides were active against C. albicans and Aspergillus fumigatus with MICs ranging from 4 to 16 μg/mL and against fungal proteasome (IC₅₀ 0.2 μg/mL). Both compounds showed proteasome activity against human tumor cell lines, potently inhibiting the growth of PC-3 prostate carcinoma cells, but not A549 lung carcinoma cells. In PC-3 cells compound treatment produced a G2M cell cycle block and induced apoptosis. Preliminary SAR studies indicated that the aldehyde group is critical for the antifungal activity and that the two hydroxy groups are quantitatively important for potency.
Collapse
Affiliation(s)
- Deming Xu
- Department of Natural Products and Medicinal Chemistry, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system. PLoS One 2011; 6:e23579. [PMID: 21858174 PMCID: PMC3155557 DOI: 10.1371/journal.pone.0023579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/20/2011] [Indexed: 11/20/2022] Open
Abstract
It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.
Collapse
|
63
|
Xie Y. Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Rev 2011; 29:687-93. [PMID: 20835843 DOI: 10.1007/s10555-010-9255-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteasomal protein degradation is one of the major regulatory mechanisms in the cell. Aberrant proteasome activity is directly related to the pathogenesis of many human diseases including cancers. How proteasome homeostasis is controlled is a fundamental question toward our understanding of proteasome dysregulation in cancer cells. The recent discovery of the Rpn4-proteasome negative feedback circuit provides mechanistic insight into the regulation of proteasome gene expression. This finding also has important implications in cancer therapy that uses small molecule inhibitors to target the proteasome.
Collapse
Affiliation(s)
- Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E Warren Ave, Detroit, MI 48201, USA.
| |
Collapse
|
64
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:97-108. [PMID: 20800707 PMCID: PMC3018551 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
65
|
Lopez AD, Tar K, Krügel U, Dange T, Ros IG, Schmidt M. Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol Biol Cell 2011; 22:528-40. [PMID: 21209318 PMCID: PMC3046052 DOI: 10.1091/mbc.e10-04-0352] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ribosome transcription activator Sfp1 is degraded by Blm10-proteasomes. Loss of BLM10 results in increased Sfp1 protein levels, increased transcription of ribosomal genes, and increased ribosome levels upon nutrient depletion. Thus Blm10-proteasome-mediated turnover of Sfp1 is a regulatory mechanism for ribosome biosynthesis repression. The regulation of ribosomal protein (RP) gene transcription is tightly linked to the nutrient status of the cell and is under the control of metabolic signaling pathways. In Saccharomyces cerevisiae several transcriptional activators mediate efficient RP gene transcription during logarithmic growth and dissociate from RP gene promoters upon nutrient limitation. Repression of RP gene transcription appears to be regulated predominantly by posttranslational modification and cellular localization of transcriptional activators. We report here that one of these factors, Sfp1, is degraded by the proteasome and that the proteasome activator Blm10 is required for regulated Sfp1 degradation. Loss of Blm10 results in the stabilization and increased nuclear abundance of Sfp1 during nutrient limitation, increased transcription of RP genes, increased levels of RPs, and decreased rapamycin-induced repression of RP genes. Thus we conclude that proteasomal degradation of Sfp1 is mediated by Blm10 and contributes to the repression of ribosome biogenesis under nutrient depletion.
Collapse
Affiliation(s)
- Antonio Diaz Lopez
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
66
|
Kortüm M, Knop S, Einsele H. Novel agents to improve outcome of allogeneic transplantation for patients with multiple myeloma. Future Oncol 2011; 7:135-43. [DOI: 10.2217/fon.10.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the last few decades therapy for multiple myeloma has improved remarkably. In particular, the introduction of novel agents has allowed improved response rates prior to, and after, stem cell transplantation with extension of progression-free survival in high-risk patients. Nevertheless, most patients relapse, leaving multiple myeloma an incurable disease. Despite being the only treatment option that has real curative potential, allogeneic transplantation has not shown its superiority to autologous transplantation due to its high morbidity and mortality rates. This review highlights how novel agents might help to reduce treatment-related mortality and to improve tumor control prior to and post-allogeneic stem cell transplant, which will hopefully result in significantly improved long-term disease control, and maybe a cure following this treatment modality.
Collapse
Affiliation(s)
- Martin Kortüm
- University of Wurzburg, Department of Internal Medicine II, Klinikstr. 6–8, 97070 Wurzburg, Germany
| | - Stefan Knop
- University of Wurzburg, Department of Internal Medicine II, Klinikstr. 6–8, 97070 Wurzburg, Germany
| | | |
Collapse
|
67
|
Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A 2010; 108:680-5. [PMID: 21187411 DOI: 10.1073/pnas.1017570108] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5'-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.
Collapse
|
68
|
Ouni I, Flick K, Kaiser P. A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Mol Cell 2010; 40:954-64. [PMID: 21172660 PMCID: PMC3026289 DOI: 10.1016/j.molcel.2010.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 08/11/2010] [Accepted: 09/24/2010] [Indexed: 02/04/2023]
Abstract
Multisubunit protein complexes pose a challenge to the coordinated regulation of individual components. We show how the yeast transactivating factor Met4 functions as a component of the SCF(Met30) ubiquitin ligase to synchronize its own activity with cofactor assembly. Cells maintain Met4 in a dormant state by a regulatory ubiquitin chain assembled by SCF(Met30). Nutritional and heavy-metal stress block Met4 ubiquitylation resulting in Met4 activation, which induces a stress-response program including cell-cycle arrest. Met4 relies on assembly with various cofactors for promoter binding. We report here that the stability of these DNA-binding cofactors is regulated by SCF(Met30). Remarkably, the transcriptional activator Met4 functions as a substrate-specificity factor in the context of SCF(Met30/Met4) to coordinate cofactor degradation with its own activity status. Our results establish an additional layer for substrate recruitment by SCF ubiquitin ligases and provide conceptual insight into coordinated regulation of protein complexes.
Collapse
Affiliation(s)
- Ikram Ouni
- University of California Irvine, Department of Biological Chemistry, School of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA, phone: (949)824-9442
| | - Karin Flick
- University of California Irvine, Department of Biological Chemistry, School of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA, phone: (949)824-9442
| | - Peter Kaiser
- University of California Irvine, Department of Biological Chemistry, School of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA, phone: (949)824-9442
| |
Collapse
|
69
|
Tran JR, Tomsic LR, Brodsky JL. A Cdc48p-associated factor modulates endoplasmic reticulum-associated degradation, cell stress, and ubiquitinated protein homeostasis. J Biol Chem 2010; 286:5744-55. [PMID: 21148305 DOI: 10.1074/jbc.m110.179259] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexameric AAA-ATPase, Cdc48p, catalyzes an array of cellular activities, including endoplasmic reticulum (ER)-associated degradation (ERAD), ER/Golgi membrane dynamics, and DNA replication. Accumulating data suggest that unique Cdc48p partners, such as Npl4p-Ufd1p and Ubx1p/Shp1p (p47 in vertebrates), target Cdc48p for these diverse functions. Other Cdc48p-associated proteins have been identified, but the interplay among these factors and their activities is largely cryptic. We now report on a previously uncharacterized Cdc48p-associated protein, Ydr049p, also known as Vms1p, which binds Cdc48p at both the ER membrane and in the cytosol under non-stressed conditions. Loss of YDR049 modestly slows the degradation of the cystic fibrosis transmembrane conductance regulator but does not impede substrate ubiquitination, suggesting that Ydr049p acts at a postubiquitination step in the ERAD pathway. Consistent with Ydr049p playing a role in Cdc48p substrate release, ydr049 mutant cells accumulate Cdc48p-bound ubiquitinated proteins at the ER membrane. Moreover, YDR049 interacts with genes encoding select UBX (ubiquitin regulatory X) and UFD (ubiquitin fusion degradation) proteins, which are Cdc48p partners. Exacerbated growth defects are apparent in some of the mutant combinations, and synergistic effects on the degradation of cystic fibrosis transmembrane conductance regulator and CPY*, which is a soluble ERAD substrate, are evident in specific ydr049-ufd and -ubx mutants. These data suggest that Ydr049p acts in parallel with Cdc48p partners to modulate ERAD and other cellular activities.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
70
|
Collins GA, Gomez TA, Deshaies RJ, Tansey WP. Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast 2010; 27:965-74. [PMID: 20625982 PMCID: PMC3566228 DOI: 10.1002/yea.1805] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated protein destruction by the proteasome is crucial for the maintenance of normal cellular homeostasis. Much of our understanding of proteasome function stems from the use of drugs that inhibit its activity. Curiously, despite the importance of proteasomal proteolysis, previous studies have found that proliferation of the yeast Saccharomyces cerevisiae is relatively resistant to the effects of proteasome inhibitors such as MG132, even in the presence of mutations that increase inhibitor levels in cells. We reasoned that part of the resistance of S. cerevisiae to proteasome inhibitors stems from the fact that most proteasome inhibitors preferentially target the chymotryptic activity of the proteasome, and that the caspase-like and tryptic sites within the 20S core could compensate for proteasome function under these conditions. To test this hypothesis, we generated a strain of yeast in which the gene encoding the drug efflux pump Pdr5 is deleted, and the tryptic and caspase-like proteasome activities are inactivated by mutation. We find that this strain has dramatically increased sensitivity to the proteasome inhibitor MG132. Under these conditions, treatment of yeast with MG132 blocks progression through the cell cycle, increases the accumulation of polyubiquitylated proteins and decreases the ability to induce transcription of certain genes. These results highlight the contribution of the caspase-like and tryptic activities of the proteasome to its function, and provide a strategy to potently block proteasomal proteolysis in yeast that has practical applications.
Collapse
Affiliation(s)
- Galen A. Collins
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Tara Adele Gomez
- California Institute of Technology, Division of Biology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Raymond J. Deshaies
- California Institute of Technology, Division of Biology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - William P. Tansey
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, 465 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
71
|
Kwak J, Workman JL, Lee D. The proteasome and its regulatory roles in gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:88-96. [PMID: 20723625 DOI: 10.1016/j.bbagrm.2010.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 12/21/2022]
Abstract
Cumulative evidence indicates that the proteasome, which is mainly known as a protein-degrading machine, is very essential for gene expression. Destructive functions of the proteasome, i.e., ubiquitin-dependent proteolytic activity, are significant for activator localization, activator destruction, co-activator/repressor destruction and PIC disassembly. Non-proteolytic functions of the proteasome are important for recruitment of activators and co-activators to promoters, ubiquitin-dependent histone modification, transcription elongation and possibly maturation of mRNA via the facilitation of mRNA export from the nucleus to the cytoplasm. In this review, we discuss how the proteasome regulates transcription at numerous stages during gene expression. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Jaechan Kwak
- Department of Biological Sciences, KAIST, Yuseong-Gu, Daejeon, 305-701, Korea
| | | | | |
Collapse
|
72
|
Haworth J, Alver RC, Anderson M, Bielinsky AK. Ubc4 and Not4 regulate steady-state levels of DNA polymerase-α to promote efficient and accurate DNA replication. Mol Biol Cell 2010; 21:3205-19. [PMID: 20660159 PMCID: PMC2938386 DOI: 10.1091/mbc.e09-06-0452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA polymerase-alpha (pol-alpha) is essential for eukaryotic replication but lacks proofreading activity. Its turnover is regulated by the E2 Ubc4 and the E3 Not4, which are known transcriptional regulators. This pathway likely prevents accumulation of the potential mutator pol-alpha to promote genome stability. The accurate duplication of chromosomal DNA is required to maintain genomic integrity. However, from an evolutionary point of view, a low mutation rate during DNA replication is desirable. One way to strike the right balance between accuracy and limited mutagenesis is to use a DNA polymerase that lacks proofreading activity but contributes to DNA replication in a very restricted manner. DNA polymerase-α fits this purpose exactly, but little is known about its regulation at the replication fork. Minichromosome maintenance protein (Mcm) 10 regulates the stability of the catalytic subunit of pol-α in budding yeast and human cells. Cdc17, the catalytic subunit of pol-α in yeast, is rapidly degraded after depletion of Mcm10. Here we show that Ubc4 and Not4 are required for Cdc17 destabilization. Disruption of Cdc17 turnover resulted in sensitivity to hydroxyurea, suggesting that this pathway is important for DNA replication. Furthermore, overexpression of Cdc17 in ubc4 and not4 mutants caused slow growth and synthetic dosage lethality, respectively. Our data suggest that Cdc17 levels are very tightly regulated through the opposing forces of Ubc4 and Not4 (destabilization) and Mcm10 (stabilization). We conclude that regular turnover of Cdc17 via Ubc4 and Not4 is required for proper cell proliferation.
Collapse
Affiliation(s)
- Justin Haworth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
73
|
Yasokawa D, Iwahashi H. Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 2010; 110:511-22. [PMID: 20624688 DOI: 10.1016/j.jbiosc.2010.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 02/03/2023]
Abstract
Development of genomics and bioinformatics enable us to analyze the global gene expression profiles of cells by DNA microarray. Changes in gene expression patterns indicate changes in its physiological conditions. Following the exposure of an organism or cell to toxic chemicals or other environmental stresses, the global genetic responses can be expeditiously and easily analyzed. Baker's yeast, Saccharomyces cerevisiae, is one of the most studied and useful model eukaryotes. The biggest advantage of yeast genomics is the available functional information for each gene and a considerable number of data are accumulating in the field of toxicity assessment using yeast DNA microarray. In this review, we discuss the toxicogenomics of metal ions, alcohols and aldehydes, and other chemicals.
Collapse
Affiliation(s)
- Daisuke Yasokawa
- Hokkaido Food Processing Research Center, Department of Food Development, 589-4 Bunkyodai Midorimachi, Ebetsu, Hokkaido 0690836, Japan.
| | | |
Collapse
|
74
|
Kim J, Guan J, Chang I, Chen X, Han D, Wang CY. PS-341 and histone deacetylase inhibitor synergistically induce apoptosis in head and neck squamous cell carcinoma cells. Mol Cancer Ther 2010; 9:1977-84. [PMID: 20571067 PMCID: PMC2931416 DOI: 10.1158/1535-7163.mct-10-0141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitor PS-341 (also known as bortezomib) and histone deacetylase (HDAC) inhibitors have emerged as novel therapeutic agents for a variety of malignancies. In this study, we examined whether PS-341 and the HDAC inhibitor trichostatin A (TSA) induced apoptosis in head and neck squamous cell carcinoma (HNSCC), a common and lethal malignancy. We found that, although TSA treatment alone did not induce apoptosis in HNSCC cells, it significantly enhanced PS-341-induced apoptosis in HNSCC cells in vitro. Consistently, TSA significantly improved PS-341-mediated inhibition of HNSCC tumor growth in nude mice. Mechanistically, we found that TSA increased PS-341-induced Noxa expression and caspase activation in HNSCC cells. The knockdown of Noxa significantly reduced apoptosis induced by cotreatment of PS-341 and TSA. Taken together, our results provide new insight into the mechanisms of synergistic antitumor activity of the PS-341 and HDAC inhibitor regimen, offering a new therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- JinKoo Kim
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | - Jean Guan
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | - Insoon Chang
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| | - Xiaohong Chen
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Beijing Tongren Hospital, Capital University of Medical Sciences, Dongjiao Minxiang Street, DongCheng District, Beijing 100730, China
| | - Demin Han
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Beijing Tongren Hospital, Capital University of Medical Sciences, Dongjiao Minxiang Street, DongCheng District, Beijing 100730, China
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, USA
| |
Collapse
|
75
|
Tucker CL, Fields S. Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp Funct Genomics 2010; 5:216-24. [PMID: 18629161 PMCID: PMC2447451 DOI: 10.1002/cfg.391] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/06/2004] [Accepted: 01/27/2004] [Indexed: 01/17/2023] Open
Abstract
Understanding the actions of drugs and toxins in a cell is of critical importance
to medicine, yet many of the molecular events involved in chemical resistance are
relatively uncharacterized. In order to identify the cellular processes and pathways
targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae
deletion strains (Winzeler et al., 1999). Although ~4800 of the strains are viable,
the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal
effect in which the combination of a deletion and a normally sublethal dose of a
chemical results in loss of viability. WE carried out genome-wide screens to determine
quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide,
menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce
oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by
unknown mechanisms. Here we report the sensitivities of 659 deletion strains that
are sensitive to one or more of these four compounds, including 163 multichemicalsensitive
strains, 394 strains specific to hydrogen peroxide and/or menadione, 47
specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data
from other large-scale studies to yield novel insights into cellular function.
Collapse
Affiliation(s)
- Chandra L Tucker
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
76
|
Prasad R, Kawaguchi S, Ng DTW. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010; 21:2117-27. [PMID: 20462951 PMCID: PMC2893977 DOI: 10.1091/mbc.e10-02-0111] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular quality control systems monitor protein conformational states. Irreversibly misfolded proteins are cleared through specialized degradation pathways. Their importance is underscored by numerous pathologies caused by aberrant proteins. In the cytosol, where most proteins are synthesized, quality control remains poorly understood. Stress-inducible chaperones and the 26S proteasome are known mediators but how their activities are linked is unclear. To better understand these mechanisms, a panel of model misfolded substrates was analyzed in detail. Surprisingly, their degradation occurs not in the cytosol but in the nucleus. Degradation is dependent on the E3 ubiquitin ligase San1p, known previously to direct the turnover of damaged nuclear proteins. A second E3 enzyme, Ubr1p, augments this activity but is insufficient by itself. San1p and Ubr1p are not required for nuclear import of substrates. Instead, the Hsp70 chaperone system is needed for efficient import and degradation. These data reveal a new function of the nucleus as a compartment central to the quality control of cytosolic proteins.
Collapse
Affiliation(s)
- Rupali Prasad
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
77
|
Spoel SH, Tada Y, Loake GJ. Post-translational protein modification as a tool for transcription reprogramming. THE NEW PHYTOLOGIST 2010; 186:333-339. [PMID: 20015068 DOI: 10.1111/j.1469-8137.2009.03125.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Precise modulation of transcription plays a vital role in both development and the response of all higher organisms to their environment. Temporal activation or repression of specific genes is accomplished via a plethora of transcriptional regulators. However, relatively little is known about how the activities of these proteins are controlled. Recent findings indicate that post-translational modifications fine-tune the function of transcription regulators by affecting their localization, conformation or stability. Here, we discuss these regulatory mechanisms in the context of the plant immune response. This system lends itself particularly well to studies of transcriptional regulators as activation of plant immunity is associated with rapid and dramatic reprogramming of the transcriptome. A case study of the plant immune coactivator NPR1 (nonexpressor of pathogenesis-related (PR) genes 1) illustrates that transcription regulator activity may be controlled by redox-based modifications of cysteine thiols (e.g. disulphide bonding and S-nitrosylation), phosphorylation, and ubiquitinylation coupled to protein degradation. Importantly, cross-talk between distinct protein modifications may determine the spatial and temporal activity of transcription regulators that in turn profile the cellular transcriptome.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
78
|
Kuranda K, François J, Palamarczyk G. The isoprenoid pathway and transcriptional response to its inhibitors in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2010; 10:14-27. [DOI: 10.1111/j.1567-1364.2009.00560.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
79
|
Malik S, Shukla A, Sen P, Bhaumik SR. The 19 s proteasome subcomplex establishes a specific protein interaction network at the promoter for stimulated transcriptional initiation in vivo. J Biol Chem 2010; 284:35714-24. [PMID: 19843524 DOI: 10.1074/jbc.m109.035709] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome complex that comprises the 20 S core and 19 S regulatory (with six ATPases) particles is engaged in an ATP-dependent degradation of a variety of key regulatory proteins and, thus, controls important cellular processes. Interestingly, several recent studies have implicated the 19 S regulatory particle in controlling eukaryotic transcriptional initiation or activation independently of the 20 S core particle. However, the mechanism of action of the 19 S proteasome subcomplex in regulation of eukaryotic transcriptional activation is not clearly understood in vivo. Here, using a chromatin immunoprecipitation assay in conjunction with mutational and transcriptional analyses in Saccharomyces cerevisiae, we show that the 19 S proteasomal subcomplex establishes a specific protein interaction network at the upstream activating sequence of the promoter. Such an interaction network is essential for formation of the preinitiation complex at the core promoter to initiate transcription. Furthermore, we demonstrate that the formation of the transcription complex assembly at the promoter is dependent on 19 S ATPase activity. Intriguingly, 19 S ATPases appear to cross-talk for stimulation of the assembly of transcription factors at the promoter. Together, these results provide significant insights as to how the 19 S proteasome subcomplex regulates the formation of the active transcription complex assembly (and, hence, transcriptional initiation) at the promoter in vivo.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
80
|
Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics 2009; 184:695-706. [PMID: 20038635 DOI: 10.1534/genetics.109.111419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway eliminates aberrant proteins from the ER. The key role of Cdc48p-Ufd1p-Npl4p is indicated by impaired ERAD in Saccharomyces cerevisiae with mutations in any of this complex's genes. We identified SSZ1 in genetic screens for cdc48-10 suppressors and show that it upregulates Cdc48p via the pleiotropic drug resistance (PDR) network. A pSSZ1 plasmid restored impaired ERAD-M of 6myc-Hmg2 in cdc48-10, ufd1-2, and npl4-1, while SSZ1 deletion had no effect. Ssz1p activates Pdr1p, the PDR master regulator. Indeed, plasmids of PDR1 or its target gene RPN4 increased cdc48-10p levels and restored ERAD-M in cdc48-10. Rpn4p regulates transcription of proteasome subunits and CDC48, thus RPN4 deletion abolished ERAD. However, the diminished proteasome level in Deltarpn4 was sufficient for degrading a cytosolic substrate, whereas the impaired ERAD-M was the result of diminished Cdc48p and was restored by expression of pCDC48. The corrected ERAD-M in the hypomorphic strains of the Cdc48 partners ufd1-2 and npl4-1 by the pCDC48 plasmid, and in cdc48-10 cells by the pcdc48-10 plasmid, combined with the finding that neither pSSZ1 nor pcdc48-10 restored ERAD-L of CPY*-HA, support our conclusion that Ssz1p suppressing effects is brought about by upregulating Cdc48p.
Collapse
|
81
|
Zhang N, Oliver SG. The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. J Biol Chem 2009; 285:6465-76. [PMID: 20022953 DOI: 10.1074/jbc.m109.073288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transcriptional response to environmental changes has to be prompt but appropriate. Previously, it has been shown that the Gis1 transcription factor is responsible for regulating the expression of postdiauxic shift genes in response to nutrient starvation, and this transcription regulation is dependent upon the Rim15 kinase. Here we demonstrate that the activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. Limited degradation of Gis1 by the proteasome leads to the production of smaller variants, which have weaker transcription activities than the full-length protein. The coiled-coil domain, absent from the smaller variants, is part of the second transcription activation domain in Gis1 and is essential for both the limited proteolysis of Gis1 and its full activity. Endogenous Gis1 and its variants, regardless of their transcription capabilities, activate transcription in a Rim15-dependent manner. However, when the full-length Gis1 accumulates in cells due to overexpression or inhibition of the proteasome function, transcription activation by Gis1 is no longer solely controlled by Rim15. Together, these data strongly indicate that the function of the limited degradation is to ensure that Gis1-dependent transcription is strictly regulated by the Rim15 kinase. Furthermore, we have revealed that the kinase activity of Rim15 is essential for this regulation.
Collapse
Affiliation(s)
- Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | | |
Collapse
|
82
|
Middeldorp J, Kamphuis W, Sluijs JA, Achoui D, Leenaars CHC, Feenstra MGP, van Tijn P, Fischer DF, Berkers C, Ovaa H, Quinlan RA, Hol EM. Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. FASEB J 2009; 23:2710-26. [PMID: 19332645 DOI: 10.1096/fj.08-127696] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increased expression of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) is a characteristic of astrogliosis. This process occurs in the brain during aging and neurodegeneration and coincides with impairment of the ubiquitin proteasome system. Inhibition of the proteasome impairs protein degradation; therefore, we hypothesized that the increase in GFAP may be the result of impaired proteasomal activity in astrocytes. We investigated the effect of proteasome inhibitors on GFAP expression and other intermediate filament proteins in human astrocytoma cells and in a rat brain model for astrogliosis. Extensive quantitative RT-PCR, immunocytochemistry, and Western blot analysis resulted unexpectedly in a strong decrease of GFAP mRNA to <4% of control levels [Control (DMSO) 100+/-19.2%; proteasome inhibitor (epoxomicin) 3.5+/-1.3%, n=8; P < or = 0.001] and a loss of GFAP protein in astrocytes in vitro. We show that the proteasome alters GFAP promoter activity, possibly mediated by transcription factors as demonstrated by a GFAP promoter-luciferase assay and RT(2) Profiler PCR array for human transcription factors. Most important, we demonstrate that proteasome inhibitors also reduce GFAP and vimentin expression in a rat model for induced astrogliosis in vivo. Therefore, proteasome inhibitors could serve as a potential therapy to modulate astrogliosis associated with CNS injuries and disease.
Collapse
Affiliation(s)
- Jinte Middeldorp
- Department of Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Metzger MB, Michaelis S. Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 2009; 20:1006-19. [PMID: 19073890 PMCID: PMC2633399 DOI: 10.1091/mbc.e08-02-0140] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 10/16/2008] [Accepted: 12/02/2008] [Indexed: 11/11/2022] Open
Abstract
ER quality control (ERQC) prevents the exit of misfolded secretory and membrane proteins from the ER. A critical aspect of ERQC is a transcriptional response called the unfolded protein response (UPR), which up-regulates genes that enable cells to cope with misfolded, ER-retained proteins. In this study, we compare the transcriptional responses in yeast resulting from the acute expression of misfolded proteins residing in three different cellular compartments (the ER lumen, membrane, and cytosol), and find that each elicits a distinct transcriptional response. The classical UPR response, here-designated UPR-L, is induced by the ER lumenal misfolded protein, CPY*. The UPR-Cyto response is induced by the cytosolic protein, VHL-L158P, and is characterized by a rapid, transient induction of cytosolic chaperones similar to the heat-shock response. In contrast, the misfolded membrane protein with a cystolic lesion, Ste6p*, elicits a unique response designated UPR-M/C, characterized by the modest induction of >20 genes regulated by Rpn4p, an activator of proteasomal genes. Independently, we identified several genes required for yeast viability during UPR-M/C stress, but not UPR-L or UPR-Cyto stress. Among these is RPN4, highlighting the importance of the Rpn4p-dependent response in tolerating UPR-M/C stress. Further analysis suggests the requirement for Rpn4p reflects severe impairment of the proteasome by UPR-M/C stress.
Collapse
Affiliation(s)
- Meredith Boyle Metzger
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
84
|
Bhaumik SR, Malik S. Diverse regulatory mechanisms of eukaryotic transcriptional activation by the proteasome complex. Crit Rev Biochem Mol Biol 2009; 43:419-33. [PMID: 19058045 DOI: 10.1080/10409230802605914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life of any protein within a cell begins with transcriptional activation, and ends with proteolytic degradation. Intriguingly, the 26S proteasome complex, a non-lysosomal protein degradation machine comprising the 20S proteolytic core and 19S regulatory particles, has been implicated in intimate regulation of eukaryotic transcriptional activation through diverse mechanisms in a proteolysis-dependent as well as independent manner. Here, we discuss the intricate mechanisms of such proteasomal regulation of eukaryotic gene activation via multiple pathways.
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | | |
Collapse
|
85
|
Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 2009; 28:359-71. [PMID: 19153599 DOI: 10.1038/emboj.2008.305] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 12/19/2008] [Indexed: 01/24/2023] Open
Abstract
Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48-linked polyubiquitin chain. In contrast, modifications with the Lys63-linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome-independent cellular processes. Nevertheless, the ubiquitin chain-type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin-ligase in budding yeast, catalyzes the formation of Lys63-linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63-linked ubiquitinated substrate in vitro. To examine whether Lys63-linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2-p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63-linkages, and the Lys63-linked chains were sufficient for the proteasome-binding and subsequent p120-processing. In addition, Lys63-linked chains as well as Lys48-linked chains were detected in the 26S proteasome-bound polyubiquitinated proteins. These results raise the possibility that Lys63-linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo.
Collapse
Affiliation(s)
- Yasushi Saeki
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Wang X, Xu H, Ju D, Xie Y. Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 2008; 180:1945-53. [PMID: 18832351 PMCID: PMC2600933 DOI: 10.1534/genetics.108.094524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/16/2008] [Indexed: 11/18/2022] Open
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription activator Rpn4 upregulates the proteasome genes and is rapidly degraded by the assembled proteasome. Previous studies have shown that rpn4Delta cells are sensitive to a variety of stresses. However, the contribution of the loss of Rpn4-induced proteasome expression to the rpn4Delta phenotypes remains unclear because Rpn4 controls numerous genes other than the proteasome genes. Here we construct a yeast strain in which one of the essential proteasome genes, PRE1, is no longer induced by Rpn4. We show that the active proteasome level is lower in this strain than in the wild-type counterpart. Moreover, we demonstrate that loss of Rpn4-induced proteasome expression leads to cell-cycle delay in G2/M and sensitizes cells to various stresses. To our knowledge, this is the first report that explicitly reveals the physiological function of Rpn4-induced proteasome expression. This study also provides a tool for understanding the interactions between proteasome homeostasis and other cellular processes.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 2000032, People's Republic of China
| | | | | | | |
Collapse
|
87
|
Chondrogianni N, Trougakos IP, Kletsas D, Chen QM, Gonos ES. Partial proteasome inhibition in human fibroblasts triggers accelerated M1 senescence or M2 crisis depending on p53 and Rb status. Aging Cell 2008; 7:717-32. [PMID: 18691182 DOI: 10.1111/j.1474-9726.2008.00425.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Proteasome-dependent degradation has been extensively investigated and has been shown to play a vital role in the maintenance of cellular homeostasis. Proteasome activity and expression are reduced during aging and replicative senescence. Its activation has been shown to confer lifespan extension in human diploid fibroblasts (HDFs), whereas partial proteasome inhibition triggers an irreversible premature senescent state in young HDFs. As p53 and Rb tumor suppressors regulate both replicative and premature senescence (RS and PS, respectively), in this study we investigated their implication in proteasome inhibition-mediated PS. By taking advantage of a variety of HDFs with defective p53 or/and Rb pathways, we reveal that proteasome activity inhibition to levels normally found in senescent human cells results in immediate growth arrest and/or moderate increase of apoptotic death. These effects are independent of the cellular genetic context. However, in the long term, proteasome inhibition-mediated PS can only be initiated and maintained in the presence of functional p53. More specifically, we demonstrate that following partial proteasome inhibition, senescence is dominant in HDFs with functional p53 and Rb molecules, crisis/death is induced in cells with high p53 levels and defective Rb pathway, whereas stress recovery and restoration of normal cycling occurs in cells that lack functional p53. These data reveal the continuous interplay between the integrity of proteasome function, senescence and cell survival.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Athens, Greece
| | | | | | | | | |
Collapse
|
88
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
89
|
Kandasamy K, Kraft AS. Proteasome inhibitor PS-341 (VELCADE) induces stabilization of the TRAIL receptor DR5 mRNA through the 3'-untranslated region. Mol Cancer Ther 2008; 7:1091-100. [PMID: 18483298 DOI: 10.1158/1535-7163.mct-07-2368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Addition of proteasome inhibitor PS-341 (VELCADE, bortezomib) to prostate cancer cells enhances cell death mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). PS-341 sensitizes prostate cancer cells to TRAIL-induced apoptosis by increasing TRAIL receptors (DR5), inhibiting protein degradation, and elevating DR5 mRNA. Investigations into how PS-341 regulates the stability of DR5 mRNA revealed that PS-341 increased DR5 mRNA by extending its half-life from 4 to 10 h. The 2.5-kb 3'-untranslated region of the DR5 gene stabilized a heterologous gene in LNCaP human prostate cancer cells, suggesting the importance of this mRNA sequence. In contrast, human prostate cancer cell lines PC-3 and DU145 do not show this stabilization, suggesting cell specificity. PS-341 treatment of LNCaP cells increases the level of specific cytoplasmic mRNA-binding proteins, including AUF-1 isoforms, hnRNP C1/C2, and HuR proteins. In UV cross-linking experiments, after PS-341 treatment, the HuR protein markedly increases binding to specific sequences in the DR5 3'-untranslated region. In LNCaP cells treated with PS-341, small interfering RNA-mediated knockdown of HuR markedly decreases the half-life of DR5 mRNA, indicating that HuR is essential for mRNA stabilization. HuR protein is ubiquitinated, suggesting that PS-341 increases this protein by preventing its degradation. These experiments implicate modulation of mRNA stability as a novel mechanism by which proteasome inhibitors function, sensitizing cancer cells to antineoplastic agents.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Suite 124, Charleston, SC 29425, USA
| | | |
Collapse
|
90
|
Higuchi Y, Kawakami S, Hashida M. [Development of cell-selective targeting systems of NFkappaB decoy for inflammation therapy]. YAKUGAKU ZASSHI 2008; 128:209-18. [PMID: 18239368 DOI: 10.1248/yakushi.128.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NFkappaB regulate several inflammatory related molecules and evoke immune and inflammatory response by several stimuli, therefore inhibition of NFkappaB activation would be a novel therapeutic strategy. To date, there are many conventional drugs including nonsteroldal or steroldal anti-inflammatory drugs or immune suppressors etc. were known to inhibit NFkappaB activation, however, several side effects were also reported. Recently, double stranded oligonucleotide including NFkappaB binding sequence, called NFkappaB decoy, was developed to prevent NFkappaB activation, which is powerful tool in a new class of anti-gene strategy for molecular therapy with low side effect. However, NFkappaB decoy is easily degraded by nuclease and rapidly excreted to urine, therefore it is necessary to develop carrier for NFkappaB decoy therapy. Here, we shall review delivery system for NFkappaB decoy and introduce our cell-selective delivery system for NFkappaB decoy using sugar decorated cationic liposomes.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|
91
|
Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008; 452:755-8. [DOI: 10.1038/nature06782] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/28/2008] [Indexed: 01/07/2023]
|
92
|
McGary KL, Lee I, Marcotte EM. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biol 2008; 8:R258. [PMID: 18053250 PMCID: PMC2246260 DOI: 10.1186/gb-2007-8-12-r258] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/16/2007] [Accepted: 12/05/2007] [Indexed: 11/10/2022] Open
Abstract
Loss-of-function phenotypes of yeast genes can be predicted from the loss-of-function phenotypes of their neighbours in functional gene networks. This could potentially be applied to the prediction of human disease genes. We demonstrate that loss-of-function yeast phenotypes are predictable by guilt-by-association in functional gene networks. Testing 1,102 loss-of-function phenotypes from genome-wide assays of yeast reveals predictability of diverse phenotypes, spanning cellular morphology, growth, metabolism, and quantitative cell shape features. We apply the method to extend a genome-wide screen by predicting, then verifying, genes whose disruption elongates yeast cells, and to predict human disease genes. To facilitate network-guided screens, a web server is available .
Collapse
Affiliation(s)
- Kriston L McGary
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
93
|
Ikeda M, Kihara A, Denpoh A, Igarashi Y. The Rim101 pathway is involved in Rsb1 expression induced by altered lipid asymmetry. Mol Biol Cell 2008; 19:1922-31. [PMID: 18287536 DOI: 10.1091/mbc.e07-08-0806] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biological membranes consist of lipid bilayers. The lipid compositions between the two leaflets of the plasma membrane differ, generating lipid asymmetry. Maintenance of proper lipid asymmetry is physiologically quite important, and its collapse induces several cellular responses including apoptosis and platelet coagulation. Thus, a change in lipid asymmetry must be restored to maintain "lipid asymmetry homeostasis." However, to date no lipid asymmetry-sensing proteins or any related downstream signaling pathways have been identified. We recently demonstrated that expression of the putative yeast sphingoid long-chain base transporter/translocase Rsb1 is induced when glycerophospholipid asymmetry is altered. Using mutant screening, we determined that the pH-responsive Rim101 pathway, the protein kinase Mck1, and the transcription factor Mot3 all act in lipid asymmetry signaling, and that the Rim101 pathway was activated in response to a change in lipid asymmetry. The activated transcription factor Rim101 induces Rsb1 expression via repression of another transcription repressor, Nrg1. Changes in lipid asymmetry are accompanied by cell surface exposure of negatively charged phospholipids; we speculate that the Rim101 pathway recognizes the surface charges.
Collapse
Affiliation(s)
- Mika Ikeda
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
94
|
Komili S, Silver PA. Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 2008; 9:38-48. [PMID: 18071322 DOI: 10.1038/nrg2223] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale analyses have allowed us to progress beyond studying gene expression at the level of individual components of a given process by providing global information about functional connections between genes, mRNAs and their regulatory proteins. Such analyses have greatly increased our understanding of the interplay between different events in gene regulation and have highlighted previously unappreciated functional connections, including coupling between nuclear and cytoplasmic processes. Genome-wide approaches have also revealed extensive coordination within regulatory levels, such as the organization of transcription factors into regulatory motifs. Overall, these studies enhance our understanding of how the many components of the eukaryotic cell function as a system to allow both coordination and versatility in gene expression.
Collapse
Affiliation(s)
- Suzanne Komili
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02119, USA
| | | |
Collapse
|
95
|
Lopez A, Parsons AB, Nislow C, Giaever G, Boone C. Chemical-genetic approaches for exploring the mode of action of natural products. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:237-271. [PMID: 18416308 DOI: 10.1007/978-3-7643-8595-8_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Determining the mode of action of bioactive compounds, including natural products, is a central problem in chemical biology. Because many genes are conserved from the yeast Saccharomyces cerevisiae to humans and a number of powerful genomics tools and methodologies have been developed for this model system, yeast is making a major contribution to the field of chemical genetics. The set of barcoded yeast deletion mutants, including the set of approximately 5000 viable haploid and homozygous diploid deletion mutants and the complete set of approximately 6000 heterozygous deletion mutants, containing the set of approximately 1000 essential genes, are proving highly informative for identifying chemical-genetic interactions and deciphering compound mode of action. Gene deletions that render cells hypersensitive to a specific drug identify pathways that buffer the cell against the toxic effects of the drug and thereby provide clues about both gene and compound function. Moreover, compounds that show similar chemical-genetic profiles often perturb similar target pathways. Gene dosage can be exploited to discover connections between compounds and their targets. For example, haploinsufficiency profiling of an antifungal compound, in which the set of approximately 6000 heterozygous diploid deletion mutants are scored for hypersensitivity to a compound, may identify the target directly. Creating deletion mutant collections in other fungal species, including the major human fungal pathogen Candida albicans, will expand our chemical genomics tool set, allowing us to screen for antifungal lead drugs directly. The yeast deletion mutant collection is also being exploited to map large-scale genetic interaction data obtained from genome-wide synthetic lethal screens and the integration of this data with chemical genetic data should provide a powerful system for linking compounds to their target pathway. Extensive application of chemical genetics in yeast has the potential to develop a small molecule inhibitor for the majority of all approximately 6000 yeast genes.
Collapse
Affiliation(s)
- Andres Lopez
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Canada
| | | | | | | | | |
Collapse
|
96
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
97
|
Uzunova K, Göttsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJK, Dohmen RJ. Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 2007; 282:34167-75. [PMID: 17728242 DOI: 10.1074/jbc.m706505200] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.
Collapse
Affiliation(s)
- Kristina Uzunova
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Cenci S, Sitia R. Managing and exploiting stress in the antibody factory. FEBS Lett 2007; 581:3652-7. [PMID: 17475256 DOI: 10.1016/j.febslet.2007.04.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 11/18/2022]
Abstract
Like us, our cells have evolved strategies to cope with, and sometimes utilize, stress. Molecular analyses of plasma cell biogenesis, lifestyle and death suggest that protein synthesis-dependent stress is utilised to integrate differentiation, function and lifespan control. Plasma cells are short-lived professional secretory cells, each of them capable of releasing several thousands antibodies per second. Their differentiation from B lymphocytes entails the spectacular enlargement of the endoplasmic reticulum (ER), finalized to sustain massive Ig production. Nonetheless, symptoms of ER stress are evident, and the UPR-related transcription factor XBP-1 is essential for differentiation. Surprisingly, the development of such an efficient factory is matched by a decrease in proteasomes. The unbalanced load/capacity ratio leads to accumulation of polyubiquitinated molecules and predisposes plasma cells to apoptosis. Exuberant antibody secretion imposes considerable stress on metabolic and redox homeostasis. Collectively, these stressful conditions may link plasma cell death to antibody production, providing a molecular counter for secreted molecules, as well as an explanation for the peculiar sensitivity of myeloma cells towards proteasome inhibitors.
Collapse
Affiliation(s)
- Simone Cenci
- Department of Biology and Technology, DiBiT, San Raffaele Scientific Institute, Universitá Vita-Salute San Raffaele, Milan, Italy
| | | |
Collapse
|
99
|
Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 2007; 6:1885-95. [PMID: 17644757 DOI: 10.1074/mcp.m700264-mcp200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin proteasome system (UPS) comprises hundreds of different conjugation/deconjugation enzymes and multiple receptors that recognize ubiquitylated proteins. A formidable challenge to deciphering the biology of ubiquitin is to map the networks of substrates and ligands for components of the UPS. Several different receptors guide ubiquitylated substrates to the proteasome, and neither the basis for specificity nor the relative contribution of each pathway is known. To address how broad of a role the ubiquitin receptor Rpn10 (S5a) plays in turnover of proteasome substrates, we implemented a method to perform quantitative analysis of ubiquitin conjugates affinity-purified from experimentally perturbed and reference cultures of Saccharomyces cerevisiae that were differentially labeled with 14N and 15N isotopes. Shotgun mass spectrometry coupled with relative quantification using metabolic labeling and statistical analysis based on q values revealed ubiquitylated proteins that increased or decreased in level in response to a particular treatment. We first identified over 225 candidate UPS substrates that accumulated as ubiquitin conjugates upon proteasome inhibition. To determine which of these proteins were influenced by Rpn10, we evaluated the ubiquitin conjugate proteomes in cells lacking either the entire Rpn10 (rpn10delta) (or only its UIM (ubiquitin-interacting motif) polyubiquitin-binding domain (uimdelta)). Twenty-seven percent of the UPS substrates accumulated as ubiquitylated species in rpn10delta cells, whereas only one-fifth as many accumulated in uimdelta cells. These findings underscore a broad role for Rpn10 in turnover of ubiquitylated substrates but a relatively modest role for its ubiquitin-binding UIM domain. This approach illustrates the feasibility of systems-level quantitative analysis to map enzyme-substrate networks in the UPS.
Collapse
Affiliation(s)
- Thibault Mayor
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
100
|
Dohmen RJ, Willers I, Marques AJ. Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1599-604. [PMID: 17604855 DOI: 10.1016/j.bbamcr.2007.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/24/2022]
Abstract
The 26S proteasome of eukaryotic cells mediates ubiquitin-dependent as well as ubiquitin-independent degradation of proteins in many regulatory processes as well as in protein quality control. The proteasome itself is a dynamic complex with varying compositions and interaction partners. Studies in Saccharomyces cerevisiae have revealed that expression of proteasome subunit genes is coordinately controlled by the Rpn4 transcriptional activator. The cellular level of Rpn4 itself is subject to a complex regulation, which, aside of a transcriptional control of its gene, intriguingly involves ubiquitin-dependent as well as ubiquitin-independent control of its stability by the proteasome. A novel study by Ju et al. [D. Ju, H. Yu, X. Wang, Y. Xie, Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal, Biochim. Biophys. Acta (in press), doi:10.1016/j.bbamcr.2007.04.012] now revealed another level of complexity by showing that phosphorylation of a specific serine residue in Rpn4 is required for its efficient targeting by the Ubr2 ubiquitin ligase.
Collapse
Affiliation(s)
- R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany.
| | | | | |
Collapse
|