51
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
52
|
Ritchie DB, Schellenberg MJ, MacMillan AM. Spliceosome structure: piece by piece. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:624-33. [PMID: 19733268 DOI: 10.1016/j.bbagrm.2009.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/22/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein.RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
53
|
|
54
|
Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol 2009; 16:731-9. [PMID: 19525970 PMCID: PMC2743687 DOI: 10.1038/nsmb.1625] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/22/2009] [Indexed: 11/29/2022]
Abstract
Brr2 is a DExD/H-box helicase responsible for U4/U6 unwinding during spliceosomal activation. Brr2 contains two helicase-like domains, each of which is followed by a Sec63 domain with unknown function. We determined the crystal structure of the second Sec63 domain, which unexpectedly resembles domains 4 and 5 of DNA helicase Hel308. This, together with sequence similarities between Brr2’s helicase-like domains and domains 1–3 of Hel308, led us to hypothesize that Brr2 contains two consecutive Hel308-like modules (Hel308-I and II). Our structural model and mutagenesis data suggest that Brr2 shares a similar helicase mechanism with Hel308. We demonstrate that Hel308-II interacts with Prp8 and Snu114 in vitro and in vivo. We further find that the C-terminal region of Prp8 (Prp8-CTR) facilitates the binding of the Brr2/Prp8-CTR complex to U4/U6. Our results have important implications for the mechanism and regulation of Brr2’s activity.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Toor N, Keating KS, Pyle AM. Structural insights into RNA splicing. Curr Opin Struct Biol 2009; 19:260-6. [PMID: 19443210 DOI: 10.1016/j.sbi.2009.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
Abstract
Intron splicing is a fundamental biological process whereby noncoding sequences are removed from precursor RNAs. Recent work has provided new insights into the structural features and reaction mechanisms of two introns that catalyze their own splicing from precursor RNA: the group I and II introns. In addition, there is an increasing amount of structural information on the spliceosome, which is a ribonucleoprotein machine that catalyzes nuclear pre-mRNA splicing in eukaryotes. Here, we compare structures and catalytic mechanisms of self-splicing RNAs and we discuss the possible implications for spliceosomal reaction mechanisms.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
56
|
The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 2009; 34:189-99. [DOI: 10.1016/j.tibs.2008.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022]
|
57
|
Abstract
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.
Collapse
Affiliation(s)
- Markus C Wahl
- Makromolekulare Röntgenkristallographie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
58
|
|
59
|
Wachtel C, Manley JL. Splicing of mRNA precursors: the role of RNAs and proteins in catalysis. MOLECULAR BIOSYSTEMS 2009; 5:311-6. [PMID: 19396366 DOI: 10.1039/b820828j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Splicing of mRNA precursors was discovered over 30 years ago. It is one of the most complex steps in gene expression and therefore must be tightly controlled to ensure that splicing occurs efficiently and accurately. Splicing takes place in a large complex, the spliceosome, which contains approximately 200 proteins and five small RNAs (U snRNAs). Since its discovery, much work has been done to elucidate the pathway of the chemical reaction as well as the proteins and RNAs involved in catalysis. A variety of studies have established the potential for U2 and U6 snRNAs to play a role in splicing catalysis, raising the possibility that the spliceosome is a ribozyme. If correct, this would point to the spliceosomal proteins playing a supporting role during splicing. On the other hand, it may be that proteins contribute more directly to the spliceosomal active site, with the highly evolutionarily conserved Prp8 protein being an excellent candidate. This review will concentrate on recent work on splicing catalysis, and on elucidating the possible roles proteins play in this process.
Collapse
Affiliation(s)
- Chaim Wachtel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel.
| | | |
Collapse
|
60
|
Nowotny M. Retroviral integrase superfamily: the structural perspective. EMBO Rep 2009; 10:144-51. [PMID: 19165139 DOI: 10.1038/embor.2008.256] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022] Open
Abstract
The retroviral integrase superfamily (RISF) comprises numerous important nucleic acid-processing enzymes, including transposases, integrases and various nucleases. These enzymes are involved in a wide range of processes such as transposition, replication and repair of DNA, homologous recombination, and RNA-mediated gene silencing. Two out of the four enzymes that are encoded by the human immunodeficiency virus--RNase H1 and integrase--are members of this superfamily. RISF enzymes act on various substrates, and yet show remarkable mechanistic and structural similarities. All share a common fold of the catalytic core and the active site, which is composed primarily of carboxylate residues. Here, I present RISF proteins from a structural perspective, describing the individual members and the common and divergent elements of their structures, as well as the mechanistic insights gained from the structures of RNase H1 enzyme complexes with RNA/DNA hybrids.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.
| |
Collapse
|
61
|
Valadkhan S, Manley JL. The use of simple model systems to study spliceosomal catalysis. RNA (NEW YORK, N.Y.) 2009; 15:4-7. [PMID: 19029305 PMCID: PMC2612768 DOI: 10.1261/rna.1425809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since direct analysis of many aspects of spliceosomal function is greatly hindered by the daunting complexity of the spliceosome, the development of functionally validated simple model systems can be of great value. The critical role played by a base-paired complex of U6 and U2 snRNAs in splicing in vivo suggests that this complex could be a suitable starting point for the development of such a simple model system. However, several criteria must be satisfied before such a snRNA-based in vitro system can be considered a valid model for the spliceosomal catalytic core, including similarities at the level of reaction chemistry and cationic and sequence requirements. Previous functional analyses of in vitro assembled base-paired complexes of human U2 and U6 snRNAs have been promising, providing insight into catalysis. Furthermore, they strongly suggest that with further optimization, these RNAs might indeed be able to recapitulate the function of the spliceosomal catalytic core, thus opening the door to several lines of study not previously possible.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
62
|
Smith DJ, Konarska MM. A critical assessment of the utility of protein-free splicing systems. RNA (NEW YORK, N.Y.) 2009; 15:1-3. [PMID: 19029306 PMCID: PMC2612767 DOI: 10.1261/rna.1322709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
U2 and U6 snRNAs form part of the catalytic spliceosome and represent strong candidates for components of its active site. Over the past decade it has become clear that these snRNAs are capable of catalyzing several different chemical reactions, leading to the widespread conclusion that the spliceosome is a ribozyme. Here, we discuss the advances in both protein-free and fully spliceosomal systems that would be required to conclude that the reactions observed to be catalyzed by protein-free snRNAs are related to splicing and question the reliability of snRNA-only systems as tools for mechanistic splicing research.
Collapse
Affiliation(s)
- Duncan J Smith
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
63
|
ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 2008; 16:42-8. [PMID: 19098916 PMCID: PMC2707180 DOI: 10.1038/nsmb.1535] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/20/2008] [Indexed: 01/08/2023]
Abstract
The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C-terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome.
Collapse
|
64
|
|
65
|
Pena V, Rozov A, Fabrizio P, Lührmann R, Wahl MC. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J 2008; 27:2929-40. [PMID: 18843295 PMCID: PMC2580788 DOI: 10.1038/emboj.2008.209] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/18/2008] [Indexed: 11/09/2022] Open
Abstract
Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H-substrate complexes suggested how an RNA encompassing a 5'-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5'SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing.
Collapse
Affiliation(s)
- Vladimir Pena
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Abteilung Zelluläre Biochemie, AG Röntgenkristallographie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Alexey Rozov
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Patrizia Fabrizio
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Reinhard Lührmann
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Markus C Wahl
- Abteilung Zelluläre Biochemie, AG Röntgenkristallographie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
66
|
Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, MacMillan AM. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol 2008; 15:1199-205. [DOI: 10.1038/nsmb.1505] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022]
|