51
|
Emig R, Hoess P, Cai H, Kohl P, Peyronnet R, Weber W, Hörner M. Benchmarking of Cph1 Mutants and DrBphP for Light-Responsive Phytochrome-Based Hydrogels with Reversibly Adjustable Mechanical Properties. Adv Biol (Weinh) 2022; 6:e2000337. [PMID: 35481696 DOI: 10.1002/adbi.202000337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/31/2022] [Indexed: 01/28/2023]
Abstract
In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.
Collapse
Affiliation(s)
- Ramona Emig
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Hoess
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Hanyang Cai
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
52
|
Influence of the PHY domain on the ms-photoconversion dynamics of a knotless phytochrome. Photochem Photobiol Sci 2022; 21:1627-1636. [PMID: 35687310 DOI: 10.1007/s43630-022-00245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
The ability of some knotless phytochromes to photoconvert without the PHY domain allows evaluation of the distinct effect of the PHY domain on their photodynamics. Here, we compare the ms dynamics of the single GAF domain (g1) and the GAF-PHY (g1g2) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. While the spectral signatures and occurrence of the intermediates are mostly unchanged by the domain composition, the presence of the PHY domain slows down the early forward and reverse dynamics involving chromophore and protein binding pocket relaxation. We assign this effect to a more restricted binding pocket imprinted by the PHY domain. The photoproduct formation is also slowed down by the presence of the PHY domain but to a lesser extent than the early dynamics. This indicates a rate limiting step within the GAF and not the PHY domain. We further identify a pH dependence of the biphasic photoproduct formation hinting towards a pKa dependent tuning mechanism. Our findings add to the understanding of the role of the individual domains in the photocycle dynamics and provide a basis for engineering of phytochromes towards biotechnological applications.
Collapse
|
53
|
Lee SJ, Kim TW, Kim JG, Yang C, Yun SR, Kim C, Ren Z, Kumarapperuma I, Kuk J, Moffat K, Yang X, Ihee H. Light-induced protein structural dynamics in bacteriophytochrome revealed by time-resolved x-ray solution scattering. SCIENCE ADVANCES 2022; 8:eabm6278. [PMID: 35622911 PMCID: PMC9140987 DOI: 10.1126/sciadv.abm6278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Bacteriophytochromes (BphPs) are photoreceptors that regulate a wide range of biological mechanisms via red light-absorbing (Pr)-to-far-red light-absorbing (Pfr) reversible photoconversion. The structural dynamics underlying Pfr-to-Pr photoconversion in a liquid solution phase are not well understood. We used time-resolved x-ray solution scattering (TRXSS) to capture light-induced structural transitions in the bathy BphP photosensory module of Pseudomonas aeruginosa. Kinetic analysis of the TRXSS data identifies three distinct structural species, which are attributed to lumi-F, meta-F, and Pr, connected by time constants of 95 μs and 21 ms. Structural analysis based on molecular dynamics simulations shows that the light activation of PaBphP accompanies quaternary structural rearrangements from an "II"-framed close form of the Pfr state to an "O"-framed open form of the Pr state in terms of the helical backbones. This study provides mechanistic insights into how modular signaling proteins such as BphPs transmit structural signals over long distances and regulate their downstream biological responses.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - So Ri Yun
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Indika Kumarapperuma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jane Kuk
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
54
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
55
|
Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, Psakis G, Alexiev U. Improved fluorescent phytochromes for in situ imaging. Sci Rep 2022; 12:5587. [PMID: 35379835 PMCID: PMC8980088 DOI: 10.1038/s41598-022-09169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractModern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.
Collapse
|
56
|
Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Photochem Photobiol Sci 2022; 21:447-469. [PMID: 35394641 DOI: 10.1007/s43630-022-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly 13C- and 15N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states. We also identify a greater structural heterogeneity of the bilin chromophore in the photoproduct than in the dark state. In addition, the binding pocket is more hydrated in the photoproduct. Observation of interfacial 1H contacts of the photoproduct chromophore, together with quantum mechanics/molecular mechanics (QM/MM)-based structural models for this photoproduct, clearly suggests the presence of a biprotonated (cationic) imidazolium side-chain for a conserved histidine residue (322) at a distance of ~2.7 Å, generalizing the recent theoretical findings that explicitly link the structural heterogeneity of the dark-state chromophore to the protonation of this specific residue. Moreover, we examine pH effects on this in vitro assembled holoprotein, showing a substantially altered electronic structure and protonation of the photoproduct chromophore even with a small pH drop from 7.8 to 7.2. Our studies provide further information regarding the light- and pH-induced changes of the chromophore and the rearrangements of the hydrogen-bonding and electrostatic interaction network around it. Possible correlations between structural heterogeneity of the chromophore, protonation of the histidine residue nearby, and hydration of the pocket in both photostates are discussed.
Collapse
|
57
|
Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature 2022; 604:127-133. [PMID: 35355010 PMCID: PMC9930725 DOI: 10.1038/s41586-022-04529-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - E Sethe Burgie
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
58
|
Kraskov A, Buhrke D, Scheerer P, Shaef I, Sanchez JC, Carrillo M, Noda M, Feliz D, Stojković EA, Hildebrandt P. On the Role of the Conserved Histidine at the Chromophore Isomerization Site in Phytochromes. J Phys Chem B 2021; 125:13696-13709. [PMID: 34843240 DOI: 10.1021/acs.jpcb.1c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are sensory photoreceptors that use light to drive protein structural changes, which in turn trigger physiological reaction cascades. The process starts with a double-bond photoisomerization of the linear methine-bridged tetrapyrrole chromophore in the photosensory core module. The molecular mechanism of the photoconversion depends on the structural and electrostatic properties of the chromophore environment, which are highly conserved in related phytochromes. However, the specific role of individual amino acids is yet not clear. A histidine in the vicinity of the isomerization site is highly conserved and almost invariant among all phytochromes. The present study aimed at analyzing its role by taking advantage of a myxobacterial phytochrome SaBphP1 from Stigmatella aurantiaca, where this histidine is naturally substituted with a threonine (Thr289), and comparing it to its normal, His-containing counterpart from the same organism SaBphP2 (His275). We have carried out a detailed resonance Raman and IR spectroscopic investigation of the wild-type proteins and their respective His- or Thr-substituted variants (SaBphP1-T289H and SaBphP2-H275T) using the well-characterized prototypical phytochrome Agp1 from Agrobacterium fabrum as a reference. The overall mechanism of the photoconversion is insensitive toward the His substitution. However, the chromophore geometry at the isomerization site appears to be affected, with a slightly stronger twist of ring D in the presence of Thr, which is sufficient to cause different light absorption properties in SaBphP1 and SaBphP2. Furthermore, the presence of His allows for multiple hydrogen-bonding interactions with the ring D carbonyl which may be the origin for the geometric differences of the C-D methine bridge compared to the Thr-containing variants. Other structural and mechanistic differences are independent of the presence of His. The most striking finding is the protonation of the ring C propionate in the Pfr states of SaBphP2, which is common among bathy phytochromes but so far has not been reported in prototypical phytochromes.
Collapse
Affiliation(s)
- Anastasia Kraskov
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité─Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Ida Shaef
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Juan C Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
59
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
60
|
Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiol Spectr 2021; 9:e0102621. [PMID: 34937179 PMCID: PMC8694187 DOI: 10.1128/spectrum.01026-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAS domains are omnipresent building blocks of multidomain proteins in all domains of life. Bacteria possess a variety of PAS domains in intracellular proteins and the related Cache domains in periplasmic or extracellular proteins. PAS and Cache domains are predominant in sensory systems, often carry cofactors or bind ligands, and serve as dimerization domains in protein association. To aid our understanding of the wide distribution of these domains, we analyzed the proteome of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 in silico. The ability of this bacterium to survive under different environmental conditions, to switch between planktonic and sessile/biofilm lifestyle, or to evade stresses, notably involves c-di-GMP regulatory proteins or depends on sensory pathways involving multidomain proteins that possess PAS or Cache domains. Maximum likelihood phylogeny was used to group PAS and Cache domains on the basis of amino acid sequence. Conservation of cofactor- or ligand-coordinating amino acids aided by structure-based comparison was used to inform function. The resulting classification presented here includes PAS domains that are candidate binders of carboxylic acids, amino acids, fatty acids, flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, and heme. These predictions are put in context to previously described phenotypic data, often generated from deletion mutants. The analysis predicts novel functions for sensory proteins and sheds light on functional diversification in a large set of proteins with similar architecture. IMPORTANCE To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to affect movement. Environmental cues also regulate intracellular levels of cyclic-di-GMP, a universal bacterial secondary messenger that is a key determinant of bacterial lifestyle and virulence. We study Pseudomonas aeruginosa, an organism known to colonize a broad range of environments that can switch lifestyle between the sessile biofilm and the planktonic swimming form. We have investigated the PAS and Cache domains, of which we identified 101 in 70 Pseudomonas aeruginosa PAO1 proteins, and have grouped these by phylogeny with domains of known structure. The resulting data set integrates sequence analysis and structure prediction to infer ligand or cofactor binding. With this data set, functional predictions for PAS and Cache domain-containing proteins are made.
Collapse
|
61
|
Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. SCIENCE ADVANCES 2021; 7:eabh1097. [PMID: 34818032 PMCID: PMC8612531 DOI: 10.1126/sciadv.abh1097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/β-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Germán L. Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario, UEM-IBR, CONICET, Bv. 27 de Febrero (S2000EZP), Rosario, Argentina
| | - Serena Sirigu
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85 (22607), Hamburg, Germany
| | - Maximiliano Sánchez-Lamas
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giovanni Battocchio
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Leonard M. G. Chavas
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
62
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
63
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
64
|
Fischer T, van Wilderen LJGW, Gnau P, Bredenbeck J, Essen LO, Wachtveitl J, Slavov C. Ultrafast Photoconversion Dynamics of the Knotless Phytochrome SynCph2. Int J Mol Sci 2021; 22:ijms221910690. [PMID: 34639031 PMCID: PMC8508867 DOI: 10.3390/ijms221910690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore’s isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
| | - Luuk J. G. W. van Wilderen
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Petra Gnau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| |
Collapse
|
65
|
Probing the structural basis of Citrus phytochrome B using computational modelling and molecular dynamics simulation approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Rumfeldt J, Kurttila M, Takala H, Ihalainen JA. The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study. Photochem Photobiol Sci 2021; 20:1173-1181. [PMID: 34460093 DOI: 10.1007/s43630-021-00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.
Collapse
Affiliation(s)
- Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
67
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
68
|
Liu X, Zhang T, Fang Q, Fang W, González L, Cui G. Hydrogen‐Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang‐Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
- College of Chemistry and Material Science Sichuan Normal University Chengdu 610068 China
| | - Teng‐Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Leticia González
- Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna Währinger Straße 17 1090 Vienna Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
69
|
Böhm C, Todorović N, Balasso M, Gourinchas G, Winkler A. The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains. J Mol Biol 2021; 433:167092. [PMID: 34116122 PMCID: PMC7615318 DOI: 10.1016/j.jmb.2021.167092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Nikolina Todorović
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Marco Balasso
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
70
|
Liu XY, Zhang TS, Fang Q, Fang WH, González L, Cui G. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angew Chem Int Ed Engl 2021; 60:18688-18693. [PMID: 34097335 PMCID: PMC8456922 DOI: 10.1002/anie.202104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited‐state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S1, T1, and S0 potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S1 electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited‐state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
71
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
72
|
Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat Commun 2021; 12:3593. [PMID: 34135337 PMCID: PMC8209157 DOI: 10.1038/s41467-021-23741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.
Collapse
Affiliation(s)
- Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Aya Suehisa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Manami Hirata
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Watanabe
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tomoko Sakami
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan.
| |
Collapse
|
73
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
74
|
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Proc Natl Acad Sci U S A 2021; 118:2024583118. [PMID: 33972439 DOI: 10.1073/pnas.2024583118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pK a, whereas they are directly hydrogen bonded in the β-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.
Collapse
|
75
|
Wahlgren WY, Golonka D, Westenhoff S, Möglich A. Cryo-Electron Microscopy of Arabidopsis thaliana Phytochrome A in Its Pr State Reveals Head-to-Head Homodimeric Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:663751. [PMID: 34108981 PMCID: PMC8182759 DOI: 10.3389/fpls.2021.663751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome photoreceptors regulate vital adaptations of plant development, growth, and physiology depending on the ratio of red and far-red light. The light-triggered Z/E isomerization of a covalently bound bilin chromophore underlies phytochrome photoconversion between the red-absorbing Pr and far-red-absorbing Pfr states. Compared to bacterial phytochromes, the molecular mechanisms of signal propagation to the C-terminal module and its regulation are little understood in plant phytochromes, not least owing to a dearth of structural information. To address this deficit, we studied the Arabidopsis thaliana phytochrome A (AtphyA) at full length by cryo-electron microscopy (cryo-EM). Following heterologous expression in Escherichia coli, we optimized the solvent conditions to overcome protein aggregation and thus obtained photochemically active, near-homogenous AtphyA. We prepared grids for cryo-EM analysis of AtphyA in its Pr state and conducted single-particle analysis. The resulting two-dimensional class averages and the three-dimensional electron density map at 17 Å showed a homodimeric head-to-head assembly of AtphyA. Docking of domain structures into the electron density revealed a separation of the AtphyA homodimer at the junction of its photosensor and effector modules, as reflected in a large void in the middle of map. The overall architecture of AtphyA resembled that of bacterial phytochromes, thus hinting at commonalities in signal transduction and mechanism between these receptors. Our work paves the way toward future studies of the structure, light response, and interactions of full-length phytochromes by cryo-EM.
Collapse
Affiliation(s)
- Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - David Golonka
- Lehrstuhl fur Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Möglich
- Lehrstuhl fur Biochemie, Universität Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
76
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
77
|
Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 2021; 29:743-754.e4. [PMID: 33756101 DOI: 10.1016/j.str.2021.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
Collapse
Affiliation(s)
- Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Juan Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Vukica Šrajer
- The University of Chicago, Center for Advanced Radiation Sources, 9700 South Cass Avenue, Bldg 434B, Argonne, IL 60439, USA
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
78
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
79
|
Sokolovski SG, Zherebtsov EA, Kar RK, Golonka D, Stabel R, Chichkov NB, Gorodetsky A, Schapiro I, Möglich A, Rafailov EU. Two-photon conversion of a bacterial phytochrome. Biophys J 2021; 120:964-974. [PMID: 33545103 DOI: 10.1016/j.bpj.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.
Collapse
Affiliation(s)
- Serge G Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland; Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Golonka
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert Stabel
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Nikolai B Chichkov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Andrei Gorodetsky
- ITMO University, St. Petersburg, Russia; Department of Chemistry, Imperial College London, London, United Kingdom; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Möglich
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Edik U Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
80
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
81
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
82
|
Stepanenko OV, Stepanenko OV, Turoverov KK, Kuznetsova IM. Probing the allostery in dimeric near-infrared biomarkers derived from the bacterial phytochromes: The impact of the T204A substitution on the inter-monomer interaction. Int J Biol Macromol 2020; 162:894-902. [PMID: 32569685 DOI: 10.1016/j.ijbiomac.2020.06.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
In dimeric near-infrared (NIR) biomarkers engineered from bacterial phytochromes the covalent binding of BV to the cysteine residue in one monomer of a protein allosterically prevents the chromophore embedded into the pocket of the other monomer from the covalent binding to the cysteine residue. In this work, we analyzed the impact on inter-monomeric allosteric effects in dimeric NIR biomarkers of substitutions at position 204, one of the target residues of mutagenesis at the evolution of these proteins. The T204A substitution in iRFP713, developed on the basis of RpBphP2, and in its mutant variant iRFP713/C15S/V256C, in which the ligand covalent attachment site was changed, resulted in the rearrangement of the hydrogen bond network joining the chromophore with the adjacent amino acids and bound water molecules in its local environment. The change in the intramolecular contacts between the chromophore and its protein environment in iRFP713/C15S/V256C caused by the T204A substitution reduced the negative cooperativity of cofactor binding. We discuss the possible influence of cross-talk between monomers the functioning of full-length phytochromes.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| |
Collapse
|
83
|
Fushimi K, Matsunaga T, Narikawa R. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Photochem Photobiol Sci 2020; 19:1289-1299. [PMID: 32789394 DOI: 10.1039/d0pp00208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanobacteriochrome photoreceptors (CBCRs) ligate linear tetrapyrrole chromophores via their first (canonical) Cys residue and show reversible photoconversion triggered by light-dependent Z/E isomerization of the chromophore. Among the huge repertoire of CBCRs, DXCF CBCRs contain a second Cys residue within the highly conserved Asp-Xaa-Cys-Phe (DXCF) motif. In the typical receptors, the second Cys covalently attaches to the 15Z-chromophore in the dark state and detaches from the 15E-chromophore in the photoproduct state, whereas atypical ones that lack reversible ligation activity show red-shifted absorption in the dark state due to a more extended π-conjugated system. Moreover, some DXCF CBCRs show blue-shifted absorption in the photoproduct state due to the twisted geometry of the rotating ring. During the process of rational color tuning of a certain DXCF CBCR, we unexpectedly found that twisted photoproducts of some variant molecules showed dark reversion to the dark state, which prompted us to hypothesize that the photoproduct is destabilized by the twisted geometry of the rotating ring. In this study, we comprehensively examined the photoproduct stability of the twisted and relaxed molecules derived from the same CBCR scaffolds under dark conditions. In the DXCF CBCRs lacking reversible ligation activity, the twisted photoproducts showed faster dark reversion than the relaxed ones, supporting our hypothesis. By contrast, in the DXCF CBCRs exhibiting reversible ligation activity, the twisted photoproducts showed no detectable photoconversion. Reversible Cys adduct formation thus results in drastic rearrangement of the protein-chromophore interaction in the photoproduct state, which would contribute to the previously unknown photoproduct stability.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takumi Matsunaga
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan. and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| |
Collapse
|
84
|
Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, Karlsson G, Orekhov V, Westenhoff S. Signaling Mechanism of Phytochromes in Solution. Structure 2020; 29:151-160.e3. [PMID: 32916102 DOI: 10.1016/j.str.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.
Collapse
Affiliation(s)
- Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Göran Karlsson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
85
|
Rasoulinejad S, Mueller M, Nzigou Mombo B, Wegner SV. Orthogonal Blue and Red Light Controlled Cell-Cell Adhesions Enable Sorting-out in Multicellular Structures. ACS Synth Biol 2020; 9:2076-2086. [PMID: 32610009 PMCID: PMC7757848 DOI: 10.1021/acssynbio.0c00150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
The self-assembly of different cell
types into multicellular structures
and their organization into spatiotemporally controlled patterns are
both challenging and extremely powerful to understand how cells function
within tissues and for bottom-up tissue engineering. Here, we not
only independently control the self-assembly of two cell types into
multicellular architectures with blue and red light, but also achieve
their self-sorting into distinct assemblies. This required developing
two cell types that form selective and homophilic cell–cell
interactions either under blue or red light using photoswitchable
proteins as artificial adhesion molecules. The interactions were individually
triggerable with different colors of light, reversible in the dark,
and provide noninvasive and temporal control over the cell–cell
adhesions. In mixtures of the two cells, each cell type self-assembled
independently upon orthogonal photoactivation, and cells sorted out
into separate assemblies based on specific self-recognition. These
self-sorted multicellular architectures provide us with a powerful
tool for producing tissue-like structures from multiple cell types
and investigate principles that govern them.
Collapse
Affiliation(s)
- Samaneh Rasoulinejad
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Marc Mueller
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster Waldeyerstrasse 15, Münster, 48149, Germany
| | - Seraphine V. Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster Waldeyerstrasse 15, Münster, 48149, Germany
| |
Collapse
|
86
|
Kim Y, Xu QZ, Zhao KH, Gärtner W, Matysik J, Song C. Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. J Phys Chem B 2020; 124:7115-7127. [PMID: 32693592 DOI: 10.1021/acs.jpcb.0c03431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria sense and respond to various colors of light employing a large number of bilin-based phytochrome-like photoreceptors. All2699 from Nostoc 7120 has three consecutive GAF domains with GAF1 and GAF3 binding a phycocyanobilin chromophore. GAF1, even when expressed independently, can be photoconverted between red-absorbing Pr and far-red-absorbing Pfr states, while the nonphotosensory GAF2 domain is structurally and functionally homologous to the PHY domains in canonical and Cph2-like phytochromes. Here, we characterize possible bilin chromophore conformers using solid-state NMR spectroscopy on the two lyophilized All2699 samples (GAF1-only and GAF1-PHY constructs). On the basis of complete 1H, 13C, and 15N assignments for the chromophore obtained on the two Pr lyophilizates, multiple static conformations of the chromophore in both cases are identified. Moreover, most atoms of the chromophore in the bidomain sample show only subtle changes in the mean chemical shifts relative to those in frozen solution (FS), indicating an optimized interaction of the GAF2 domain with the GAF1-bound chromophore. Our results confirm the conservation of key chromophore-protein interactions and the photoreversibility in both All2699 lyophilizates, offering the possibility to investigate conformational distributions of the heterogeneous chromophore and its functional consequences in phytochromes and other bilin-dependent photoreceptors intractable by the solid-state NMR technique as FSs.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
87
|
Golonka D, Gerken U, Köhler J, Möglich A. The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions. J Mol Biol 2020; 432:4327-4340. [PMID: 32534065 DOI: 10.1016/j.jmb.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023]
Abstract
Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of A. thaliana phytochrome B under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only 3-fold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.
Collapse
Affiliation(s)
- David Golonka
- Lehrstuhl für Biochemie, Photobiochemie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Uwe Gerken
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Jürgen Köhler
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany; Bayerisches Polymer Institut, Universität Bayreuth, 95447 Bayreuth, Germany; Bayreuther Institut für Makromolekülforschung, 95447 Bayreuth, Germany.
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Photobiochemie, Universität Bayreuth, 95447 Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
88
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
89
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
90
|
Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc Natl Acad Sci U S A 2020; 117:15573-15580. [PMID: 32571944 DOI: 10.1073/pnas.2004273117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Collapse
|
91
|
Xu QZ, Goett-Zink L, Gärtner W, Zhao KH, Kottke T. Tongue Refolding in the Knotless Cyanobacterial Phytochrome All2699. Biochemistry 2020; 59:2047-2054. [DOI: 10.1021/acs.biochem.0c00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lukas Goett-Zink
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
92
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
93
|
Nagano S, Guan K, Shenkutie SM, Feiler C, Weiss M, Kraskov A, Buhrke D, Hildebrandt P, Hughes J. Structural insights into photoactivation and signalling in plant phytochromes. NATURE PLANTS 2020; 6:581-588. [PMID: 32366982 DOI: 10.1038/s41477-020-0638-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 05/11/2023]
Abstract
Plant phytochromes are red/far-red photochromic photoreceptors that act as master regulators of development, controlling the expression of thousands of genes. Here, we describe the crystal structures of four plant phytochrome sensory modules, three at about 2 Å resolution or better, including the first of an A-type phytochrome. Together with extensive spectral data, these structures provide detailed insight into the structure and function of plant phytochromes. In the Pr state, the substitution of phycocyanobilin and phytochromobilin cofactors has no structural effect, nor does the amino-terminal extension play a significant functional role. Our data suggest that the chromophore propionates and especially the phytochrome-specific domain tongue act differently in plant and prokaryotic phytochromes. We find that the photoproduct in period-ARNT-single-minded (PAS)-cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA (GAF) bidomains might represent a novel intermediate between MetaRc and Pfr. We also discuss the possible role of a likely nuclear localization signal specific to and conserved in the phytochrome A lineage.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | - Kaoling Guan
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | | | - Christian Feiler
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Manfred Weiss
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Anastasia Kraskov
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany.
| |
Collapse
|
94
|
Abstract
Extremely short X-ray pulses from a free-electron laser are helping to clarify how phytochromes respond to light, but puzzles remain.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
95
|
Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife 2020; 9:53514. [PMID: 32228856 PMCID: PMC7164956 DOI: 10.7554/elife.53514] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/13/2020] [Indexed: 01/27/2023] Open
Abstract
Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light. Plants adapt to the availability of light throughout their lives because it regulates so many aspects of their growth and reproduction. To detect the level of light, plant cells use proteins called phytochromes, which are also found in some bacteria and fungi. Phytochrome proteins change shape when they are exposed to red light, and this change alters the behaviour of the cell. The red light is absorbed by a molecule known as chromophore, which is connected to a region of the phytochrome called the PHY-tongue. This region undergoes one of the key structural changes that occur when the phytochrome protein absorbs light, turning from a flat sheet into a helix. Claesson, Wahlgren, Takala et al. studied the structure of a bacterial phytochrome protein almost immediately after shining a very brief flash of red light using a laser. The experiments revealed that the structure of the protein begins to change within a trillionth of a second: specifically, the chromophore twists, which disrupts its attachment to the protein, freeing the protein to change shape. Claesson, Wahlgren, Takala et al. note that this structure is likely a very short-lived intermediate state, which however triggers more changes in the overall shape change of the protein. One feature of the rearrangement is the disappearance of a particular water molecule. This molecule can be found at the core of many different phytochrome structures and interacts with several parts of the chromophore and the phytochrome protein. It is unclear why the water molecule is lost, but given how quickly this happens after the red light is applied it is likely that this disappearance is an integral part of the reshaping process. Together these events disrupt the interactions between the chromophore and the PHY-tongue, enabling the PHY-tongue to change shape and alter the structure of the phytochrome protein. Understanding and controlling this process could allow scientists to alter growth patterns in plants, such as crops or weeds.
Collapse
Affiliation(s)
- Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rahul Nanekar
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dmitry Morozov
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Moona Kurttila
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Gerrit Groenhof
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, United States
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
96
|
Lkhamkhuu E, Zikihara K, Katsura H, Tokutomi S, Hosokawa T, Usami Y, Ichihashi M, Yamaguchi J, Monde K. Effect of circularly polarized light on germination, hypocotyl elongation and biomass production of arabidopsis and lettuce: Involvement of phytochrome B. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:57-67. [PMID: 32362749 PMCID: PMC7193831 DOI: 10.5511/plantbiotechnology.19.1219a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Circular dichroism (CD), defined as the differential absorption of left- and right-handed circularly polarized light (CPL), is a useful spectroscopic technique for structural studies of biological systems composed of chiral molecules. The present study evaluated the effects of CPL on germination, hypocotyl elongation and biomass production of Arabidopsis and lettuce. Higher germination rates were observed when Arabidopsis and lettuce seedlings were irradiated with red right-handed CPL (R-CPL) than with red left-handed CPL (L-CPL). Hypocotyl elongation was effectively inhibited when Arabidopsis and lettuce seedlings were irradiated with red R-CPL than with red L-CPL. This difference was not observed when a phytochrome B (phyB) deficient mutant of Arabidopsis was irradiated, suggesting that inhibition of elongation by red R-CPL was mediated by phyB. White R-CPL induced greater biomass production by adult Arabidopsis plants, as determined by their fresh shoot weight, than white L-CPL. To determine the molecular basis of these CPL effects, CD spectra and the effect of CPL on the photoreaction of a sensory module of Arabidopsis phyB were measured. The red light-absorbing form of phyB showed a negative CD in the red light-absorbing region, consistent with the results of germination, inhibition of hypocotyl elongation and biomass production. L-CPL and R-CPL, however, did not differ in their ability to induce the interconversion of the red light-absorbing and far-red light-absorbing forms of phyB. These findings suggest that these CPL effects involve phyB, along with other photoreceptors and the photosynthetic process.
Collapse
Affiliation(s)
- Enkhsukh Lkhamkhuu
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Hitomi Katsura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531
- Botanical Gardens, Tohoku University, Sendai, Miyagi 980-0862, Japan
| | - Takafumi Hosokawa
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Yoshihisa Usami
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Mitsuyoshi Ichihashi
- Research and Development Management Headquarters, Fuji Film Corporation, Kanagawa 258-8577, Japan
| | - Junji Yamaguchi
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Monde
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
97
|
Song JY, Lee HY, Yang HW, Song JJ, Lagarias JC, Park YI. Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes. J Biol Chem 2020; 295:6754-6766. [PMID: 32184354 DOI: 10.1074/jbc.ra120.012950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Indexed: 11/06/2022] Open
Abstract
The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.
Collapse
Affiliation(s)
- Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ha Yong Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Joon Song
- Department of Biological Science and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
98
|
Sadeghi M, Balke J, Schneider C, Nagano S, Stellmacher J, Lochnit G, Lang C, Weise C, Hughes J, Alexiev U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020; 59:1051-1062. [PMID: 32069394 DOI: 10.1021/acs.biochem.9b00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Jens Balke
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Constantin Schneider
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Soshichiro Nagano
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Günter Lochnit
- Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany
| | - Christina Lang
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Chris Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany
| | - Jon Hughes
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| |
Collapse
|
99
|
Hörner M, Yousefi OS, Schamel WWA, Weber W. Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics. Bio Protoc 2020; 10:e3541. [PMID: 33659515 PMCID: PMC7842835 DOI: 10.21769/bioprotoc.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
100
|
Battocchio G, González R, Rao AG, Schapiro I, Mroginski MA. Dynamic Properties of the Photosensory Domain of Deinococcus radiodurans Bacteriophytochrome. J Phys Chem B 2020; 124:1740-1750. [PMID: 31999119 DOI: 10.1021/acs.jpcb.0c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological photoreceptors found in all kingdoms of life. Numerous physicochemical and spectroscopic studies of phytochromes have been carried out for many decades, both experimentally and computationally, with the main focus on the photoconversion mechanism involving a tetrapyrrole chromophore. In this computational work, we concentrate on the long-scale dynamic motion of the photosensory domain of Deinococcus radiodurans by means of classical all-atom molecular dynamics (MD) simulations. Conventional and accelerated MD methods in combination with two different force fields, CHARMM27 and AMBER ff14SB, are tested in long atomistic simulations to confront the dynamics of monomer and dimer forms. These calculations highlight dissimilar equilibrium conformations in aqueous solutions and, in turn, different large-scale dynamic behaviors of the monomer form vs the dimer form. While the phytochrome in a monomer form tends to close the cavity entailed between the GAF and PHY domains, the opposite trend is predicted for the phytochrome dimer, which opens up as a consequence of the formation of strong salt bridges between the PHY domains of two molecules in water.
Collapse
Affiliation(s)
- Giovanni Battocchio
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|