51
|
Huang Y, Cai M, Clore GM, Craigie R. No interaction of barrier-to-autointegration factor (BAF) with HIV-1 MA, cone-rod homeobox (Crx) or MAN1-C in absence of DNA. PLoS One 2011; 6:e25123. [PMID: 21966431 PMCID: PMC3178605 DOI: 10.1371/journal.pone.0025123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
Barrier-to-autointegration factor is a cellular protein that protects retroviral DNA from autointegration. Its cellular role is not well understood, but genetic studies show that it is essential and depletion or knockout results in lethal nuclear defects. In addition to binding DNA, BAF interacts with the LEM domain, a domain shared among a family of lamin-associated polypeptides. BAF has also been reported to interact with several other viral and cellular proteins suggesting that these interactions may be functionally relevant. We find that, contrary to previous reports, BAF does not interact with HIV-1 MA, cone-rod homeobox (Crx) or MAN1-C. The reported interactions can be explained by indirect association through DNA binding and are unlikely to be biologically relevant. A mutation that causes a premature aging syndrome lies on the previously reported MAN1-C binding surface of BAF. The absence of direct binding of BAF to MAN1-C eliminates disruption of this interaction as the cause of the premature aging phenotype.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
52
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
53
|
Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus. J Virol 2011; 85:11588-600. [PMID: 21880762 DOI: 10.1128/jvi.00641-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The barrier to autointegration factor (BAF) is an essential cellular protein with functions in mitotic nuclear reassembly, retroviral preintegration complex stability, and transcriptional regulation. Molecular properties of BAF include the ability to bind double-stranded DNA in a sequence-independent manner, homodimerize, and bind proteins containing a LEM domain. These capabilities allow BAF to compact DNA and assemble higher-order nucleoprotein complexes, the nature of which is poorly understood. Recently, it was revealed that BAF also acts as a potent host defense against poxviral DNA replication in the cytoplasm. Here, we extend these observations by examining the molecular mechanism through which BAF acts as a host defense against vaccinia virus replication and cytoplasmic DNA in general. Interestingly, BAF rapidly relocalizes to transfected DNA from a variety of sources, demonstrating that BAF's activity as a host defense factor is not limited to poxviral infection. BAF's relocalization to cytoplasmic foreign DNA is highly dependent upon its DNA binding and dimerization properties but does not appear to require its LEM domain binding activity. However, the LEM domain protein emerin is recruited to cytoplasmic DNA in a BAF-dependent manner during both transfection and vaccinia virus infection. Finally, we demonstrate that the DNA binding and dimerization capabilities of BAF are essential for its function as an antipoxviral effector, while the presence of emerin is not required. Together, these data provide further mechanistic insight into which of BAF's molecular properties are employed by cells to impair the replication of poxviruses or respond to foreign DNA in general.
Collapse
|
54
|
HIV DNA is heavily uracilated, which protects it from autointegration. Proc Natl Acad Sci U S A 2011; 108:9244-9. [PMID: 21576478 DOI: 10.1073/pnas.1102943108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immune cells infected by HIV naturally contain high uracil content, and HIV reverse transcriptase (RT) does not distinguish between dUTP and dTTP. Many DNA viruses and retroviruses encode a dUTPase or uracil-DNA glycosylase (UNG) to counteract uracil incorporation. However, although HIV virions are thought to contain cellular UNG2, replication of HIV produced in cells lacking UNG activity does not appear to be impaired. Here we show that HIV reverse transcripts generated in primary human immune cells are heavily uracilated (>500 uracils per 10 kb HIV genome). We find that HIV DNA uracilation, rather than being dangerous, may promote the early phase of the viral life cycle. Shortly after reverse transcription, the ends of the HIV DNA are activated by the viral integrase (IN) in preparation for chromosomal insertion. However, the activated ends can attack the viral DNA itself in a suicidal side pathway, called autointegration. We find here that uracilation of target DNA inhibits the strand transfer of HIV DNA ends by IN, thereby inhibiting autointegration and facilitating chromosomal integration and viral replication. When uracilation is increased by incubating uracil-poor cells in the presence of increasing concentrations of dUTP or by infecting with virus that contains the cytosine deaminase APOBEC3G (A3G), the proportion of reverse transcripts that undergo suicidal autointegration decreases. Thus, HIV tolerates, or even benefits from, nonmutagenic uracil incorporation during reverse transcription in human immune cells.
Collapse
|
55
|
Xiao B, Zhang H, Johnson RC, Marko JF. Force-driven unbinding of proteins HU and Fis from DNA quantified using a thermodynamic Maxwell relation. Nucleic Acids Res 2011; 39:5568-77. [PMID: 21427084 PMCID: PMC3141252 DOI: 10.1093/nar/gkr141] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining numbers of proteins bound to large DNAs is important for understanding their chromosomal functions. Protein numbers may be affected by physical factors such as mechanical forces generated in DNA, e.g. by transcription or replication. We performed single-DNA stretching experiments with bacterial nucleoid proteins HU and Fis, verifying that the force-extension measurements were in thermodynamic equilibrium. We, therefore, could use a thermodynamic Maxwell relation to deduce the change of protein number on a single DNA due to varied force. For the binding of both HU and Fis under conditions studied, numbers of bound proteins decreased as force was increased. Our experiments showed that most of the bound HU proteins were driven off the DNA at 6.3 pN for HU concentrations lower than 150 nM; our HU data were fit well by a statistical-mechanical model of protein-induced bending of DNA. In contrast, a significant amount of Fis proteins could not be forced off the DNA at forces up to 12 pN and Fis concentrations up to 20 nM. This thermodynamic approach may be applied to measure changes in numbers of a wide variety of molecules bound to DNA or other polymers. Force-dependent DNA binding by proteins suggests mechano-chemical mechanisms for gene regulation.
Collapse
Affiliation(s)
- Botao Xiao
- Department of Physics and Astronomy, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
56
|
Liebesny P, Goyal S, Dunlap D, Family F, Finzi L. Determination of the number of proteins bound non-specifically to DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:414104. [PMID: 21386587 PMCID: PMC3653182 DOI: 10.1088/0953-8984/22/41/414104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have determined the change in the number of proteins bound non-specifically to DNA as a function of applied force using force-extension measurements on tethered DNA. Using magnetic tweezers, single molecules of λ DNA were repeatedly stretched and relaxed in the absence and presence of 170 nM λ repressor protein (CI). CI binds to six specific sites of λ DNA with nanomolar affinity and also binds non-specifically with micromolar affinity. The force versus extension data were analyzed using a recently developed theoretical framework for quantitative determination of protein binding to the DNA. The results indicate that the non-specific binding of CI changes the force-extension relation significantly in comparison to that of naked DNA. The DNA tether used in our experiment would have about 640 bound repressors, if it was completely saturated with bound proteins. We find that as the pulling force on DNA is reduced from 4.81 to 0.13 pN, approximately 138 proteins bind to DNA, which is about 22% of the length of the tethered DNA. Our results show that 0.13 pN is not low enough to cause saturation of DNA by repressor and 4.81 pN is also not high enough to eliminate all the repressors bound to DNA. This demonstrates that the force-extension relation provides an effective approach for estimating the number of proteins bound non-specifically to a DNA molecule.
Collapse
Affiliation(s)
- Paul Liebesny
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Sachin Goyal
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
57
|
Xiao B, Johnson RC, Marko JF. Modulation of HU-DNA interactions by salt concentration and applied force. Nucleic Acids Res 2010; 38:6176-85. [PMID: 20497998 PMCID: PMC2952867 DOI: 10.1093/nar/gkq435] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HU is one of the most abundant proteins in bacterial chromosomes and participates in nucleoid compaction and gene regulation. We report experiments using DNA stretching that study the dependence of DNA condensation by HU on force, salt and HU concentration. Previous experiments at sub-physiological salt levels revealed that low concentrations of HU could compact DNA, whereas larger HU concentrations formed a DNA-stiffening complex. Here we report that this bimodal binding behavior depends sensitively on salt concentration. Only the compaction mode was observed for 150 mM and higher NaCl levels, i.e. for physiological salt concentrations. Similar results were obtained for the more physiological salt K-glutamate. Real-time studies of dissociation kinetics revealed that HU unbound slowly (minutes to hours under the conditions studied) but completely for salt concentrations at or above 100 mM NaCl; the lifetime of HU complexes was observed to increase with the HU concentration at which the complexes were formed, and to decrease with salt concentration. Higher salt levels of 300 mM NaCl completely eliminated observable HU binding to DNA. Finally, we observed that the dissociation kinetics depend on force applied to the DNA: increased applied force in the sub-piconewton range accelerates dissociation, suggesting a mechanism for DNA tension to regulate chromosome structure and gene expression.
Collapse
Affiliation(s)
- Botao Xiao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
58
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|