51
|
Abstract
Tremor is clinically defined as a rhythmic, oscillating movement of parts of the body, which functionally leads to impairment of the coordination and execution of targeted movements. It can be a symptom of a primary disease, such as resting tremor in Parkinson's disease or occur as an independent disease, such as essential or orthostatic tremor. For the development of tremor, cerebral components as well as mechanisms at the spinal and muscular level play an important role. This review presents the results of new imaging and electrophysiological studies that have led to important advances in our understanding of the pathophysiology of tremor. We discuss pathophysiological models for the development of resting tremor in Parkinson's disease, essential and orthostatic tremor. We describe recent developments starting from the classical generator model, with an onset of pathological oscillations in distinct cerebral regions, to a network perspective in which tremor arises and spreads through existing anatomical or newly emerged pathological brain networks. In particular translational approaches are presented and discussed. These could serve in the future as a basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- M Muthuraman
- Sektion für Bewegungsstörungen und Neurostimulation, Biomedizinische Statistik und multimodale Signalverarbeitung, Klinik und Poliklinik für Neurologie, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| | - A Schnitzler
- Klinik für Neurologie, Universitätsklinik Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Deutschland
| | - S Groppa
- Sektion für Bewegungsstörungen und Neurostimulation, Biomedizinische Statistik und multimodale Signalverarbeitung, Klinik und Poliklinik für Neurologie, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
52
|
Yin L, Cheng S, Xiao J, Zhu Y, Bu S, Zhang X, Liu R, Huang Y, Xie S. 3D pseudocontinuous arterial spin-labeling perfusion imaging detected crossed cerebellar diaschisis in acute, subacute and chronic intracerebral hemorrhage. Clin Imaging 2017; 50:37-42. [PMID: 29258030 DOI: 10.1016/j.clinimag.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We aimed to evaluate the value of 3D pseudocontinuous arterial spin-labeling (pCASL) perfusion imaging detected crossed cerebellar diaschisis (CCD) at different stages of intracerebral hemorrhage (ICH). MATERIALS AND METHODS We assessed bilateral cerebral blood flow (CBF) values of different brain regions and the relationships between the CCD and clinical status of 16 ICH patients. RESULTS The ICH patients had significantly lower CBF values in the contralateral cerebellum in acute, subacute and chronic stages. The subacute CCD had a significant correlation with clinical status. CONCLUSIONS 3D pCASL may be an ideal tool to study the phenomenon and clinical consequences of ICH with CCD.
Collapse
Affiliation(s)
- Liang Yin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Shuangjuan Cheng
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China.
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Shanshan Bu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japanese Friendship Hospital, Beijing, China
| |
Collapse
|
53
|
Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? THE CEREBELLUM 2017; 17:359-371. [DOI: 10.1007/s12311-017-0906-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
54
|
Kunz WG, Sommer WH, Höhne C, Fabritius MP, Schuler F, Dorn F, Othman AE, Meinel FG, von Baumgarten L, Reiser MF, Ertl-Wagner B, Thierfelder KM. Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome. J Cereb Blood Flow Metab 2017; 37:3615-3624. [PMID: 28084869 PMCID: PMC5669343 DOI: 10.1177/0271678x16686594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral cerebellar hemisphere caused by dysfunction of the related supratentorial region. Our aim was to analyze its influence on morphologic and functional outcome in acute ischemic stroke. Subjects with stroke caused by a large vessel occlusion of the anterior circulation were selected from an initial cohort of 1644 consecutive patients who underwent multiparametric CT including whole-brain CT perfusion. Two experienced readers evaluated the posterior fossa in terms of CCD absence (CCD-) or presence (CCD+). A total of 156 patients formed the study cohort with 102 patients (65.4%) categorized as CCD- and 54 (34.6%) as CCD+. In linear and logistic regression analyses, no significant association between CCD and final infarction volume (β = -0.440, p = 0.972), discharge mRS ≤ 2 (OR = 1.897, p = 0.320), or 90-day mRS ≤ 2 (OR = 0.531, p = 0.492) was detected. CCD+ patients had larger supratentorial cerebral blood flow deficits (median: 164 ml vs. 115 ml; p = 0.001) compared to CCD-patients. Regarding complications, CCD was associated with a higher rate of parenchymal hematomas (OR = 4.793, p = 0.035). In conclusion, CCD is frequently encountered in acute ischemic stroke caused by large vessel occlusion of the anterior circulation. CCD was associated with the occurrence of parenchymal hematoma in the ipsilateral cerebral infarction but did not prove to significantly influence patient outcome.
Collapse
Affiliation(s)
- Wolfgang G Kunz
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Wieland H Sommer
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Christopher Höhne
- 2 Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Matthias P Fabritius
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Felix Schuler
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franziska Dorn
- 3 Department of Neuroradiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Ahmed E Othman
- 4 Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen, Germany
| | - Felix G Meinel
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Louisa von Baumgarten
- 2 Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F Reiser
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Kolja M Thierfelder
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
55
|
Hu ZL, Xia HH, Yang YJ, Zheng H, Zhao LC, Chen YC, Zhuge QC, Xia NZ, Gao HC, Chen WJ. Metabolic alterations in the rat cerebellum following acute middle cerebral artery occlusion, as determined by 1H NMR spectroscopy. Mol Med Rep 2017; 17:531-541. [PMID: 29115616 DOI: 10.3892/mmr.2017.7918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
Supratentorial focal ischemia may reduce cerebral blood volume and cerebellar glucose metabolic rate contralateral to the region of ischemia. The present study investigated the effects of middle cerebral artery occlusion (MCAO) on cerebral metabolism in the ischemic cerebral hemisphere and the non‑ischemic cerebellum in rats 1, 3, 9 and 24 h following ischemia using ex vivo proton nuclear magnetic resonance (1H NMR) spectroscopy. The results demonstrated that focal ischemia induced increases in the levels of lactate and alanine, and a decrease in succinate, as early as 1 h following ischemia in the left cerebral hemisphere and the right cerebellum. A continuous increase in lactate levels and decrease in creatine levels were detected in both cerebral areas 3 and 24 h post‑MCAO. The most obvious difference between the two cerebral areas was that there was no statistically significant difference in N‑acetyl aspartate (NAA) levels in the right cerebellum at all time points; however, the amino acid levels of NAA in the left cerebral hemisphere were markedly decreased 3, 9 and 24 h post‑MCAO. In addition, an obvious increase in glutamine was observed in the right and left cerebellum at 3, 9 and 24 h post‑MCAO. Furthermore, the present study demonstrated that γ‑aminobutyric acid levels were decreased at 1 h in the left and right cerebellum and were evidently increased at 24 h in the right cerebellum post‑MCAO. In conclusion, supratentorial ischemia has been indicated to affect the activities of the non‑ischemic contralateral cerebellum. Therefore, these results suggested that an NMR‑based metabonomic approach may be used as a potential means to elucidate cerebral and cerebellar metabolism following MCAO, which may help improve understanding regarding cerebral infarction at a molecular level. Ex vivo 1H NMR analysis may be useful for the assessment of clinical biopsies.
Collapse
Affiliation(s)
- Zi-Long Hu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| | - Huan-Huan Xia
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yun-Jun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| | - Hong Zheng
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liang-Cai Zhao
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yong-Chun Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi-Chuan Zhuge
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| | - Neng-Zhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| | - Hong-Chang Gao
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wei-Jian Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University/Zhejiang Province Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
56
|
Acosta SA, Mashkouri S, Nwokoye D, Lee JY, Borlongan CV. Chronic inflammation and apoptosis propagate in ischemic cerebellum and heart of non-human primates. Oncotarget 2017; 8:102820-102834. [PMID: 29262526 PMCID: PMC5732692 DOI: 10.18632/oncotarget.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023] Open
Abstract
The major pathological consequences of cerebral ischemia are characterized by neurological deficits commonly ascribed to the infarcted tissue and its surrounding region, however, brain areas, as well as peripheral organs, distal from the original injury may manifest as subtle disease sequelae that can increase the risks of co-morbidities complicating the disease symptoms. To evaluate the vulnerability of the cerebellum and the heart to secondary injuries in the late stage of transient global ischemia (TGI) model in non-human primates (NHP), brain and heart tissues were collected at six months post-TGI. Unbiased stereological analyses of immunostained tissues showed significant Purkinje cells loss in lobule III and lobule IX of the TGI cerebellum relative to sham cerebellum, with corresponding upregulation of inflammatory and apoptotic cells. Similarly, TGI hearts revealed significant activation of inflammatory and apoptotic cells relative to sham hearts. Aberrant inflammation and apoptosis in the cerebellum and the heart of chronic TGI-exposed NHPs suggest distal secondary injuries manifesting both centrally and peripherally. These results advance our understanding on the sustained propagation of chronic secondary injuries after TGI, highlighting the need to develop therapeutic interventions targeting the brain, as well as the heart, in order to abrogate cerebral ischemia and its related co-morbidities.
Collapse
Affiliation(s)
- Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Sherwin Mashkouri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Diana Nwokoye
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jea Y Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
57
|
Kang KM, Sohn CH, Choi SH, Jung KH, Yoo RE, Yun TJ, Kim JH, Park SW. Detection of crossed cerebellar diaschisis in hyperacute ischemic stroke using arterial spin-labeled MR imaging. PLoS One 2017; 12:e0173971. [PMID: 28323841 PMCID: PMC5360263 DOI: 10.1371/journal.pone.0173971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
Background and purpose Arterial spin-labeling (ASL) was recently introduced as a noninvasive method to evaluate cerebral hemodynamics. The purposes of this study were to assess the ability of ASL imaging to detect crossed cerebellar diaschisis (CCD) in patients with their first unilateral supratentorial hyperacute stroke and to identify imaging or clinical factors significantly associated with CCD. Materials and methods We reviewed 204 consecutive patients who underwent MRI less than 8 hours after the onset of stroke symptoms. The inclusion criteria were supratentorial abnormality in diffusion-weighted images in the absence of a cerebellar or brain stem lesion, bilateral supratentorial infarction, subacute or chronic infarction, and MR angiography showing vertebrobasilar system disease. For qualitative analysis, asymmetric cerebellar hypoperfusion in ASL images was categorized into 3 grades. Quantitative analysis was performed to calculate the asymmetric index (AI). The patients’ demographic and clinical features and outcomes were recorded. Univariate and multivariate analyses were also performed. Results A total of 32 patients met the inclusion criteria, and 24 (75%) presented CCD. Univariate analyses revealed more frequent arterial occlusions, higher diffusion-weighted imaging (DWI) lesion volumes and higher initial NIHSS and mRS scores in the CCD-positive group compared with the CCD-negative group (all p < .05). The presence of arterial occlusion and the initial mRS scores were related with the AI (all p < .05). Multivariate analyses revealed that arterial occlusion and the initial mRS scores were significantly associated with CCD and AI. Conclusion ASL imaging could detect CCD in 75% of patients with hyperacute infarction. We found that CCD was more prevalent in patients with arterial occlusion, larger ischemic brain volumes, and higher initial NIHSS and mRS scores. In particular, vessel occlusion and initial mRS score appeared to be significantly related with CCD pathophysiology in the hyperacute stage.
Collapse
Affiliation(s)
- Koung Mi Kang
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- * E-mail:
| | - Seung Hong Choi
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Jin Yun
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-hoon Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun-Won Park
- Department of Radiology, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| |
Collapse
|
58
|
Chan HH, Cooperrider JL, Park HJ, Wathen CA, Gale JT, Baker KB, Machado AG. Crossed Cerebellar Atrophy of the Lateral Cerebellar Nucleus in an Endothelin-1-Induced, Rodent Model of Ischemic Stroke. Front Aging Neurosci 2017; 9:10. [PMID: 28261086 PMCID: PMC5313508 DOI: 10.3389/fnagi.2017.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
Crossed cerebellar diaschisis (CCD) is a functional deficit of the cerebellar hemisphere resulting from loss of afferent input consequent to a lesion of the contralateral cerebral hemisphere. It is manifested as a reduction of metabolism and blood flow and, depending on severity and duration, it can result in atrophy, a phenomenon known as crossed cerebellar atrophy (CCA). While CCA has been well-demonstrated in humans, it remains poorly characterized in animal models of stroke. In this study we evaluated the effects of cerebral cortical ischemia on contralateral cerebellar anatomy using an established rodent model of chronic stroke. The effects of cortical ischemia on the cerebellar hemispheres, vermis and deep nuclei were characterized. Intracortical microinjections of endothelin-1 (ET-1) were delivered to the motor cortex of Long Evans rats to induce ischemic stroke, with animals sacrificed 6 weeks later. Naive animals served as controls. Cerebral sections and cerebellar sections including the deep nuclei were prepared for analysis with Nissl staining. Cortical ischemia was associated with significant thickness reduction of the molecular layer at the Crus 1 and parafloccular lobule (PFL), but not in fourth cerebellar lobule (4Cb), as compared to the ipsilesional cerebellar hemisphere. A significant reduction in volume and cell density of the lateral cerebellar nucleus (LCN), the rodent correlate of the dentate nucleus, was also noted. The results highlight the relevance of corticopontocerebellar (CPC) projections for cerebellar metabolism and function, including its direct projections to the LCN.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | - Jessica L Cooperrider
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Hyun-Joo Park
- Center for Neurological Restoration, Cleveland Clinic Cleveland, OH, USA
| | - Connor A Wathen
- Center for Neurological Restoration, Cleveland Clinic Cleveland, OH, USA
| | - John T Gale
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA; Center for Neurological Restoration, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
59
|
Yang WH, Lin SP, Chang ST. Case report: Rapid improvement of crossed cerebellar diaschisis after intravascular laser irradiation of blood in a case of stroke. Medicine (Baltimore) 2017; 96:e5646. [PMID: 28079797 PMCID: PMC5266159 DOI: 10.1097/md.0000000000005646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Crossed cerebellar diaschisis (CCD) is a poor prognostic factor after stroke because without immediate cerebral reperfusion no further improvements in the patient's condition can be achieved. We investigated the clinical effects of intravascular laser irradiation therapy (ILIB) on CCD and evaluated the therapeutic effect in the sub-acute post-stroke stage. PATIENT CONCERNS The 77-year-old male with cerebral infarction in the territory of the right anterior cerebral artery only underwent conservative treatment including hydration and aspirin in the acute post-stroke stage. DIAGNOSIS He was diagnosed as stroke based on the clinical presentations and imaging findings. INTERVENTION Once the patient was in stable condition, he underwent a daily hour-long ILIB (He-Ne laser) for ten consecutive days during the sub-acute post-stroke stage. OUTCOMES We used single-photon emission computed tomography (SPECT) before and after intravascular laser irradiation to detect changes in cerebral and cerebellar perfusion. Then, we compared the two images. CCD was detected using the first SPECT. After intervention by ILIB, the second SPECT showed greater perfusion in the affected cerebellar hemisphere. LESSONS We found that ILIB helped eliminate CCD, which was previously shown to be an untreatable condition using any intervention during the sub-acute post-stroke stage. Stroke patients could therefore greatly benefit from ILIB.
Collapse
|
60
|
Robson H, Specht K, Beaumont H, Parkes LM, Sage K, Lambon Ralph MA, Zahn R. Arterial spin labelling shows functional depression of non-lesion tissue in chronic Wernicke's aphasia. Cortex 2016; 92:249-260. [PMID: 28525836 PMCID: PMC5480775 DOI: 10.1016/j.cortex.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Behavioural impairment post-stroke is a consequence of structural damage and altered functional network dynamics. Hypoperfusion of intact neural tissue is frequently observed in acute stroke, indicating reduced functional capacity of regions outside the lesion. However, cerebral blood flow (CBF) is rarely investigated in chronic stroke. This study investigated CBF in individuals with chronic Wernicke's aphasia (WA) and examined the relationship between lesion, CBF and neuropsychological impairment. Arterial spin labelling CBF imaging and structural MRIs were collected in 12 individuals with chronic WA and 13 age-matched control participants. Joint independent component analysis (jICA) investigated the relationship between structural lesion and hypoperfusion. Partial correlations explored the relationship between lesion, hypoperfusion and language measures. Joint ICA revealed significant differences between the control and WA groups reflecting a large area of structural lesion in the left posterior hemisphere and an associated area of hypoperfusion extending into grey matter surrounding the lesion. Small regions of remote cortical hypoperfusion were observed, ipsilateral and contralateral to the lesion. Significant correlations were observed between the neuropsychological measures (naming, repetition, reading and semantic association) and the jICA component of interest in the WA group. Additional ROI analyses found a relationship between perfusion surrounding the core lesion and the same neuropsychological measures. This study found that core language impairments in chronic WA are associated with a combination of structural lesion and abnormal perfusion in non-lesioned tissue. This indicates that post-stroke impairments are due to a wider disruption of neural function than observable on structural T1w MRI.
Collapse
Affiliation(s)
- Holly Robson
- Department of Psychology and Clinical Language Sciences, University of Reading, UK.
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | | | - Laura M Parkes
- Centre for Imaging Science, Institute of Population Health, University of Manchester, UK
| | - Karen Sage
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School Psychological Sciences, University of Manchester, UK
| | - Roland Zahn
- Department of Psychological Medicine, Kings College London, UK
| |
Collapse
|
61
|
Adams ZM, Forgacs PB, Conte MM, Nauvel TJ, Drover JD, Schiff ND. Late and progressive alterations of sleep dynamics following central thalamic deep brain stimulation (CT-DBS) in chronic minimally conscious state. Clin Neurophysiol 2016; 127:3086-3092. [PMID: 27472544 PMCID: PMC5582539 DOI: 10.1016/j.clinph.2016.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Zoe M Adams
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Peter B Forgacs
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA; The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Tanya J Nauvel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Jonathan D Drover
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA; The Rockefeller University, 1230 York Avenue, New York, NY, USA.
| |
Collapse
|
62
|
Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain. J Neural Transm (Vienna) 2016; 123:797-806. [PMID: 27113938 DOI: 10.1007/s00702-016-1547-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
Abstract
This integrative review frames a general rationale for the use of central thalamic deep brain stimulation (CT-DBS) to support arousal regulation mechanisms in the severely injured brain. The organizing role of the anterior forebrain mesocircuit in recovery mechanisms following widespread deafferentation produced by multi-focal structural brain injuries is emphasized. The mesocircuit model provides the conceptual foundation for the key role of the central thalamus as a privileged node for neuromodulation to support forebrain arousal regulation. In this context, cellular mechanisms arising at the neocortical, striatal, and thalamic population level are considered in the assessment of an individual patient's capacity for harboring underlying reserve that could be recruited for further recovery. Recent preclinical studies and pilot clinical results are compared to frame the detailed rationale for CT-DBS. Application of CT-DBS across the range of outcomes following severe-to-moderate brain injuries is discussed with the aim of improving consciousness and cognition in patients with non-progressive brain injuries.
Collapse
|
63
|
Sommer WH, Bollwein C, Thierfelder KM, Baumann A, Janssen H, Ertl-Wagner B, Reiser MF, Plate A, Straube A, von Baumgarten L. Crossed cerebellar diaschisis in patients with acute middle cerebral artery infarction: Occurrence and perfusion characteristics. J Cereb Blood Flow Metab 2016; 36:743-54. [PMID: 26661242 PMCID: PMC4821023 DOI: 10.1177/0271678x15617953] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
We aimed to investigate the overall prevalence and possible factors influencing the occurrence of crossed cerebellar diaschisis after acute middle cerebral artery infarction using whole-brain CT perfusion. A total of 156 patients with unilateral hypoperfusion of the middle cerebral artery territory formed the study cohort; 352 patients without hypoperfusion served as controls. We performed blinded reading of different perfusion maps for the presence of crossed cerebellar diaschisis and determined the relative supratentorial and cerebellar perfusion reduction. Moreover, imaging patterns (location and volume of hypoperfusion) and clinical factors (age, sex, time from symptom onset) resulting in crossed cerebellar diaschisis were analysed. Crossed cerebellar diaschisis was detected in 35.3% of the patients with middle cerebral artery infarction. Crossed cerebellar diaschisis was significantly associated with hypoperfusion involving the left hemisphere, the frontal lobe and the thalamus. The degree of the relative supratentorial perfusion reduction was significantly more pronounced in crossed cerebellar diaschisis-positive patients but did not correlate with the relative cerebellar perfusion reduction. Our data suggest that (i) crossed cerebellar diaschisis is a common feature after middle cerebral artery infarction which can robustly be detected using whole-brain CT perfusion, (ii) its occurrence is influenced by location and degree of the supratentorial perfusion reduction rather than infarct volume (iii) other clinical factors (age, sex and time from symptom onset) did not affect the occurrence of crossed cerebellar diaschisis.
Collapse
Affiliation(s)
- Wieland H Sommer
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Christine Bollwein
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Kolja M Thierfelder
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Alena Baumann
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Hendrik Janssen
- Department of Neuroradiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Annika Plate
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Andreas Straube
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
64
|
Non-additive effects of delayed connexin hemichannel blockade and hypothermia after cerebral ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 2015; 35:2052-61. [PMID: 26174327 PMCID: PMC4671127 DOI: 10.1038/jcbfm.2015.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Hypothermia is partially neuroprotective after neonatal hypoxic-ischemic encephalopathy. Blockade of connexin hemichannels can improve recovery of brain activity and cell survival after ischemia in near-term fetal sheep. In this study, we investigated whether combining delayed hypothermia with connexin hemichannel blockade with intracerebroventricular infusion of a mimetic peptide can further improve outcomes after cerebral ischemia. Fetal sheep (0.85 gestation) received 30 minutes of cerebral ischemia followed by a 3-hour recovery period before treatment was started. Fetuses were randomized to one of the following treatment groups: normothermia (n=8), hypothermia for 3 days (n=8), connexin hemichannel blockade (50 μmol/L intracerebroventricular over 1 hour followed by 50 μmol/L over 24 hours, n=8) or hypothermia plus hemichannel blockade (n=7). After 7 days recovery, hypothermia was associated with reduced seizure burden, improved electroencephalographic (EEG) power, and a significant increase in neuronal and oligodendrocyte survival and reduced induction of Iba1-positive microglia. In contrast, although hemichannel blockade reduced seizure burden, there was no effect on EEG power or histology (P<0.05). There was no further improvement in outcomes with combined hypothermia plus hemichannel blockade. In conclusion, these data show that there is no additive neuroprotection with combined hypothermia and hemichannel blockade after cerebral ischemia in near-term fetal sheep.
Collapse
|
65
|
Schulz R, Frey BM, Koch P, Zimerman M, Bönstrup M, Feldheim J, Timmermann JE, Schön G, Cheng B, Thomalla G, Gerloff C, Hummel FC. Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke. Cereb Cortex 2015; 27:635-645. [DOI: 10.1093/cercor/bhv251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
66
|
Kang KM, Sohn CH, Kim BS, Kim YI, Choi SH, Yun TJ, Kim JH, Park SW, Cheon GJ, Han MH. Correlation of Asymmetry Indices Measured by Arterial Spin-Labeling MR Imaging and SPECT in Patients with Crossed Cerebellar Diaschisis. AJNR Am J Neuroradiol 2015; 36:1662-8. [PMID: 26228883 DOI: 10.3174/ajnr.a4366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Crossed cerebellar diaschisis, not only a secondary result of supratentorial infarction but also an indicator of clinical outcomes, has frequently been reported on PET and SPECT but has been rarely described with arterial spin-labeling MR imaging. The purpose of this study was to determine the ability of arterial spin-labeling MR imaging to evaluate crossed cerebellar diaschisis compared with that of SPECT. To our knowledge, this is the first study to validate arterial spin-labeling in crossed cerebellar diaschisis by using SPECT as a reference standard. MATERIALS AND METHODS This study included 16 patients in whom crossed cerebellar diaschisis was shown on SPECT and 10 control subjects in whom crossed cerebellar diaschisis was not shown on SPECT. During the qualitative analysis, asymmetric cerebellar perfusion on arterial spin-labeling was divided into 1 of the following 3 grades by 2 blinded observers: the affected cerebellum was isointense compared with the unaffected cerebellum (grade I), it was slightly hypointense (grade II), or it was markedly hypointense (grade III). In the quantitative analysis, asymmetry indices were calculated by using SPECT and arterial spin-labeling images. For statistical analysis, κ statistics, the interobserver correlation coefficient, the independent t test, Pearson correlation, and linear regression analysis were used. RESULTS Almost all the diagnoses of crossed cerebellar diaschisis on SPECT were noted on arterial spin-labeling in both qualitative and quantitative analyses with good interobserver agreement (κ = 0.961; interobserver correlation coefficient, 0.806). The mean asymmetry index of arterial spin-labeling (26.06 ± 9.00) was significantly larger than that for SPECT (15.28 ± 5.34; P < .001). There was a significant positive correlation between the asymmetry indices obtained for SPECT and those for arterial spin-labeling (r = 0.77 [95% CI, 0.443-0.916]; P < .001). The relationship of asymmetry indices between SPECT and arterial spin-labeling (x, y) was calculated as y = 6.2131 + 1.2986x (R(2) = 0.592; P < .001). CONCLUSIONS Arterial spin-labeling can be a noninvasive alternative to SPECT for evaluating crossed cerebellar diaschisis.
Collapse
Affiliation(s)
- K M Kang
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - C-H Sohn
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea Institute of Radiation Medicine (C.-H.S., S.H.C., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - B S Kim
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y I Kim
- Nuclear Medicine (Y.I.K., G.J.C.), Seoul National University Hospital, Seoul, Republic of Korea
| | - S H Choi
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea Institute of Radiation Medicine (C.-H.S., S.H.C., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - T J Yun
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J-h Kim
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-W Park
- Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea Department of Radiology (S.-W.P.), Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - G J Cheon
- Nuclear Medicine (Y.I.K., G.J.C.), Seoul National University Hospital, Seoul, Republic of Korea
| | - M H Han
- From the Departments of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., M.H.H.) Department of Radiology (K.M.K., C.-H.S., B.S.K., S.H.C., T.J.Y., J.-h.K., S.-W.P., M.H.H.), Seoul National University College of Medicine, Seoul, Republic of Korea Institute of Radiation Medicine (C.-H.S., S.H.C., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
67
|
Abstract
Pathological perturbations of the brain are rarely confined to a single locus; instead, they often spread via axonal pathways to influence other regions. Patterns of such disease propagation are constrained by the extraordinarily complex, yet highly organized, topology of the underlying neural architecture; the so-called connectome. Thus, network organization fundamentally influences brain disease, and a connectomic approach grounded in network science is integral to understanding neuropathology. Here, we consider how brain-network topology shapes neural responses to damage, highlighting key maladaptive processes (such as diaschisis, transneuronal degeneration and dedifferentiation), and the resources (including degeneracy and reserve) and processes (such as compensation) that enable adaptation. We then show how knowledge of network topology allows us not only to describe pathological processes but also to generate predictive models of the spread and functional consequences of brain disease.
Collapse
|
68
|
Silasi G, Murphy TH. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 2015; 83:1354-68. [PMID: 25233317 DOI: 10.1016/j.neuron.2014.08.052] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Connections between neurons are affected within 3 min of stroke onset by massive ischemic depolarization and then delayed cell death. Some connections can recover with prompt reperfusion; others associated with the dying infarct do not. Disruption in functional connectivity is due to direct tissue loss and indirect disconnections of remote areas known as diaschisis. Stroke is devastating, yet given the brain's redundant design, collateral surviving networks and their connections are well-positioned to compensate. Our perspective is that new treatments for stroke may involve a rational functional and structural connections-based approach. Surviving, affected, and at-risk networks can be identified and targeted with scenario-specific treatments. Strategies for recovery may include functional inhibition of the intact hemisphere, rerouting of connections, or setpoint-mediated network plasticity. These approaches may be guided by brain imaging and enabled by patient- and injury-specific brain stimulation, rehabilitation, and potential molecule-based strategies to enable new connections.
Collapse
Affiliation(s)
- Gergely Silasi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
69
|
Lear CA, Koome ME, Davidson JO, Drury PP, Quaedackers JS, Galinsky R, Gunn AJ, Bennet L. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep. J Physiol 2014; 592:5493-505. [PMID: 25384775 DOI: 10.1113/jphysiol.2014.281253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml(-1)) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Miriam E Koome
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Josine S Quaedackers
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
70
|
Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage. Neuroradiology 2014; 57:179-87. [PMID: 25381579 DOI: 10.1007/s00234-014-1456-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). METHODS We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. RESULTS Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∼-0.56; P < 0.05). CONCLUSION 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients.
Collapse
|
71
|
Agarwal K, Tripathi M, Karunanithi S, Das C, Suri V, Nalwa A. Crossed cerebellar diaschisis in cerebral toxoplasmosis demonstrated on 18F-FDG PET/CT. Rev Esp Med Nucl Imagen Mol 2014. [DOI: 10.1016/j.remnie.2014.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 2014; 29:172-7. [PMID: 25285395 DOI: 10.1016/j.conb.2014.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
Disorders of consciousness (DOC) following severe structural brain injuries globally affect the conscious state and the expression of goal-directed behaviors. In some subjects, neuromodulation with medications or electrical stimulation can markedly improve the impaired conscious state present in DOC. We briefly review recent studies and provide an organizing framework for considering the apparently widely disparate collection of medications and approaches that may modulate the conscious state in subjects with DOC. We focus on neuromodulation of the anterior forebrain mesocircuit in DOC and briefly compare mechanisms supporting recovery from structural brain injuries to those underlying facilitated emergence from unconsciousness produced by anesthesia. We derive some general principles for approaching the problem of restoration of consciousness after severe structural brain injuries, and suggest directions for future research.
Collapse
|
73
|
Agarwal KK, Tripathi M, Karunanithi S, Das CJ, Suri V, Nalwa A. Crossed cerebellar diaschisis in cerebral toxoplasmosis demonstrated on ¹⁸F-FDG PET/CT. Rev Esp Med Nucl Imagen Mol 2014; 33:397-8. [PMID: 25043772 DOI: 10.1016/j.remn.2014.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/13/2022]
Affiliation(s)
- K K Agarwal
- Department of Nuclear Medicine and PET, All India Institute of Medical Sciences, New Delhi, India
| | - M Tripathi
- Department of Nuclear Medicine and PET, All India Institute of Medical Sciences, New Delhi, India.
| | - S Karunanithi
- Department of Nuclear Medicine and PET, All India Institute of Medical Sciences, New Delhi, India
| | - C J Das
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - V Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - A Nalwa
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
74
|
Rao JS, Ma M, Zhao C, Zhang AF, Yang ZY, Liu Z, Li XG. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: A resting-state fMRI study. Magn Reson Imaging 2014; 32:482-6. [DOI: 10.1016/j.mri.2014.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/01/2014] [Accepted: 02/02/2014] [Indexed: 01/16/2023]
|
75
|
Migraineurs without aura show microstructural abnormalities in the cerebellum and frontal lobe. THE CEREBELLUM 2014; 12:812-8. [PMID: 23703313 DOI: 10.1007/s12311-013-0491-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The involvement of the cerebellum in migraine pathophysiology is not well understood. We used a biparametric approach at high-field MRI (3 T) to assess the structural integrity of the cerebellum in 15 migraineurs with aura (MWA), 23 migraineurs without aura (MWoA), and 20 healthy controls (HC). High-resolution T1 relaxation maps were acquired together with magnetization transfer images in order to probe microstructural and myelin integrity. Clusterwise analysis was performed on T1 and magnetization transfer ratio (MTR) maps of the cerebellum of MWA, MWoA, and HC using an ANOVA and a non-parametric clusterwise permutation F test, with age and gender as covariates and correction for familywise error rate. In addition, mean MTR and T1 in frontal regions known to be highly connected to the cerebellum were computed. Clusterwise comparison among groups showed a cluster of lower MTR in the right Crus I of MWoA patients vs. HC and MWA subjects (p = 0.04). Univariate and bivariate analysis on T1 and MTR contrasts showed that MWoA patients had longer T1 and lower MTR in the right and left pars orbitalis compared to MWA (p < 0.01 and 0.05, respectively), but no differences were found with HC. Lower MTR and longer T1 point at a loss of macromolecules and/or micro-edema in Crus I and pars orbitalis in MWoA patients vs. HC and vs. MWA. The pathophysiological implications of these findings are discussed in light of recent literature.
Collapse
|
76
|
Abstract
After a century of false hopes, recent studies have placed the concept of diaschisis at the centre of the understanding of brain function. Originally, the term 'diaschisis' was coined by von Monakow in 1914 to describe the neurophysiological changes that occur distant to a focal brain lesion. In the following decades, this concept triggered widespread clinical interest in an attempt to describe symptoms and signs that the lesion could not fully explain. However, the first imaging studies, in the late 1970s, only partially confirmed the clinical significance of diaschisis. Focal cortical areas of diaschisis (i.e. focal diaschisis) contributed to the clinical deficits after subcortical but only rarely after cortical lesions. For this reason, the concept of diaschisis progressively disappeared from the mainstream of research in clinical neurosciences. Recent evidence has unexpectedly revitalized the notion. The development of new imaging techniques allows a better understanding of the complexity of brain organization. It is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion (i.e. connectional diaschisis). As opposed to focal diaschisis, connectional diaschisis, focusing on determined networks, seems to relate more consistently to the clinical findings. This is particularly true after stroke in the motor and attentional networks. Furthermore, normalization of remote connectivity changes in these networks relates to a better recovery. In the future, to investigate the clinical role of diaschisis, a systematic approach has to be considered. First, emerging imaging and electrophysiological techniques should be used to precisely map and selectively model brain lesions in human and animals studies. Second, the concept of diaschisis must be applied to determine the impact of a focal lesion on new representations of the complexity of brain organization. As an example, the evaluation of remote changes in the structure of the connectome has so far mainly been tested by modelization of focal brain lesions. These changes could now be assessed in patients suffering from focal brain lesions (i.e. connectomal diaschisis). Finally, and of major significance, focal and non-focal neurophysiological changes distant to the lesion should be the target of therapeutic strategies. Neuromodulation using transcranial magnetic stimulation is one of the most promising techniques. It is when this last step will be successful that the concept of diaschisis will gain all the clinical respectability that could not be obtained in decades of research.
Collapse
Affiliation(s)
- Emmanuel Carrera
- 1 Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland2 Department of Psychiatry, Madison, Wisconsin, USA
| | | |
Collapse
|
77
|
Förster A, Kerl HU, Goerlitz J, Wenz H, Groden C. Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI. PLoS One 2014; 9:e88044. [PMID: 24505372 PMCID: PMC3914872 DOI: 10.1371/journal.pone.0088044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Crossed cerebellar diaschisis (CCD) is a state of neural depression caused by loss of connections to injured neural structures remote from the cerebellum usually evaluated by positron emission tomography. Recently it has been shown that dynamic susceptibility contrast perfusion weighted MRI (PWI) may also be feasible to detect the phenomenon. In this study we aimed to assess the frequency of CCD on PWI in patients with acute thalamic infarction. METHODS From a MRI report database we identified patients with acute isolated thalamic infarction. Contralateral cerebellar hypoperfusion was identified by inspection of time to peak (TTP) maps and evaluated quantitatively on TTP, mean transit time (MTT), cerebral blood flow and volume (CBF, CBV) maps. A competing cerebellar pathology or an underlying vascular pathology were excluded. RESULTS A total of 39 patients was included. Common symptoms were hemiparesis (53.8%), hemihypaesthesia (38.5%), dysarthria (30.8%), aphasia (17.9%), and ataxia (15.4%). In 9 patients (23.1%) PWI showed hypoperfusion in the contralateral cerebellar hemisphere. All of these had lesions in the territory of the tuberothalamic, paramedian, or inferolateral arteries. Dysarthria was observed more frequently in patients with CCD (6/9 vs. 6/30; OR 8.00; 95%CI 1.54-41.64, p = 0.01). In patients with CCD, the median ischemic lesion volume on DWI (0.91 cm³), IQR 0.49-1.54 cm³) was larger compared to patients with unremarkable PWI (0.51 cm³, IQR 0.32-0.74, p = 0.05). The most pronounced changes were found in CBF (0.94±0.11) and MTT (1.06±0.13) signal ratios, followed by TTP (1.05±0.02). CONCLUSIONS Multimodal MRI demonstrates CCD in about 20% of acute isolated thalamic infarction patients. Lesion size seems to be a relevant factor in its pathophysiology.
Collapse
Affiliation(s)
- Alex Förster
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| | - Hans U. Kerl
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johannes Goerlitz
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
78
|
Fan J, Van Dam NT, Gu X, Liu X, Wang H, Tang CY, Hof PR. Quantitative characterization of functional anatomical contributions to cognitive control under uncertainty. J Cogn Neurosci 2014; 26:1490-506. [PMID: 24392900 DOI: 10.1162/jocn_a_00554] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although much evidence indicates that RT increases as a function of computational load in many cognitive tasks, quantification of changes in neural activity related to increasing demand of cognitive control has rarely been attempted. In this fMRI study, we used a majority function task to quantify the effect of computational load on brain activation, reflecting the mental processes instantiated by cognitive control under conditions of uncertainty. We found that the activation of the frontoparieto-cingulate system as well as the deactivation of the anticorrelated default mode network varied parametrically as a function of information uncertainty, estimated as entropy with an information theoretic model. The current findings suggest that activity changes in the dynamic networks of the brain (especially the frontoparieto-cingulate system) track with information uncertainty, rather than only conflict or other commonly proposed targets of cognitive control.
Collapse
Affiliation(s)
- Jin Fan
- The City University of New York
| | | | | | | | | | | | | |
Collapse
|
79
|
Concurrence of crossed cerebellar diaschisis and parakinesia brachialis oscitans in a patient with hemorrhagic stroke. Case Rep Med 2013; 2013:519808. [PMID: 24307905 PMCID: PMC3836471 DOI: 10.1155/2013/519808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022] Open
Abstract
Crossed cerebellar diaschisis (CCD) is defined as a reduction in blood flow in the cerebellar hemisphere contralateral to the supratentorial focal lesion. The phenomenon termed parakinesia brachialis oscitans (PBO) in which stroke patients experience involuntary stretching of the hemiplegic arm during yawning is rarely reported. The concurrence of CCD and PBO has never been described. A 52-year-old man had putaminal hemorrhage and demonstrated no significant recovery in his left hemiplegia after intensive rehabilitation, but his gait improved gradually. Two months after the stroke, the single photon emission computed tomography (SPECT) showed CCD. Four months after the stroke, the patient noticed PBO. The follow-up SPECT showed persistent CCD and the patient's arm was still plegic. The frequency and intensity of PBO have increased with time since the stroke. We speculate that the two phenomena CCD and PBO might share similar neuroanatomical pathways and be valuable for predicting clinical recovery after stroke.
Collapse
|
80
|
Takuwa H, Tajima Y, Kokuryo D, Matsuura T, Kawaguchi H, Masamoto K, Taniguchi J, Ikoma Y, Seki C, Aoki I, Tomita Y, Suzuki N, Kanno I, Ito H. Hemodynamic changes during neural deactivation in awake mice: a measurement by laser-Doppler flowmetry in crossed cerebellar diaschisis. Brain Res 2013; 1537:350-5. [PMID: 24076448 DOI: 10.1016/j.brainres.2013.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/22/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Crossed cerebellar diaschisis (CCD) caused by contralateral supratentorial lesions can be considered a condition of neural deactivation, and hemodynamic changes in CCD were investigated with positron emission tomography (PET) in humans. In the present study, to investigate the effects of neural deactivation on hemodynamics, we developed a new mouse model of CCD, which was caused by middle cerebral artery occlusion (MCAO), and measured changes in cerebellar blood flow (CbBF), red blood cell (RBC) velocity and concentration due to CCD using laser-Doppler flowmetry (LDF) in awake mice. The ratio of the CCD side to the unaffected side in the cerebellum for CbBF 1 day after MCAO was decreased by -18% compared to baseline (before CCD). The ratio of the CCD side to the unaffected side for RBC concentration 1 day after MCAO was decreased by -23% compared to baseline. However, no significant changes in the ratio of the CCD side to the unaffected side were observed for RBC velocity. The present results indicate that the reduction of CbBF induced by neural deactivation was mainly caused by the decrease in RBC concentration. In contrast, our previous study showed that RBC velocity had a dominant role in the increase in cerebral blood flow (CBF) induced by neural activation. If RBC concentration can be considered an indicator of cerebral blood volume (CBV), hemodynamic changes due to neural activation and deactivation measured by LDF in mice might be in good agreement with human PET studies.
Collapse
Affiliation(s)
- Hiroyuki Takuwa
- Department of Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Mah S, deVeber G, Wei XC, Liapounova N, Kirton A. Cerebellar Atrophy in Childhood Arterial Ischemic Stroke. Stroke 2013; 44:2468-74. [DOI: 10.1161/strokeaha.111.000744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sarah Mah
- From the Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (S.M., N.L., A.K.); SickKids Stroke Program, Hospital for Sick Children, Toronto, Ontario, Canada (G.d.); and Department of Radiology, Alberta Children’s Hospital, Calgary, Alberta, Canada (X.-C.W.)
| | - Gabrielle deVeber
- From the Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (S.M., N.L., A.K.); SickKids Stroke Program, Hospital for Sick Children, Toronto, Ontario, Canada (G.d.); and Department of Radiology, Alberta Children’s Hospital, Calgary, Alberta, Canada (X.-C.W.)
| | - Xing-Chang Wei
- From the Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (S.M., N.L., A.K.); SickKids Stroke Program, Hospital for Sick Children, Toronto, Ontario, Canada (G.d.); and Department of Radiology, Alberta Children’s Hospital, Calgary, Alberta, Canada (X.-C.W.)
| | - Natalia Liapounova
- From the Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (S.M., N.L., A.K.); SickKids Stroke Program, Hospital for Sick Children, Toronto, Ontario, Canada (G.d.); and Department of Radiology, Alberta Children’s Hospital, Calgary, Alberta, Canada (X.-C.W.)
| | - Adam Kirton
- From the Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (S.M., N.L., A.K.); SickKids Stroke Program, Hospital for Sick Children, Toronto, Ontario, Canada (G.d.); and Department of Radiology, Alberta Children’s Hospital, Calgary, Alberta, Canada (X.-C.W.)
| |
Collapse
|
82
|
De Sousa A. Towards an integrative theory of consciousness: part 1 (neurobiological and cognitive models). Mens Sana Monogr 2013; 11:100-50. [PMID: 23678241 PMCID: PMC3653219 DOI: 10.4103/0973-1229.109335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 12/22/2022] Open
Abstract
The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are discussed with structures like the ascending reticular activating system, the amygdala, the cerebellum, the thalamus, the frontoparietal circuits, the prefrontal cortex and the precuneus. The cellular and microlevel theories of consciousness and cerebral activity at the neuronal level contributing to consciousness are highlighted, along with the various theories posited in this area. The role of neuronal assemblies and circuits along with firing patterns and their ramifications for the understanding of consciousness are discussed. A section on the role of anaesthesia and its links to consciousness is presented, along with details of split-brain studies in consciousness and altered states of awareness, including the vegetative states. The article finally discusses the progress cognitive psychology has made in identifying and theorising various perspectives of consciousness, perceptual awareness and conscious processing. Both recent and past researches are highlighted. The importance and salient features of each theory are discussed along with the pitfalls, if present. A need for integration of various theories to understand consciousness from a holistic perspective is stressed, to enable one to reach a theory that explains the ultimate neurobiology of consciousness.
Collapse
|
83
|
Abstract
Stroke and cerebrovascular diseases are major causes of mortality, morbidity, and disability. Nuclear Medicine, primarily via tomographic methods, has made significant contributions to the understanding of the hemodynamic and metabolic consequences of cerebrovascular diseases. In this review, the findings in acute, subacute, and chronic cerebrovascular diseases are described. Many of the pathophysiologic processes and consequences that follow stroke, including completed infarct core, adjacent penumbra, and diaschisis, have been investigated with Nuclear Medicine, and stroke outcome may be related to these phenomena. Additional topics included in this review are cerebrovascular reserve tests and multi-infarct dementia. Finally, Nuclear Medicine investigations of stroke recovery and cerebral plasticity appear to indicate that enhanced activity of preexisting networks, rather than substitution of function, represents the most important mechanism of improvement in chronic stroke rehabilitation.
Collapse
Affiliation(s)
- David H Lewis
- Division of Nuclear Medicine, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
84
|
Unekawa M, Tomita Y, Toriumi H, Masamoto K, Kanno I, Suzuki N. Potassium-induced cortical spreading depression bilaterally suppresses the electroencephalogram but only ipsilaterally affects red blood cell velocity in intraparenchymal capillaries. J Neurosci Res 2013; 91:578-84. [DOI: 10.1002/jnr.23184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/10/2012] [Accepted: 11/10/2012] [Indexed: 12/21/2022]
|
85
|
Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:295-306. [PMID: 24112903 DOI: 10.1016/b978-0-444-53497-2.00024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.
Collapse
|
86
|
Babaei A, Ward BD, Ahmad S, Patel A, Nencka A, Li SJ, Hyde J, Shaker R. Reproducibility of swallow-induced cortical BOLD positive and negative fMRI activity. Am J Physiol Gastrointest Liver Physiol 2012; 303:G600-9. [PMID: 22766854 PMCID: PMC3468557 DOI: 10.1152/ajpgi.00167.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions.
Collapse
Affiliation(s)
- Arash Babaei
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - B. Douglas Ward
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shahryar Ahmad
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - Anna Patel
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - Andrew Nencka
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shi-Jiang Li
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James Hyde
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- 1Gastroenterology and Hepatology, Department of Medicine, and
| |
Collapse
|
87
|
Schiff ND. Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci 2012; 1265:56-68. [PMID: 22834729 PMCID: PMC11737288 DOI: 10.1111/j.1749-6632.2012.06712.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review considers the challenges ahead for developing a generalizable strategy for the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the severely injured brain. Historical efforts to apply CT/DBS to patients with severe brain injuries and a proof-of-concept result from a single-subject study are discussed. Circuit and cellular mechanisms underlying the recovery of consciousness are considered for their relevance to the application of CT/DBS, to improve consciousness and cognition in nonprogressive brain injuries. Finally, directions for development, and testing of generalizable criteria for CT/DBS are suggested, which aim to identify neuronal substrates and behavioral profiles that may optimally benefit from support of arousal regulation mechanisms.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
88
|
Szilágyi G, Vas A, Kerényi L, Nagy Z, Csiba L, Gulyás B. Correlation between crossed cerebellar diaschisis and clinical neurological scales. Acta Neurol Scand 2012; 125:373-81. [PMID: 21781057 DOI: 10.1111/j.1600-0404.2011.01576.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND A common consequence of unilateral stroke is crossed cerebellar diaschisis (CCD), a decrease in regional blood flow (CBF) and metabolism (CMRglu) in the cerebellar hemisphere contralateral to the affected cerebral hemisphere. Former studies indicated a post-stroke time-dependent relationship between the degree of CCD and the clinical status of acute and sub-acute stroke patients, but no study has been performed in post-stroke patients. OBJECTIVES The objective of this investigation was to evaluate the quantitative correlation between the degree of CCD and the values of clinical stroke scales in post-stroke patients. MATERIALS AND METHODS We measured with positron emission tomography (PET) regional CBF and CMRglu values in the affected cortical regions and the contralateral cerebellum in ten ischaemic post-stroke patients. Based on these quantitative parameters, the degree of diaschisis (DoD) was calculated, and the DoD values were correlated with three clinical stroke scales [Barthel Index, Orgogozo Scale and Scandinavian Neurological Scale (SNS)]. RESULTS There were significant linear correlations between all clinical stroke scales and the CCD values (Barthel Index and Orgogozo Scale: P < 0.001, for both CBF and CMRglu; SNS: P = 0.007 and P = 0.044; CBF and CMRglu, respectively). CONCLUSIONS The findings indicate that DoD can be used as a quantitative indicator of the functional impairments following stroke, i.e. it can serve as a potential surrogate of the severity of the damage.
Collapse
Affiliation(s)
- G Szilágyi
- Department of Neurology, State Health Center, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
89
|
Laureys S, Schiff ND. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage 2012; 61:478-91. [PMID: 22227888 DOI: 10.1016/j.neuroimage.2011.12.041] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
- Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
90
|
Giacino J, Fins JJ, Machado A, Schiff ND. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 2012; 15:339-49. [PMID: 22624587 DOI: 10.1111/j.1525-1403.2012.00458.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI: CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS: We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. CONCLUSIONS The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work.
Collapse
Affiliation(s)
- Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
91
|
Jeon YW, Kim SH, Lee JY, Whang K, Kim MS, Kim YJ, Lee MS. Dynamic CT perfusion imaging for the detection of crossed cerebellar diaschisis in acute ischemic stroke. Korean J Radiol 2011; 13:12-9. [PMID: 22247631 PMCID: PMC3253398 DOI: 10.3348/kjr.2012.13.1.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/09/2011] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Although the detection of crossed cerebellar diaschisis (CCD) by means of different imaging modalities is well described, little is known about its diagnosis by computed tomography perfusion (CTP) imaging. We investigated the detection rate of CCD by CTP imaging and the factors related to CCD on CTP images in patients with acute ischemic stroke. MATERIALS AND METHODS CT perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP) obtained from 81 consecutive patients affected by an acute ischemic stroke were retrospectively reviewed. Whole-brain perfusion maps were obtained with a multichannel CT scanner using the toggling-table technique. The criteria for CCD was a unilateral supratentorial ischemic lesion and an accompanying decrease in perfusion of the contralateral cerebellar hemisphere on the basis of CTP maps by visual inspection without a set threshold. Maps were quantitatively analyzed in CCD positive cases. RESULTS The criteria for CCD were fulfilled in 25 of the 81 cases (31%). Detection rates per CTP map were as follows: MTT (31%) > TTP (21%) > CBF (9%) > CBV (6%). Supratentorial ischemic volume, degree of perfusion reduction, and infratentorial asymmetry index correlated strongly (R, 0.555-0.870) and significantly (p < 0.05) with each other in CCD-positive cases. CONCLUSION It is possible to detect CCD on all four of the CTP-based maps. Of these maps, MTT is most sensitive in detecting CCD. Our data indicate that CTP imaging is a valid tool for the diagnosis of CCD in patients affected by an acute hemispheric stroke.
Collapse
Affiliation(s)
- Young Wook Jeon
- Department of Radiology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine, Gangwon-do 220-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wintermark P, Hansen A, Gregas MC, Soul J, Labrecque M, Robertson RL, Warfield SK. Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol 2011; 32:2023-9. [PMID: 21979494 DOI: 10.3174/ajnr.a2708] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Induced hypothermia is thought to work partly by mitigating reperfusion injury in asphyxiated term neonates. The purpose of this study was to assess brain perfusion in the first week of life in these neonates. MATERIALS AND METHODS In this prospective cohort study, MR imaging and ASL-PI were used to assess brain perfusion in these neonates. We measured regional CBF values on 1-2 MR images obtained during the first week of life and compared these with values obtained in control term neonates. The same or later MR imaging scans were obtained to define the extent of brain injury. RESULTS Eighteen asphyxiated and 4 control term neonates were enrolled; 11 asphyxiated neonates were treated with hypothermia. Those developing brain injury despite being treated with induced hypothermia usually displayed hypoperfusion on DOL 1 and then hyperperfusion on DOL 2-3 in brain areas subsequently exhibiting injury. Asphyxiated neonates not treated with hypothermia who developed brain injury also displayed hyperperfusion on DOL 1-6 in brain areas displaying injury. CONCLUSIONS Our data show that ASL-PI may be useful for identifying asphyxiated neonates at risk of developing brain injury, whether or not hypothermia is administered. Because hypothermia for 72 hours may not prevent brain injury when hyperperfusion is found early in the course of neonatal hypoxic-ischemic encephalopathy, such neonates may be candidates for adjustments in their hypothermia therapy or for adjunctive neuroprotective therapies.
Collapse
Affiliation(s)
- P Wintermark
- Department of Radiology, Children’s Hospital Boston, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Crossed cerebellar diaschisis after stroke: can perfusion-weighted MRI show functional inactivation? J Cereb Blood Flow Metab 2011; 31:1493-500. [PMID: 21386854 PMCID: PMC3130318 DOI: 10.1038/jcbfm.2011.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we aimed to assess the detection of crossed cerebellar diaschisis (CCD) following stroke by perfusion-weighted magnetic resonance imaging (PW-MRI) in comparison with positron emission tomography (PET). Both PW-MRI and 15O-water-PET were performed in acute and subacute hemispheric stroke patients. The degree of CCD was defined by regions of interest placed in the cerebellar hemispheres ipsilateral (I) and contralateral (C) to the supratentorial lesion. An asymmetry index (AI=C/I) was calculated for PET-cerebral blood flow (CBF) and MRI-based maps of CBF, cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). The resulting AI values were compared by Bland-Altman (BA) plots and receiver operating characteristic analysis to detect the degree and presence of CCD. A total of 26 imaging procedures were performed (median age 57 years, 20/26 imaged within 48 hours after stroke). In BA plots, all four PW-MRI maps could not reliably reflect the degree of CCD. In receiver operating characteristic analysis for detection of CCD, PW-CBF performed poorly (accuracy 0.61), whereas CBV, MTT, and TTP failed (accuracy <0.60). On the basis of our findings, PW-MRI at 1.5 T is not suited to depict CCD after stroke.
Collapse
|
95
|
Orrison WW, Snyder KV, Hopkins LN, Roach CJ, Ringdahl EN, Nazir R, Hanson EH. Whole-brain dynamic CT angiography and perfusion imaging. Clin Radiol 2011; 66:566-74. [PMID: 21371698 DOI: 10.1016/j.crad.2010.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/16/2022]
Abstract
The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.
Collapse
Affiliation(s)
- W W Orrison
- CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci 2011; 31:2305-12. [PMID: 21307266 PMCID: PMC6633030 DOI: 10.1523/jneurosci.4358-10.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/26/2010] [Accepted: 12/14/2010] [Indexed: 12/28/2022] Open
Abstract
Theories of corticocerebellar function propose roles for the cerebellum in automating motor control, a process thought to depend on plasticity in cerebellar circuits that exchange information with the motor cortex. Little is known, however, about automating behaviors beyond the motor domain. The present study tested the hypothesis that cerebellar plasticity also subserves the development of automaticity in behavior based on low-order rules. Human subjects were required to learn two sets of first-order rules in which visual stimuli of different shapes each arbitrarily instructed a particular finger movement. We used event-related functional magnetic resonance imaging to scan subjects while these response rules became increasingly automatic with practice, as assessed with a dual-task procedure. We found that the amplitude of the blood oxygenation level-dependent signal gradually decreased as a function of practice, as responses became increasingly automatic, and that this effect was greater for a set of rules that became automatic rapidly compared with a second set, which became automatic more slowly. These trial-by-trial activity changes occurred in Crus I of cerebellar cortical lobule HVIIA, in which neurons exchange information with the prefrontal cortex rather than the motor cortex. Activity in Crus I was time locked specifically to the processing of these rules, rather than to subsequent actions. The results support the hypothesis that decreases in cerebellar cortical activity underlie the automation of behavior, whether related to motor control and motor cortex or to response rules and prefrontal cortex.
Collapse
Affiliation(s)
- Joshua H. Balsters
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom, and
- Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Narender Ramnani
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom, and
| |
Collapse
|
97
|
Lin P, Hasson U, Jovicich J, Robinson S. A neuronal basis for task-negative responses in the human brain. ACTA ACUST UNITED AC 2010; 21:821-30. [PMID: 20805236 PMCID: PMC3059884 DOI: 10.1093/cercor/bhq151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuroimaging studies have revealed a number of brain regions that show a reduced blood oxygenation level–dependent (BOLD) signal during externally directed tasks compared with a resting baseline. These regions constitute a network whose operation has become known as the default mode. The source of functional magnetic resonance imaging (fMRI) signal reductions in the default mode during task performance has not been resolved, however. It may be attributable to neuronal effects (neuronal firing), physiological effects (e.g., task vs. rest differences in respiration rate), or even increases in neuronal activity with an atypical blood response. To establish the source of signal decreases in the default mode, we used the calibrated fMRI method to quantify changes in the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF) in those regions that typically show reductions in BOLD signal during a demanding cognitive task. CBF:CMRO2 coupling during task-negative responses were linear, with a coupling constant similar to that in task-positive regions, indicating a neuronal source for signal reductions in multiple brain areas. We also identify, for the first time, two modes of neuronal activity in this network; one in which greater deactivation (characterized by metabolic rate reductions) is associated with more effort and one where it is associated with less effort.
Collapse
Affiliation(s)
- Pan Lin
- Center for Mind/Brain Sciences, University of Trento, 38100 Mattarello, Italy
| | | | | | | |
Collapse
|
98
|
Nguyen D, Delavelle J, Lovblad KO, Vargas MI. Refractory temporal seizures with crossed cerebellar diaschisis assessment with arterial spin-labeling. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ejrex.2009.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
99
|
Lippert MT, Steudel T, Ohl F, Logothetis NK, Kayser C. Coupling of neural activity and fMRI-BOLD in the motion area MT. Magn Reson Imaging 2010; 28:1087-94. [PMID: 20171035 DOI: 10.1016/j.mri.2009.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 12/28/2022]
Abstract
The fMRI-BOLD contrast is widely used to study the neural basis of sensory perception and cognition. This signal, however, reflects neural activity only indirectly, and the detailed mechanisms of neurovascular coupling and the neurophysiological correlates of the BOLD signal remain debated. Here we investigate the coupling of BOLD and electrophysiological signals in the motion area MT of the macaque monkey by simultaneously recording both signals. Our results demonstrate that a prominent neuronal response property of area MT, so-called motion opponency, can be used to induce dissociations of BOLD and neuronal firing. During the presentation of a stimulus optimally driving the local neurons, both field potentials [local field potentials (LFPs)] and spiking activity [multi-unit activity (MUA)] correlated with the BOLD signal. When introducing the motion opponency stimulus, however, correlations of MUA with BOLD were much reduced, and LFPs were a much better predictor of the BOLD signal than MUA. In addition, for a subset of recording sites we found positive BOLD and LFP responses in the presence of decreases in MUA, regardless of the stimulus used. Together, these results demonstrate that correlations between BOLD and MUA are dependent on the particular site and stimulus paradigm, and foster the notion that the fMRI-BOLD signal reflects local dendrosomatic processing and synaptic activity rather than principal neuron spiking responses.
Collapse
Affiliation(s)
- Michael T Lippert
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
100
|
Samaniego EA, Stuckert E, Fischbein N, Wijman CAC. Crossed Cerebellar Diaschisis in Status Epilepticus. Neurocrit Care 2009; 12:88-90. [DOI: 10.1007/s12028-009-9312-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|