51
|
Amaral DT, Silva JR, Viviani VR. Transcriptomes from the photogenic and non-photogenetic tissues and life stages of the Aspisoma lineatum firefly (Coleoptera: Lampyridae): Implications for the evolutionary origins of bioluminescence and its associated light organs. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife 2017; 6:e27670. [PMID: 28653907 PMCID: PMC5524537 DOI: 10.7554/elife.27670] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Junjiajia Long
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
53
|
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, François MC, Monsempes C, Anderson P, Hansson BS, Larsson MC, Jacquin-Joly E. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 2017; 8:15709. [PMID: 28580965 PMCID: PMC5465368 DOI: 10.1038/ncomms15709] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Collapse
Affiliation(s)
- Arthur de Fouchier
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Nicolas Montagné
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Claudia Steiner
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Muhammad Binyameen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Chemical Ecology Laboratory, Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Thomas Chertemps
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Marie-Christine François
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christelle Monsempes
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mattias C. Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
54
|
Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila. Sci Rep 2017; 7:46188. [PMID: 28393888 PMCID: PMC5385555 DOI: 10.1038/srep46188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/10/2017] [Indexed: 01/10/2023] Open
Abstract
Previous electrophysiological and behavioural studies implicate esterase 6 in the processing of the pheromone cis-vaccenyl acetate and various food odorants that affect aggregation and reproductive behaviours. Here we show esterase 6 has relatively high activity against many of the short-mid chain food esters, but negligible activity against cis-vaccenyl acetate. The crystal structure of esterase 6 confirms its substrate-binding site can accommodate many short-mid chain food esters but not cis-vaccenyl acetate. Immunohistochemical assays show esterase 6 is expressed in non-neuronal cells in the third antennal segment that could be accessory or epidermal cells surrounding numerous olfactory sensilla, including basiconics involved in food odorant detection. Esterase 6 is also produced in trichoid sensilla, but not in the same cell types as the cis-vaccenyl acetate binding protein LUSH. Our data support a model in which esterase 6 acts as a direct odorant degrading enzyme for many bioactive food esters, but not cis-vaccenyl acetate.
Collapse
|
55
|
Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 2017; 6. [PMID: 28068220 PMCID: PMC5222558 DOI: 10.7554/elife.18855] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI:http://dx.doi.org/10.7554/eLife.18855.001 Animals associate with communities of microorganisms, also known as their microbiome, that live in or on their bodies. Within these communities, microbes – such as yeast and bacteria – interact by producing chemical compounds called metabolites that can influence the activity of other members of the community. These metabolites can also affect the host, helping with nutrition or causing disease. The behavior of an animal may help it to acquire its microbiome, although this has not been properly explored experimentally. For example, the fruit fly Drosophila melanogaster acquires members of its microbiome from the microbes found on the fermented fruit that it eats. It is possible that the flies – and other animals – respond to microbial metabolites, which act as signals or cues that cause the animal to avoid or seek the microbial community. The fruit fly microbiome is commonly studied in the laboratory because it has a much simpler composition than mammalian microbiomes. Previous studies have explored how the flies respond to odors produced by individual types of microbes, but none have explored how the behavior of the flies changes in response to the odors produced by a mixed microbial community. Fischer et al. now show that fruit flies are preferentially attracted to microbiome members that are interacting with each other. The flies detected members of the microbiome by responding to chemicals that are only produced when community members grew together. For example, one member of the microbial community produces ethanol that is then converted to acetate by another community member. Neither ethanol nor acetate alone attracted flies as strongly. Fischer et al. also discovered that both adult fruit flies and their larvae benefit from acquiring a mixture of different microbes at the same time. Adult flies benefit by avoiding harmful concentrations of either ethanol or acetic acid, and larvae benefit from developing in an environment that reduces how quickly disease-causing microbes can grow. Overall, the results presented by Fischer et al. detail how flies select a beneficial, interactive microbiome from an external reservoir of microorganisms. Flies also have internal mechanisms, like their immune system, that help them to select their microbiome. Therefore a future challenge will be to integrate the behavioral and internal selection mechanisms into a single model of microbiome acquisition. DOI:http://dx.doi.org/10.7554/eLife.18855.002
Collapse
Affiliation(s)
- Caleb N Fischer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Eric P Trautman
- Department of Chemistry, Yale University, New Haven, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, United States
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, United States
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Nichole A Broderick
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| |
Collapse
|
56
|
He YQ, Feng B, Guo QS, Du Y. Age influences the olfactory profiles of the migratory oriental armyworm mythimna separate at the molecular level. BMC Genomics 2017; 18:32. [PMID: 28056777 PMCID: PMC5217624 DOI: 10.1186/s12864-016-3427-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Background The oriental armyworm Mythimna separata (Walk) is a serious migratory pest; however, studies on its olfactory response and its underlying molecular mechanism are limited. To gain insights to the olfactory mechanism of migration, olfactory genes were identified using antennal transcriptome analysis. The olfactory response and the expression of olfactory genes for 1-day and 5-day-old moths were respectively investigated by EAG and RT-qPCR analyses. Results Putative 126 olfactory genes were identified in M. separata, which included 43 ORs, 13 GRs, 16 IRs, 37 OBPs, 14 CSPs, and 3 SNMPs. RPKM values of IR75d and 10 ORs were larger than co-receptors IR25a and ORco, and the RPKM value of PR2 was larger than that of other ORs. Expression of GR1 (sweet receptor) was higher than that of other GRs. Several sex pheromones activated evident EAG responses where the responses of 5-day-old male moths to the sex pheromones were significantly greater than those of female and 1-day old male moths. In accordance with the EAG response, 11 pheromone genes, including 6 PRs and 5 PBPs were identified in M. separate, and the expression levels of 7 pheromone genes in 5-day-old moths were significantly higher than those of females and 1-day-old moths. PR2 and PBP2 might be used in identifying Z11-16: Ald, which is the main sex pheromone component of M. separata. EAG responses to 16 plant volatiles and the expression levels of 43 olfactory genes in 1-day-old moths were significantly greater than that observed in the 5-day-old moths. Heptanal, Z6-nonenal, and benzaldehyde might be very important floral volatiles for host searching and recognized by several olfactory genes with high expression. Some plant volatiles might be important to male moths because the EAG response to 16 plant volatiles and the expression of 43 olfactory genes were significantly larger in males than in females. Conclusions The findings of the present study show the effect of adult age on olfactory responses and expression profile of olfactory genes in the migratory pest M. separate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3427-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue-Qiu He
- Ningbo City College of Vocational Technology, Xuefu Road, Yinzhou High Educational Park, NingBo, 315100, ZheJiang, China
| | - Bo Feng
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China
| | - Qian-Shuang Guo
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China
| | - Yongjun Du
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China.
| |
Collapse
|
57
|
Kohsaka H, Guertin PA, Nose A. Neural Circuits Underlying Fly Larval Locomotion. Curr Pharm Des 2017; 23:1722-1733. [PMID: 27928962 PMCID: PMC5470056 DOI: 10.2174/1381612822666161208120835] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Pierre A. Guertin
- Department of Psychiatry & Neurosciences, Laval University, Québec City, QC, Canada
| | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
58
|
Clark JT, Ray A. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. J Chem Ecol 2016; 42:919-930. [PMID: 27628342 DOI: 10.1007/s10886-016-0770-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Abstract
Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel vector insects or reduce their host-seeking behavior.
Collapse
Affiliation(s)
- Jonathan T Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA. .,Entomology Department, University of California, Riverside, CA, 92521, USA. .,Center for Disease Vector Research, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
59
|
Hickner PV, Rivaldi CL, Johnson CM, Siddappaji M, Raster GJ, Syed Z. The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC Genomics 2016; 17:648. [PMID: 27530109 PMCID: PMC4988008 DOI: 10.1186/s12864-016-2983-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/29/2016] [Indexed: 01/07/2023] Open
Abstract
Background Drosophila suzukii differs from other melanogaster group members in their proclivity for laying eggs in fresh fruit rather than in fermenting fruits. Olfaction and gustation play a critical role during insect niche formation, and these senses are largely mediated by two important receptor families: olfactory and gustatory receptors (Ors and Grs). Earlier work from our laboratory has revealed how the olfactory landscape of D. suzukii is dominated by volatiles derived from its unique niche. Signaling and reception evolve in synchrony, since the interaction of ligands and receptors together mediate the chemosensory behavior. Here, we manually annotated the Ors and Grs in D. suzukii and two close relatives, D. biarmipes and D. takahashii, and compared these repertoires to those in other melanogaster group drosophilids to identify candidate chemoreceptors associated with D. suzukii’s unusual niche utilization. Results Our comprehensive annotations of the chemosensory genomes in three species, and comparative analysis with other melanogaster group members provide insights into the evolution of chemosensation in the pestiferous D. suzukii. We annotated a total of 71 Or genes in D. suzukii, with nine of those being pseudogenes (12.7 %). Alternative splicing of two genes brings the total to 62 genes encoding 66 Ors. Duplications of Or23a and Or67a expanded D. suzukii’s Or repertoire, while pseudogenization of Or74a, Or85a, and Or98b reduced the number of functional Ors to roughly the same as other annotated species in the melanogaster group. Seventy-one intact Gr genes and three pseudogenes were annotated in D. suzukii. Alternative splicing in three genes brings the total number of Grs to 81. We identified signatures of positive selection in two Ors and three Grs at nodes leading to D. suzukii, while three copies in the largest expanded Or lineage, Or67a, also showed signs of positive selection at the external nodes. Conclusion Our analysis of D. suzukii’s chemoreceptor repertoires in the context of nine melanogaster group drosophilids, including two of its closest relatives (D. biarmipes and D. takahashii), revealed several candidate receptors associated with the adaptation of D. suzukii to its unique ecological niche. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2983-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul V Hickner
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chissa L Rivaldi
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cole M Johnson
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madhura Siddappaji
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gregory J Raster
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
60
|
Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit. eNeuro 2016; 3:eN-NWR-0045-16. [PMID: 27570823 PMCID: PMC4987412 DOI: 10.1523/eneuro.0045-16.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis. We used two different behavioral paradigms to analyze the chemotaxis response of larvae to odorants. When tested with five different odorants that elicit strong physiological responses from single ORNs, larval behavioral responses toward each odorant differed in the strength of attraction as well as in the composition of discrete navigational elements, such as runs and turns. Further, behavioral responses to odorants did not correlate with either the strength of odor gradients tested or the sensitivity of each ORN to its cognate odorant. Finally, we provide evidence that wild-type larvae with all ORNs intact exhibit higher behavioral variance than mutant larvae that have only a single pair of functional ORNs. We conclude that individual ORNs contribute differently to the olfactory circuit that instructs chemotactic responses. Our results, along with recent studies from other groups, suggest that ORNs are functionally nonequivalent units. These results have implications for understanding peripheral odor coding.
Collapse
|
61
|
Bell JS, Wilson RI. Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels. Neuron 2016; 91:425-38. [PMID: 27373835 DOI: 10.1016/j.neuron.2016.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The olfactory system is divided into processing channels (glomeruli), each receiving input from a different type of olfactory receptor neuron (ORN). Here we investigated how glomeruli combine to control behavior in freely walking Drosophila. We found that optogenetically activating single ORN types typically produced attraction, although some ORN types produced repulsion. Attraction consisted largely of a behavioral program with the following rules: at fictive odor onset, flies walked upwind, and at fictive odor offset, they reversed. When certain pairs of attractive ORN types were co-activated, the level of the behavioral response resembled the sum of the component responses. However, other pairs of attractive ORN types produced a response resembling the larger component (max pooling). Although activation of different ORN combinations produced different levels of behavior, the rules of the behavioral program were consistent. Our results illustrate a general method for inferring how groups of neurons work together to modulate behavioral programs.
Collapse
Affiliation(s)
- Joseph S Bell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Sherwood CL, Boitano S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res 2016. [PMID: 27184162 DOI: 10.1186/s12931‐016‐0369‐9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. METHODS We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. RESULTS In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. CONCLUSIONS Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.
Collapse
Affiliation(s)
- Cara L Sherwood
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA. .,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.
| | - Scott Boitano
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA.,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.,Department of Physiology, Arizona Health Sciences Center, Tucson, AZ, USA
| |
Collapse
|
63
|
Sherwood CL, Boitano S. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine. Respir Res 2016; 17:57. [PMID: 27184162 PMCID: PMC4869201 DOI: 10.1186/s12931-016-0369-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023] Open
Abstract
Background The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. Methods We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. Results In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Conclusions Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.
Collapse
Affiliation(s)
- Cara L Sherwood
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA. .,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.
| | - Scott Boitano
- Asthma and Airway Disease Research Center, Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5030, USA.,Bio5 Collaborative Research Institute, Arizona Health Sciences Center, Tucson, AZ, USA.,Department of Physiology, Arizona Health Sciences Center, Tucson, AZ, USA
| |
Collapse
|
64
|
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. The wiring diagram of a glomerular olfactory system. eLife 2016; 5. [PMID: 27177418 PMCID: PMC4930330 DOI: 10.7554/elife.14859] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI:http://dx.doi.org/10.7554/eLife.14859.001 Our sense of smell can tell us about bread being baked faraway in the kitchen, or whether a leftover piece finally went bad. Similarly to the eyes, the nose enables us to make up a mental image of what lies at a distance. In mammals, the surface of the nose hosts a huge number of olfactory sensory cells, each of which is tuned to respond to a small set of scent molecules. The olfactory sensory cells communicate with a region of the brain called the olfactory bulb. Olfactory sensory cells of the same type converge onto the same small pocket of the olfactory bulb, forming a structure called a glomerulus. Similarly to how the retina generates an image, the combined activity of multiple glomeruli defines an odor. A particular smell is the combination of many volatile compounds, the odorants. Therefore the interactions between different olfactory glomeruli are important for defining the nature of the perceived odor. Although the types of neurons involved in these interactions were known in insects, fish and mice, a precise wiring diagram of a complete set of glomeruli had not been described. In particular, the points of contact through which neurons communicate with each other – known as synapses – among all the neurons participating in an olfactory system were not known. Berck, Khandelwal et al. have now taken advantage of the small size of the olfactory system of the larvae of Drosophila fruit flies to fully describe, using high-resolution imaging, all its neurons and their synapses. The results define the complete wiring diagram of the neural circuit that processes the signals sent by olfactory sensory neurons in the larva’s olfactory circuits. In addition to the neurons that read out the activity of a single glomerulus and send it to higher areas of the brain for further processing, there are also numerous neurons that read out activity from multiple glomeruli. These neurons represent a system, encoded in the genome, for quickly extracting valuable olfactory information and then relaying it to other areas of the brain. An essential aspect of sensation is the ability to stop noticing a stimulus if it doesn't change. This allows an animal to, for example, find food by moving in a direction that increases the intensity of an odor. Inhibition mediates some aspects of this capability. The discovery of structure in the inhibitory connections among glomeruli, together with prior findings on the inner workings of the olfactory system, enabled Berck, Khandelwal et al. to hypothesize how the olfactory circuits enable odor gradients to be navigated. Further investigation revealed more about how the circuits could detect slight changes in odor concentration regardless of whether the overall odor intensity is strong or faint. And, crucially, it revealed how the worst odors – which can signal danger – can still be perceived in the presence of very strong pleasant odors. With the wiring diagram, theories about the sense of smell can now be tested using the genetic tools available for Drosophila, leading to an understanding of how neural circuits work. DOI:http://dx.doi.org/10.7554/eLife.14859.002
Collapse
Affiliation(s)
- Matthew E Berck
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Lindsey Claus
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rick D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
65
|
Groen SC, Whiteman NK. Using Drosophila to study the evolution of herbivory and diet specialization. CURRENT OPINION IN INSECT SCIENCE 2016; 14:66-72. [PMID: 27436649 DOI: 10.1016/j.cois.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/06/2023]
Abstract
Herbivory evolved many times independently across the insect phylogeny, and its evolution is linked with increased rates of diversification. Plants present many barriers to potential herbivores, among them are the so-called secondary chemicals and other molecular defenses such as protease inhibitors that deter herbivores. To understand the mechanisms behind the emergence of herbivory and subsequent species radiations of insects driven largely by diet specialization, it is important to identify the molecular basis associated with these evolutionary transitions. However, most herbivore species lack the genomic information and genetic tools required to identify functionally important genes. The notable exception is the genus Drosophila in which herbivory evolved at least three times independently, and for which abundant genomic data are available. Furthermore, contained within the family Drosophilidae is Drosophila melanogaster, the first genetic model animal. Here, we provide a synthesis of the salient tools that the D. melanogaster system provides to identify functionally important genes required for herbivory and subsequent diet specialization across insects.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
66
|
Gonzalez F, Witzgall P, Walker WB. Protocol for Heterologous Expression of Insect Odourant Receptors in Drosophila. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Boyle SM, McInally S, Tharadra S, Ray A. Short-term memory trace mediated by termination kinetics of olfactory receptor. Sci Rep 2016; 6:19863. [PMID: 26830661 PMCID: PMC4735300 DOI: 10.1038/srep19863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Odorants activate receptors in the peripheral olfactory neurons, which sends information to higher brain centers where behavioral valence is determined. Movement and airflow continuously change what odor plumes an animal encounters and little is known about the effect one plume has on the detection of another. Using the simple Drosophila melanogaster larval model to study this relationship we identify an unexpected phenomenon: response to an attractant can be selectively blocked by previous exposure to some odorants that activates the same receptor. At a mechanistic level, we find that exposure to this type of odorant causes prolonged tonic responses from a receptor (Or42b), which can block subsequent detection of a strong activator of that same receptor. We identify naturally occurring odorants with prolonged tonic responses for other odorant receptors (Ors) as well, suggesting that termination-kinetics is a factor for olfactory coding mechanisms. This mechanism has implications for odor-coding in any system and for designing applications to modify odor-driven behaviors.
Collapse
Affiliation(s)
- Sean Michael Boyle
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, California, CA 92521
| | - Shane McInally
- Department of Entomology, University of California, Riverside, California, CA 92521
| | - Sana Tharadra
- Department of Entomology, University of California, Riverside, California, CA 92521
| | - Anandasankar Ray
- Genetics, Genomics and Bioinformatics Program, University of California, Riverside, California, CA 92521.,Department of Entomology, University of California, Riverside, California, CA 92521.,Center for Disease Vector Research, University of California, Riverside, California, CA 92521.,Institute of Integrative Genome Biology, University of California, Riverside, California, CA 92521
| |
Collapse
|
68
|
Ebrahim SAM, Dweck HKM, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biol 2015; 13:e1002318. [PMID: 26674493 PMCID: PMC4687525 DOI: 10.1371/journal.pbio.1002318] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
Collapse
Affiliation(s)
| | | | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John E. Hofferberth
- Department of Chemistry, Kenyon College, Gambier, Ohio, United States of America
| | - Federica Trona
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jürgen Rybak
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoichi Seki
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
69
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
70
|
Kim H, Choi MS, Kang K, Kwon JY. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae. Chem Senses 2015; 41:85-94. [PMID: 26512069 DOI: 10.1093/chemse/bjv061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Insect larvae, which recognize food sources through chemosensory cues, are a major source of global agricultural loss. Gustation is an important factor that determines feeding behavior, and the gustatory receptors (Grs) act as molecular receptors that recognize diverse chemicals in gustatory receptor neurons (GRNs). The behavior of Drosophila larvae is relatively simpler than the adult fly, and a gustatory receptor-to-neuron map was established in a previous study of the major external larval head sensory organs. Here, we extensively study the bitter taste responses of larvae using 2-choice behavioral assays. First, we tested a panel of 23 candidate bitter compounds to compare the behavioral responses of larvae and adults. We define 9 bitter compounds which elicit aversive behavior in a dose-dependent manner. A functional map of the larval GRNs was constructed with the use of Gr-GAL4 lines that drive expression of UAS-tetanus toxin and UAS-VR1 in specific gustatory neurons to identify bitter tastants-GRN combinations by suppressing and activating discrete subsets of taste neurons, respectively. Our results suggest that many gustatory neurons act cooperatively in larval bitter sensing, and that these neurons have different degrees of responsiveness to different bitter compounds.
Collapse
Affiliation(s)
- Haein Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| | - KyeongJin Kang
- Samsung Biomedical Research Institute, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea and
| |
Collapse
|
71
|
Joseph RM, Carlson JR. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet 2015; 31:683-695. [PMID: 26477743 DOI: 10.1016/j.tig.2015.09.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places. We discuss major unsolved problems and suggest areas that may be particularly ripe for future discoveries, including the roles of these receptors in driving the circuits and behaviors that are essential to the survival and reproduction of the animal.
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
72
|
The chemical ecology of the fly. Curr Opin Neurobiol 2015; 34:95-102. [DOI: 10.1016/j.conb.2015.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 02/01/2023]
|
73
|
Shiao MS, Chang JM, Fan WL, Lu MYJ, Notredame C, Fang S, Kondo R, Li WH. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. Genome Biol Evol 2015; 7:2843-58. [PMID: 26430061 PMCID: PMC4684695 DOI: 10.1093/gbe/evv183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jia-Ming Chang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institute of Human Genetics (IGH), UPR 1142, CNRS, Montpellier, France
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rumi Kondo
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
74
|
Harini K, Sowdhamini R. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening. PLoS One 2015. [PMID: 26221959 PMCID: PMC4519343 DOI: 10.1371/journal.pone.0131077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.
Collapse
Affiliation(s)
- K. Harini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
- * E-mail:
| |
Collapse
|
75
|
Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, Deogade A, Sharpe J, Riedl J, Jarriault D, Trautman ET, Werner C, Venkadesan M, Druckmann S, Jayaraman V, Louis M. Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife 2015; 4. [PMID: 26077825 PMCID: PMC4468351 DOI: 10.7554/elife.06694] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/30/2015] [Indexed: 11/13/2022] Open
Abstract
Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity—a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction. In olfactory virtual reality experiments, we report that high activity levels of the OSN suppress turning, whereas low activity levels facilitate turning. Using a generalized linear model, we explain how peripheral encoding of olfactory stimuli modulates the probability of switching from a run to a turn. Our work clarifies the link between computations carried out at the sensory periphery and action selection underlying navigation in odor gradients. DOI:http://dx.doi.org/10.7554/eLife.06694.001 Fruit flies are attracted to the smell of rotting fruit, and use it to guide them to nearby food sources. However, this task is made more challenging by the fact that the distribution of scent or odor molecules in the air is constantly changing. Fruit flies therefore need to cope with, and exploit, this variation if they are to use odors as cues. Odor molecules bind to receptors on the surface of nerve cells called olfactory sensory neurons, and trigger nerve impulses that travel along these cells. While many studies have investigated how fruit flies can distinguish between different odors, less is known about how animals can use variation in the strength of an odor to guide them towards its source. Optogenetics is a technique that allows neuroscientists to control the activities of individual nerve cells, simply by shining light on to them. Because fruit fly larvae are almost transparent, optogenetics can be used on freely moving animals. Now, Schulze, Gomez-Marin et al. have used optogenetics in these larvae to trigger patterns of activity in individual olfactory sensory neurons that mimic the activity patterns elicited by real odors. These virtual realities were then used to study, in detail, some of the principles that control the sensory navigation of a larva—as it moves using a series of forward ‘runs’ and direction-changing ‘turns’. Olfactory sensory neurons responded most strongly whenever light levels changed rapidly in strength (which simulated a rapid change in odor concentration). On the other hand, these neurons showed relatively little response to constant light levels (i.e., constant odors). This indicates that the activity of olfactory sensory neurons typically represents the rate of change in the concentration of an odor. An independent study by Kim et al. found that olfactory sensory neurons in adult fruit flies also respond in a similar way. Schulze, Gomez-Marin et al. went on to show that the signals processed by a single type of olfactory sensory neuron could be used to predict a larva's behavior. Larvae tended to turn less when their olfactory sensory neurons were highly active. Low levels and inhibition of activity in the olfactory sensory neurons had the opposite effect; this promoted turning. It remains to be determined how this relatively simple control principle is implemented by the neural circuits that connect sensory neurons to the parts of a larva's nervous system that are involved with movement. DOI:http://dx.doi.org/10.7554/eLife.06694.002
Collapse
Affiliation(s)
- Aljoscha Schulze
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Alex Gomez-Marin
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Vani G Rajendran
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Gus Lott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marco Musy
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Parvez Ahammad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ajinkya Deogade
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - James Sharpe
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Julia Riedl
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - David Jarriault
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Werner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Madhusudhan Venkadesan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, United States
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Matthieu Louis
- EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain
| |
Collapse
|
76
|
Stötefeld L, Holighaus G, Schütz S, Rohlfs M. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. CHEMOECOLOGY 2015. [DOI: 10.1007/s00049-015-0197-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
77
|
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00053] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
78
|
Hernandez-Nunez L, Belina J, Klein M, Si G, Claus L, Carlson JR, Samuel AD. Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics. eLife 2015; 4. [PMID: 25942453 PMCID: PMC4466337 DOI: 10.7554/elife.06225] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/01/2015] [Indexed: 11/23/2022] Open
Abstract
Neural circuits for behavior transform sensory inputs into motor outputs in patterns with strategic value. Determining how neurons along a sensorimotor circuit contribute to this transformation is central to understanding behavior. To do this, a quantitative framework to describe behavioral dynamics is needed. In this study, we built a high-throughput optogenetic system for Drosophila larva to quantify the sensorimotor transformations underlying navigational behavior. We express CsChrimson, a red-shifted variant of channelrhodopsin, in specific chemosensory neurons and expose large numbers of freely moving animals to random optogenetic activation patterns. We quantify their behavioral responses and use reverse-correlation analysis to uncover the linear and static nonlinear components of navigation dynamics as functions of optogenetic activation patterns of specific sensory neurons. We find that linear–nonlinear models accurately predict navigational decision-making for different optogenetic activation waveforms. We use our method to establish the valence and dynamics of navigation driven by optogenetic activation of different combinations of bitter-sensing gustatory neurons. Our method captures the dynamics of optogenetically induced behavior in compact, quantitative transformations that can be used to characterize circuits for sensorimotor processing and their contribution to navigational decision making. DOI:http://dx.doi.org/10.7554/eLife.06225.001 Living organisms can sense their surroundings and respond in appropriate ways. For example, animals will often move towards the smell of food or away from potential threats, such as predators. However, it is not fully understood how an animal's nervous system is setup to allow sensory information to control how the animal navigates its environment. Optogenetics is a technique that allows neuroscientists to control the activities of individual nerve cells in freely moving animals, simply by shining light on to them. Here, Hernandez-Nunez et al. have used optogenetics in fruit fly larvae to activate nerve cells that normally respond to smells and tastes, while the larvae's movements were tracked. Fruit fly larvae were chosen because they have a simple, but well-studied, nervous system. These larvae also move in two distinct ways: ‘runs’, in which a larva moves forward; and ‘turns’, during which a larva sweeps its head back and forth until it selects the direction of a new run. The data from these experiments were quantified using a specific type of statistical analysis called ‘reverse correlation’ and used to build mathematical models that predict navigational behavior. This analysis of the experiments allowed Hernandez-Nunez et al. to reveal how specific sensory nerve cells can contribute to pathways that control an animal's navigation—and an independent study by Gepner, Mihovilovic Skanata et al. revealed similar results. The approach of using optogenetics in combination with quantitative analysis, as used in these two independent studies, is now opening the door to a more complete understanding of the connections between the activity of sensory nerve cells and perception and behavior. DOI:http://dx.doi.org/10.7554/eLife.06225.002
Collapse
Affiliation(s)
| | - Jonas Belina
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Mason Klein
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
| | - Guangwei Si
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
| | - Lindsey Claus
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Aravinthan Dt Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
79
|
Ray A, van Naters WG, Carlson JR. Molecular determinants of odorant receptor function in insects. J Biosci 2015; 39:555-63. [PMID: 25116610 DOI: 10.1007/s12038-014-9447-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The olfactory system of Drosophila melanogaster provides a powerful model to study molecular and cellular mechanisms underlying function of a sensory system. In the 1970s Siddiqi and colleagues pioneered the application of genetics to olfactory research and isolated several mutant Drosophila with odorant-specific defects in olfactory behaviour, suggesting that odorants are detected differentially by the olfactory system. Since then basic principles of olfactory system function and development have emerged using Drosophila as a model. Nearly four decades later we can add computational methods to further our understanding of how specific odorants are detected by receptors. Using a comparative approach we identify two categories of short amino acid sequence motifs: ones that are conserved family-wide predominantly in the C-terminal half of most receptors, and ones that are present in receptors that detect a specific odorant, 4-methylphenol, found predominantly in the N-terminal half. The odorant-specific sequence motifs are predictors of phenol detection in Anopheles gambiae and other insects, suggesting they are likely to participate in odorant binding. Conversely, the family-wide motifs are expected to participate in shared functions across all receptors and a mutation in the most conserved motif leads to a reduction in odor response. These findings lay a foundation for investigating functional domains within odorant receptors that can lead to a molecular understanding of odor detection.
Collapse
Affiliation(s)
- Anandasankar Ray
- Department of Entomology, University of California, Riverside, CA 92521, USA,
| | | | | |
Collapse
|
80
|
Dweck HKM, Ebrahim SAM, Farhan A, Hansson BS, Stensmyr MC. Olfactory proxy detection of dietary antioxidants in Drosophila. Curr Biol 2015; 25:455-66. [PMID: 25619769 DOI: 10.1016/j.cub.2014.11.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dietary antioxidants play an important role in preventing oxidative stress. Whether animals in search of food or brood sites are able to judge the antioxidant content, and if so actively seek out resources with enriched antioxidant content, remains unclear. RESULTS We show here that the vinegar fly Drosophila melanogaster detects the presence of hydroxycinnamic acids (HCAs)-potent dietary antioxidants abundant in fruit-via olfactory cues. Flies are unable to smell HCAs directly but are equipped with dedicated olfactory sensory neurons detecting yeast-produced ethylphenols that are exclusively derived from HCAs. These neurons are housed on the maxillary palps, express the odorant receptor Or71a, and are necessary and sufficient for proxy detection of HCAs. Activation of these neurons in adult flies induces positive chemotaxis, oviposition, and increased feeding. We further demonstrate that fly larvae also seek out yeast enriched with HCAs and that larvae use the same ethylphenol cues as the adults but rely for detection upon a larval unique odorant receptor (Or94b), which is co-expressed with a receptor (Or94a) detecting a general yeast volatile. We also show that the ethylphenols act as reliable cues for the presence of dietary antioxidants, as these volatiles are produced--upon supplementation of HCAs--by a wide range of yeasts known to be consumed by flies. CONCLUSIONS For flies, dietary antioxidants are presumably important to counteract acute oxidative stress induced by consumption or by infection by entomopathogenic microorganisms. The ethylphenol pathway described here adds another layer to the fly's defensive arsenal against toxic microbes.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Shimaa A M Ebrahim
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Marcus C Stensmyr
- Department of Biology, Lund University, Box 117, 22100 Lund, Sweden.
| |
Collapse
|
81
|
Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E. Advances in the identification and characterization of olfactory receptors in insects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:55-80. [PMID: 25623337 DOI: 10.1016/bs.pmbts.2014.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Olfactory receptors (ORs) are the key elements of the molecular machinery responsible for the detection of odors in insects. Since their initial discovery in Drosophila melanogaster at the beginning of the twenty-first century, insect ORs have been the focus of intense research, both for fundamental knowledge of sensory systems and for their potential as novel targets for the development of products that could impact harmful behaviors of crop pests and disease vectors. In recent years, studies on insect ORs have entered the genomic era, with an ever-increasing number of OR genes being characterized every year through the sequencing of genomes and transcriptomes. With the upcoming release of genomic sequences from hundreds of insect species, the insect OR family could very well become the largest multigene family known. This extremely rapid identification of ORs in many insects is driving the necessity for the development of high-throughput technologies that will allow the identification of ligands for this unprecedented number of receptors. Moreover, such technologies will also be important for the development of agonists or antagonists that could be used in the fight against pest insects.
Collapse
Affiliation(s)
- Nicolas Montagné
- Institute of Ecology & Environmental Sciences of Paris, UPMC-Sorbonne Universités, Paris, France
| | - Arthur de Fouchier
- Institute of Ecology & Environmental Sciences of Paris, INRA, Versailles, France
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | |
Collapse
|
82
|
Nowotny T, de Bruyne M, Berna AZ, Warr CG, Trowell SC. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. BIOINSPIRATION & BIOMIMETICS 2014; 9:046007. [PMID: 25313522 DOI: 10.1088/1748-3182/9/4/046007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used.
Collapse
Affiliation(s)
- Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | | | | | | | | |
Collapse
|
83
|
Grewal JS, Nguyen C, Robles R, Cho C, Kir K, Fledderman N, Gacharna G, Wesolowski M, Klinger C, Vallejo P, Menhennett L, Nagaraj A, Ebo C, Peacy G, Davelis E, Kucher D, Giers S, Kreher SA. Complex and non-redundant signals from individual odor receptors that underlie chemotaxis behavior in Drosophila melanogaster larvae. Biol Open 2014; 3:947-57. [PMID: 25238759 PMCID: PMC4197443 DOI: 10.1242/bio.20148573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rules by which odor receptors encode odors and allow behavior are still largely unexplored. Although large data sets of electrophysiological responses of receptors to odors have been generated, few hypotheses have been tested with behavioral assays. We use a data set on odor responses of Drosophila larval odor receptors coupled with chemotaxis behavioral assays to examine rules of odor coding. Using mutants of odor receptors, we have found that odor receptors with similar electrophysiological responses to odors across concentrations play non-redundant roles in odor coding at specific odor concentrations. We have also found that high affinity receptors for odors determine behavioral response thresholds, but the rules for determining peak behavioral responses are more complex. While receptor mutants typically show loss of attraction to odors, some receptor mutants result in increased attraction at specific odor concentrations. The odor receptor mutants were rescued using transgenic expression of odor receptors, validating assignment of phenotypes to the alleles. Vapor pressures alone cannot fully explain behavior in our assay. Finally, some odors that did not elicit strong electrophysiological responses are associated with behavioral phenotypes upon examination of odor receptor mutants. This result is consistent with the role of sensory neurons in lateral inhibition via local interneurons in the antennal lobe. Taken together, our results suggest a complexity of odor coding rules even in a simple olfactory sensory system.
Collapse
Affiliation(s)
- Jeewanjot S Grewal
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Christine Nguyen
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Raquel Robles
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Christina Cho
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Karolina Kir
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Nicole Fledderman
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - George Gacharna
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Michael Wesolowski
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Christie Klinger
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Pedro Vallejo
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Lorien Menhennett
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Abhiram Nagaraj
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Chineze Ebo
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Garrett Peacy
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Eftihia Davelis
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - David Kucher
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Sarah Giers
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| | - Scott A Kreher
- Department of Biological Sciences, Dominican University, 7900 West Division Street, Parmer Hall 244, River Forest, IL 60305, USA
| |
Collapse
|
84
|
Thoma M, Hansson BS, Knaden M. Compound valence is conserved in binary odor mixtures in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 217:3645-55. [PMID: 25189369 DOI: 10.1242/jeb.106591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most naturally occurring olfactory signals do not consist of monomolecular odorants but, rather, are mixtures whose composition and concentration ratios vary. While there is ample evidence for the relevance of complex odor blends in ecological interactions and for interactions of chemicals in both peripheral and central neuronal processing, a fine-scale analysis of rules governing the innate behavioral responses of Drosophila melanogaster towards odor mixtures is lacking. In this study we examine whether the innate valence of odors is conserved in binary odor mixtures. We show that binary mixtures of attractants are more attractive than individual mixture constituents. In contrast, mixing attractants with repellents elicits responses that are lower than the responses towards the corresponding attractants. This decrease in attraction is repellent-specific, independent of the identity of the attractant and more stereotyped across individuals than responses towards the repellent alone. Mixtures of repellents are either less attractive than the individual mixture constituents or these mixtures represent an intermediate. Within the limits of our data set, most mixture responses are quantitatively predictable on the basis of constituent responses. In summary, the valence of binary odor mixtures is predictable on the basis of valences of mixture constituents. Our findings will further our understanding of innate behavior towards ecologically relevant odor blends and will serve as a powerful tool for deciphering the olfactory valence code.
Collapse
Affiliation(s)
- Michael Thoma
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
85
|
Wright CR, Setzer WN. Characterization of Volatiles of Necrotic Stenocereus thurberi and Opuntia littoralis and Toxicity and Olfactory Preference of Drosophila melanogster, D. mojavensis wrigleyi, and D. mojavensis sonorensis to Necrotic Cactus Volatiles. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drosophila mojavensis wrigleyi and D. mojavensis sonorensis are geographically separated races of cactophilic fruit flies. D. mojavensis sonorensis inhabits the Sonoran Desert and utilizes necrotic rots of Stenocereus thurberi Engelm. as a food source and to oviposit while D. mojavensis wrigleyi inhabits Santa Catalina Island, California and utilizes the necrotic rots of Opuntia littoralis (Engelm.) Cockerell. The objectives of this study were to determine the volatile compositions of the necrotic cacti and to determine if the volatile components show either selective toxicity or attraction toward the fruit flies. The volatile chemical compositions of field-rot specimens of both necrotic cacti were obtained by dynamic headspace (purge-and-trap) and hydrodistillation techniques and analyzed by gas chromatography – mass spectrometry. The volatile fraction of necrotic S. thurberi early rot was dominated by carboxylic acids (84.8%) and the late rot by p-cresol (32.6% in the dynamic headspace sample and 55.9% in the hydrodistilled sample). O. littoralis volatiles were dominated by carboxylic acids (86% in the dynamic headspace sample and 89.1% in the hydrodistilled sample). Fifteen compounds that were identified in the necrotic rot volatiles were used to test insecticidal activity and olfactory preference on the cactophilic Drosophila species, as well as D. melanogaster. Differences in toxicity and olfactory preference were observed between the different taxa. Both races of D. mojavensis exhibited toxicity to benzaldehyde and 2-nonanone, while butanoic acid and palmitic acid were tolerated at high concentrations. D. m. wrigleyi demonstrated a greater olfactory preference for anisole, butanoic acid, 2-heptanone, and palmitic acid than did D. m. sonorensis, while D. m. sonorensis demonstrated a greater preference for hexadecane, octanoic acid, and oleic acid than did D. m. wrigleyi.
Collapse
Affiliation(s)
- Cynthia R. Wright
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
86
|
Liu C, Liu Y, Guo M, Cao D, Dong S, Wang G. Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hübner). INSECT MOLECULAR BIOLOGY 2014; 23:487-496. [PMID: 24779920 DOI: 10.1111/imb.12096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Olfaction plays an important role in insects in recognizing volatile compounds, which are used to find food and mates, as well as avoid danger, predators and pathogens. The key players in the detection of volatile compounds are olfactory receptor (OR) proteins, which are located within the dendritic membrane of sensory neurons and extend into the lymph of sensilla on insect antennae. In the present study, we identify an OR gene, named SexiOR3, which is expressed in adult antenna in both sexes, but with female bias, in the beet armyworm moth Spodoptera exigua. Further in situ hybridization analysis revealed that SexiOR3 was mainly located in short trichoid sensilla. In in vitro heterologous expression experiments, SexiOR3 was narrowly tuned to E-β-farnesene and several compounds of related structure, among 62 different compounds tested in this study. Furthermore, SexiOR3 responds to E-β-farnesene at a low concentration of 10(-9) M, comparable to that of pheromone receptors (PRs) responding to the pheromones. This is a very interesting finding for a general OR, indicating that high specificity is a feature of at least one general OR and not only the PRs. The results suggest that the OR3 gene may play an important role in the moth olfactory system, and underpins important insect behaviour.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
87
|
Vijayan V, Thistle R, Liu T, Starostina E, Pikielny CW. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity. PLoS Genet 2014; 10:e1004238. [PMID: 24675786 PMCID: PMC3967927 DOI: 10.1371/journal.pgen.1004238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022] Open
Abstract
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.
Collapse
Affiliation(s)
- Vinoy Vijayan
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America; Neuroscience Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rob Thistle
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Tong Liu
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America; Neuroscience Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Elena Starostina
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America; Neuroscience Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Claudio W Pikielny
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America; Neuroscience Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
88
|
Boyle SM, McInally S, Ray A. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. eLife 2013; 2:e01120. [PMID: 24137542 PMCID: PMC3787389 DOI: 10.7554/elife.01120] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/26/2013] [Indexed: 01/30/2023] Open
Abstract
Coding of information in the peripheral olfactory system depends on two fundamental factors: interaction of individual odors with subsets of the odorant receptor repertoire and mode of signaling that an individual receptor-odor interaction elicits, activation or inhibition. We develop a cheminformatics pipeline that predicts receptor–odorant interactions from a large collection of chemical structures (>240,000) for receptors that have been tested to a smaller panel of odorants (∼100). Using a computational approach, we first identify shared structural features from known ligands of individual receptors. We then use these features to screen in silico new candidate ligands from >240,000 potential volatiles for several Odorant receptors (Ors) in the Drosophila antenna. Functional experiments from 9 Ors support a high success rate (∼71%) for the screen, resulting in identification of numerous new activators and inhibitors. Such computational prediction of receptor–odor interactions has the potential to enable systems level analysis of olfactory receptor repertoires in organisms. DOI:http://dx.doi.org/10.7554/eLife.01120.001 Although our sense of smell is regarded as inferior to that of many other species, we can nevertheless distinguish between roughly 10,000 different odors. These are made up of molecules called odorants, each of which activates a specific subset of odorant receptors in the nose. However, much of what we know about this process has come from studying the fruit fly, Drosophila, which detects odors using receptors located mainly on its antennae. The number of potential odorants in nature is vast, and only a tiny fraction of the interactions between odorants and receptors can be physically tested. To address this challenge, Boyle et al. have used a computational approach to study in depth the interactions between a subset of 24 odorant receptors in Drosophila antennae and 109 odorants. After developing a method to identify structural features shared by the odorants that activate each receptor, Boyle et al. used this information to perform a computational (in silico) screen of more than 240,000 different odorant-like volatile compounds. For each receptor, they compiled a list of the 500 odorants predicted to interact most strongly with it. They then tested their predictions for a subset of the receptors by performing experiments in living flies, and found that roughly 71% of predicted compounds did indeed activate or inhibit their receptors, compared to only 10% of a control sample. In addition to providing new insights into the nature of the interactions between odorants and their receptors, the computational screen devised by Boyle et al. could aid the development of novel insect repellents, or compounds that mask the odors used by disease-causing insects to identify their hosts. It could also be used in the future to develop novel flavors and fragrances. DOI:http://dx.doi.org/10.7554/eLife.01120.002
Collapse
Affiliation(s)
- Sean Michael Boyle
- Genetics, Genomics, and Bioinformatics Program , University of California, Riverside , Riverside , United States
| | | | | |
Collapse
|