51
|
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 2018; 441:313-318. [DOI: 10.1016/j.ydbio.2018.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023]
|
52
|
Cavefish as an evolutionary mutant model system for human disease. Dev Biol 2018; 441:355-357. [DOI: 10.1016/j.ydbio.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/03/2023]
|
53
|
Ma L, Strickler AG, Parkhurst A, Yoshizawa M, Shi J, Jeffery WR. Maternal genetic effects in Astyanax cavefish development. Dev Biol 2018; 441:209-220. [PMID: 30031754 DOI: 10.1016/j.ydbio.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
The role of maternal factors in the evolution of development is poorly understood. Here we describe the use of reciprocal hybridization between the surface dwelling (surface fish, SF) and cave dwelling (cavefish, CF) morphs of the teleost Astyanax mexicanus to investigate the roles of maternal genetic effects in cavefish development. Reciprocal hybridization, a procedure in which F1 hybrids are generated by fertilizing SF eggs with CF sperm (SF × CF hybrids) and CF eggs with SF sperm (CF × SF hybrids), revealed that the CF degenerative eye phenotype showed maternal genetic effects. The eyes of CF × SF hybrids resembled the degenerate eyes of CF in showing ventral reduction of the retina and corresponding displacement of the lens within the optic cup, a smaller lens and eyeball, more lens apoptosis, a smaller cartilaginous sclera, and lens-specific gene expression characteristics compared to SF × CF hybrids, which showed eye and lens gene expression phenotypes resembling SF. In contrast, reciprocal hybridization failed to support roles for maternal genetic effects in the CF regressive pigmentation phenotype or in CF constructive changes related to enhanced jaw development. Maternal transcripts encoded by the pou2f1b, runx2b, and axin1 genes, which are involved in determining ventral embryonic fates, were increased in unfertilized CF eggs. In contrast, maternal mRNAs encoded by the ß-catenin and syntabulin genes, which control dorsal embryonic fates, showed similar expression levels in unfertilized SF and CF eggs. Furthermore, maternal transcripts of a sonic hedgehog gene were detected in SF and CF eggs and early cleaving embryos. This study reveals that CF eye degeneration is controlled by changes in maternal factors produced during oogenesis and introduces A. mexicanus as a model system for studying the role of maternal changes in the evolution of development.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Allen G Strickler
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Amy Parkhurst
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Janet Shi
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
54
|
Carlson BM, Klingler IB, Meyer BJ, Gross JB. Genetic analysis reveals candidate genes for activity QTL in the blind Mexican tetra, Astyanax mexicanus. PeerJ 2018; 6:e5189. [PMID: 30042884 PMCID: PMC6054784 DOI: 10.7717/peerj.5189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
Animal models provide useful tools for exploring the genetic basis of morphological, physiological and behavioral phenotypes. Cave-adapted species are particularly powerful models for a broad array of phenotypic changes with evolutionary, developmental and clinical relevance. Here, we explored the genetic underpinnings of previously characterized differences in locomotor activity patterns between the surface-dwelling and Pachón cave-dwelling populations of Astyanax mexicanus. We identified multiple novel QTL underlying patterns in overall levels of activity (velocity), as well as spatial tank use (time spent near the top or bottom of the tank). Further, we demonstrated that different regions of the genome mediate distinct patterns in velocity and tank usage. We interrogated eight genomic intervals underlying these activity QTL distributed across six linkage groups. In addition, we employed transcriptomic data and draft genomic resources to generate and evaluate a list of 36 potential candidate genes. Interestingly, our data support the candidacy of a number of genes, but do not suggest that differences in the patterns of behavior observed here are the result of alterations to certain candidate genes described in other species (e.g., teleost multiple tissue opsins, melanopsins or members of the core circadian clockwork). This study expands our knowledge of the genetic architecture underlying activity differences in surface and cavefish. Future studies will help define the role of specific genes in shaping complex behavioral phenotypes in Astyanax and other vertebrate taxa.
Collapse
Affiliation(s)
- Brian M Carlson
- Department of Biology, The College of Wooster, Wooster, OH, United States of America
| | - Ian B Klingler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bradley J Meyer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
55
|
Re C, Fišer Ž, Perez J, Tacdol A, Trontelj P, Protas ME. Common Genetic Basis of Eye and Pigment Loss in Two Distinct Cave Populations of the Isopod Crustacean Asellus aquaticus. Integr Comp Biol 2018; 58:421-430. [DOI: 10.1093/icb/icy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cassandra Re
- Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, USA
| | - Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Justin Perez
- Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, USA
| | - Allyson Tacdol
- Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, USA
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Meredith E Protas
- Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, USA
| |
Collapse
|
56
|
Chin JSR, Gassant CE, Amaral PM, Lloyd E, Stahl BA, Jaggard JB, Keene AC, Duboue ER. Convergence on reduced stress behavior in the Mexican blind cavefish. Dev Biol 2018; 441:319-327. [PMID: 29803645 DOI: 10.1016/j.ydbio.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 01/09/2023]
Abstract
Responding appropriately to stress is essential for survival, yet in pathological states, these responses can develop into debilitating conditions such as post-traumatic stress disorder and generalized anxiety. While genetic models have provided insight into the neurochemical and neuroanatomical pathways that underlie stress, little is known about how evolutionary processes and naturally occurring variation contribute to the diverse responses to stressful stimuli observed in the animal kingdom. The Mexican cavefish is a powerful system to address how altered genetic and neuronal systems can give rise to altered behaviors. When introduced into a novel tank, surface fish and cavefish display a stereotypic stress response, characterized by reduced exploratory behavior and increased immobility, akin to "freezing". The stress response in cave and surface forms is reduced by pharmacological treatment with the anxiolytic drug, buspirone, fortifying the notion that behavior in the assay represents a conserved stress state. We find that cave populations display reduced behavioral measures of stress compared to surface conspecifics, including increased time in the top half of the tank and fewer periods of immobility. Further, reduced stress responses are observed in multiple independently derived cavefish populations, suggesting convergence on loss of behavioral stress responses in the novel tank assay. These findings provide evidence of a naturally occurring species with two drastically different forms in which a shift in predator-rich ecology to one with few predators corresponds to a reduction in stress behavior.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Claude E Gassant
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma M Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
57
|
|
58
|
Bilandžija H, Laslo M, Porter ML, Fong DW. Melanization in response to wounding is ancestral in arthropods and conserved in albino cave species. Sci Rep 2017; 7:17148. [PMID: 29215078 PMCID: PMC5719348 DOI: 10.1038/s41598-017-17471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Many species adapted to aphotic subterranean habitats have lost all body pigmentation. Yet, melanization is an important component of wound healing in arthropods. We amputated appendages in a variety of cave-adapted and surface-dwelling arthropods. A dark clot formed at the site of injury in most species tested, including even albino cave-adapted species. The dark coloration of the clots was due to melanin deposition. The speed of wound melanization was uncorrelated with a difference in metabolic rate between surface and cave populations of an amphipod. The chelicerate Limulus polyphemus, all isopod crustaceans tested, and the cave shrimp Troglocaris anophthalmus did not melanize wounds. The loss of wound melanization in T. anophthalmus was an apomorphy associated with adaptation to subterranean habitats, but in isopods it appeared to be a symplesiomorphy unrelated to colonization of subterranean habitats. We conclude that wound melanization i) is an important part of innate immunity because it was present in all major arthropod lineages, ii) is retained in most albino cave species, and iii) has been lost several times during arthropod evolution, indicating melanization is not an indispensable component of wound healing in arthropods.
Collapse
Affiliation(s)
- Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Mara Laslo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Daniel W Fong
- Department of Biology, American University, Washington, DC, 20016, USA.
| |
Collapse
|
59
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
60
|
Powers AK, Davis EM, Kaplan SA, Gross JB. Cranial asymmetry arises later in the life history of the blind Mexican cavefish, Astyanax mexicanus. PLoS One 2017; 12:e0177419. [PMID: 28486546 PMCID: PMC5423691 DOI: 10.1371/journal.pone.0177419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
As a consequence of adaptation to the cave environment, the blind Mexican cavefish, Astyanax mexicanus, has evolved several cranial aberrations including changes to bone sizes, shapes and presence of numerous lateral asymmetries. Prior studies of cranial asymmetry in cavefish focused strictly on adult specimens. Thus, the extent to which these asymmetries emerge in adulthood, or earlier in the life history of cavefish, was unknown. We performed a geometric morphometric analysis of shape variation in the chondrocranium and osteocranium across life history in two distinct cavefish populations and surface-dwelling fish. The cartilaginous skull in juveniles was bilaterally symmetric and chondrocranial shape was conserved in all three populations. In contrast, bony skull shapes segregated into significantly distinct groups in adults. Cavefish demonstrated significant asymmetry for the bones surrounding the collapsed eye orbit, and the opercle bone posterior to the eye orbit. Interestingly, we discovered that cavefish also exhibit directional “bends” in skull shape, almost always biased to the left. In sum, this work reveals that asymmetric craniofacial aberrations emerge later in the cavefish life history. These abnormalities may mirror asymmetries in the lateral line sensory system, reflect a ‘handedness’ in cavefish swimming behavior, or evolve through neutral processes.
Collapse
Affiliation(s)
- Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Erin M. Davis
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shane A. Kaplan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
61
|
Lo N, Tong KJ, Rose HA, Ho SYW, Beninati T, Low DLT, Matsumoto T, Maekawa K. Multiple evolutionary origins of Australian soil-burrowing cockroaches driven by climate change in the Neogene. Proc Biol Sci 2016; 283:20152869. [PMID: 26888035 DOI: 10.1098/rspb.2015.2869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parallel evolution is the independent appearance of similar derived phenotypes from similar ancestral forms. It is of key importance in the debate over whether evolution is stochastic and unpredictable, or subject to constraints that limit available phenotypic options. Nevertheless, its occurrence has rarely been demonstrated above the species level. Climate change on the Australian landmass over the last approximately 20 Myr has provided conditions conducive to parallel evolution, as taxa at the edges of shrinking mesic habitats adapted to drier biomes. Here, we investigate the phylogeny and evolution of Australian soil-burrowing and wood-feeding blaberid cockroaches. Soil burrowers (subfamily Geoscapheinae) are found in relatively dry sclerophyllous and scrubland habits, whereas wood feeders (subfamily Panesthiinae) are found in rainforest and wet sclerophyll. We sequenced and analysed mitochondrial and nuclear markers from 142 specimens, and estimated the evolutionary time scale of the two subfamilies. We found evidence for the parallel evolution of soil-burrowing taxa from wood-feeding ancestors on up to nine occasions. These transitions appear to have been driven by periods of aridification during the Miocene and Pliocene across eastern Australia. Our results provide an illuminating example of climate-driven parallel evolution among species.
Collapse
Affiliation(s)
- Nathan Lo
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - K Jun Tong
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Harley A Rose
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tiziana Beninati
- Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - David L T Low
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tadao Matsumoto
- Faculty of Liberal Arts, The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 3190, Japan
| |
Collapse
|
62
|
Genetic Convergence in the Evolution of Male-Specific Color Patterns in Drosophila. Curr Biol 2016; 26:2423-2433. [DOI: 10.1016/j.cub.2016.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
|
63
|
Kowalko JE, Ma L, Jeffery WR. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J Vis Exp 2016. [PMID: 27404092 DOI: 10.3791/54113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.
Collapse
Affiliation(s)
| | - Li Ma
- Department of Biological Sciences, University of Cincinnati
| | | |
Collapse
|
64
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
65
|
Mallarino R, Linden TA, Linnen CR, Hoekstra HE. The role of isoforms in the evolution of cryptic coloration inPeromyscusmice. Mol Ecol 2016; 26:245-258. [DOI: 10.1111/mec.13663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ricardo Mallarino
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Tess A. Linden
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Catherine R. Linnen
- Department of Biology; University of Kentucky; 675 Rose Street Lexington KY 40506 USA
| | - Hopi E. Hoekstra
- Departments of Organismic & Evolutionary Biology and Molecular & Cellular Biology; Museum of Comparative Zoology; Howard Hughes Medical Institute; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
66
|
Erickson PA, Glazer AM, Killingbeck EE, Agoglia RM, Baek J, Carsanaro SM, Lee AM, Cleves PA, Schluter D, Miller CT. Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks. Evolution 2016; 70:887-902. [PMID: 26947264 DOI: 10.1111/evo.12897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Abstract
The extent to which convergent adaptation to similar ecological niches occurs by a predictable genetic basis remains a fundamental question in biology. Threespine stickleback fish have undergone an adaptive radiation in which ancestral oceanic populations repeatedly colonized and adapted to freshwater habitats. In multiple lakes in British Columbia, two different freshwater ecotypes have evolved: a deep-bodied benthic form adapted to forage near the lake substrate, and a narrow-bodied limnetic form adapted to forage in open water. Here, we use genome-wide linkage mapping in marine × benthic F2 genetic crosses to test the extent of shared genomic regions underlying benthic adaptation in three benthic populations. We identify at least 100 Quantitative Trait Loci (QTL) harboring genes influencing skeletal morphology. The majority of QTL (57%) are unique to one cross. However, four genomic regions affecting eight craniofacial and armor phenotypes are found in all three benthic populations. We find that QTL are clustered in the genome and overlapping QTL regions are enriched for genomic signatures of natural selection. These findings suggest that benthic adaptation has occurred via both parallel and nonparallel genetic changes.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Andrew M Glazer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Emily E Killingbeck
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Rachel M Agoglia
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Jiyeon Baek
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Sara M Carsanaro
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Anthony M Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720
| | - Dolph Schluter
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, California, 94720.
| |
Collapse
|
67
|
Wilkens H. Genetics and hybridization in surface and caveAstyanax(Teleostei): a comparison of regressive and constructive traits. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Horst Wilkens
- University of Hamburg; Centrum für Naturkunde - CeNak; Zoological Museum; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| |
Collapse
|
68
|
|
69
|
Gross JB, Stahl BA, Powers AK, Carlson BM. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol Dev 2016; 18:7-18. [PMID: 26153732 PMCID: PMC5226847 DOI: 10.1111/ede.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor β3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.
Collapse
Affiliation(s)
- Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Amanda K. Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| | - Brian M. Carlson
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, Ohio 45221, USA
| |
Collapse
|
70
|
Gross JB, Meyer B, Perkins M. The rise of Astyanax cavefish. Dev Dyn 2015; 244:1031-1038. [PMID: 25601346 PMCID: PMC4508244 DOI: 10.1002/dvdy.24253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 01/01/2023] Open
Abstract
Numerous animals have invaded subterranean caverns and evolved remarkably similar features. These features include loss of vision and pigmentation, and gains in nonvisual sensation. This broad convergence echoes smaller-scale convergence, in which members of the same species repeatedly evolve the same cave-associated phenotypes. The blind Mexican tetra of the Sierra de El Abra region of northeastern Mexico has a complex origin, having recurrently colonized subterranean environments through numerous invasions of surface-dwelling fish. These colonizations likely occurred ∼1-5 MYa. Despite evidence of historical and contemporary gene flow between cave and surface forms, the cave-associated phenotype appears to remain quite stable in nature. This model system has provided insight to the mechanisms of phenotypic regression, the genetic basis for constructive trait evolution, and the origin of behavioral novelties. Here, we document the rise of this model system from its discovery by a Mexican surveyor in 1936, to a powerful system for cave biology and contemporary genetic research. The recently sequenced genome provides exciting opportunities for future research, and will help resolve several long-standing biological problems. Developmental Dynamics 244:1031-1038, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua B Gross
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Bradley Meyer
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Molly Perkins
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| |
Collapse
|
71
|
Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A 2015; 112:9668-73. [PMID: 26170297 DOI: 10.1073/pnas.1510802112] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in the understanding of morphological evolution, the genetic underpinnings of behavioral and physiological evolution remain largely unknown. Here, we study the metabolic changes that evolved in independently derived populations of the Mexican cavefish, Astyanax mexicanus. A hallmark of cave environments is scarcity of food. Cavefish populations rely almost entirely on sporadic food input from outside of the caves. To survive under these conditions, cavefish have evolved a range of adaptations, including starvation resistance and binge eating when food becomes available. The use of these adaptive strategies differs among independently derived cave populations. Although all cavefish populations tested lose weight more slowly than their surface conspecifics during restricted rations, only a subset of cavefish populations consume more food than their surface counterparts. A candidate gene-based screen led to the identification of coding mutations in conserved residues of the melanocortin 4 receptor (MC4R) gene, contributing to the insatiable appetite found in some populations of cavefish. Intriguingly, one of the mutated residues has been shown to be linked to obesity in humans. We demonstrate that the allele results in both reduced maximal response and reduced basal activity of the receptor in vitro. We further validate in vivo that the mutated allele contributes to elevated appetite, growth, and starvation resistance. The allele appears to be fixed in cave populations in which the overeating phenotype is present. The presence of the same allele in multiple caves appears to be due to selection from standing genetic variation present in surface populations.
Collapse
|
72
|
Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One 2015; 10:e0119370. [PMID: 25774757 PMCID: PMC4361574 DOI: 10.1371/journal.pone.0119370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Astyanax mexicanus, a teleost fish that exists in a river-dwelling surface form and multiple cave-dwelling forms, is an excellent system for studying the genetic basis of evolution. Cavefish populations, which independently evolved from surface fish ancestors multiple times, have evolved a number of morphological and behavioral traits. Quantitative trait loci (QTL) analyses have been performed to identify the genetic basis of many of these traits. These studies, combined with recent sequencing of the genome, provide a unique opportunity to identify candidate genes for these cave-specific traits. However, tools to test the requirement of these genes must be established to evaluate the role of candidate genes in generating cave-specific traits. To address this need, we designed transcription activator-like effector nucleases (TALENs) to target two genes that contain coding changes in cavefish relative to surface fish and map to the same location as QTL for pigmentation, oculocutaneous albinism 2 (oca2) and melanocortin 1 receptor (mc1r). We found that surface fish genes can be mutated using this method. TALEN-induced mutations in oca2 result in mosaic loss of melanin pigmentation visible as albino patches in F0 founder fish, suggesting biallelic gene mutations in F0s and allowing us to evaluate the role of this gene in pigmentation. The pigment cells in the albino patches can produce melanin upon treatment with L-DOPA, behaving similarly to pigment cells in albino cavefish and providing additional evidence that oca2 is the gene within the QTL responsible for albinism in cavefish. This technology has the potential to introduce a powerful tool for studying the role of candidate genes responsible for the evolution of cavefish traits.
Collapse
|
73
|
Yoshizawa M. Behaviors of cavefish offer insight into developmental evolution. Mol Reprod Dev 2015; 82:268-80. [PMID: 25728684 PMCID: PMC5024055 DOI: 10.1002/mrd.22471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures—relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. Mol. Reprod. Dev. 82: 268–280, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada; Department of Biology, University of Hawaii, Manoa, Hawaii
| |
Collapse
|
74
|
Greenwood AK, Ardekani R, McCann SR, Dubin ME, Sullivan A, Bensussen S, Tavaré S, Peichel CL. Genetic mapping of natural variation in schooling tendency in the threespine stickleback. G3 (BETHESDA, MD.) 2015; 5:761-9. [PMID: 25717151 PMCID: PMC4426364 DOI: 10.1534/g3.114.016519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/23/2015] [Indexed: 02/06/2023]
Abstract
Although there is a heritable basis for many animal behaviors, the genetic architecture of behavioral variation in natural populations remains mostly unknown, particularly in vertebrates. We sought to identify the genetic basis for social affiliation in two populations of threespine sticklebacks (Gasterosteus aculeatus) that differ in their propensity to school. Marine sticklebacks from Japan school strongly whereas benthic sticklebacks from a lake in Canada are more solitary. Here, we expanded on our previous efforts to identify quantitative trait loci (QTL) for differences in schooling tendency. We tested fish multiple times in two assays that test different aspects of schooling tendency: 1) the model school assay, which presents fish with a school of eight model sticklebacks; and 2) the choice assay, in which fish are given a choice between the model school and a stationary artificial plant. We found low-to-moderate levels of repeatability, ranging from 0.1 to 0.5, in schooling phenotypes. To identify the genomic regions that contribute to differences in schooling tendency, we used QTL mapping in two types of crosses: benthic × marine backcrosses and an F2 intercross. We found two QTL for time spent with the school in the model school assay, and one QTL for number of approaches to the school in the choice assay. These QTL were on three different linkage groups, not previously linked to behavioral differences in sticklebacks. Our results highlight the importance of using multiple crosses and robust behavioral assays to uncover the genetic basis of behavioral variation in natural populations.
Collapse
Affiliation(s)
- Anna K Greenwood
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Reza Ardekani
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Shaugnessy R McCann
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Matthew E Dubin
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Amy Sullivan
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Seth Bensussen
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Simon Tavaré
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Catherine L Peichel
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
75
|
Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat Commun 2014; 5:5168. [DOI: 10.1038/ncomms6168] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
|
76
|
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, Hinaux H, Jeffery WR, Keene A, Ma L, Minx P, Murphy D, O’Quin KE, Rétaux S, Rohner N, Searle SMJ, Stahl BA, Tabin C, Volff JN, Yoshizawa M, Warren WC. The cavefish genome reveals candidate genes for eye loss. Nat Commun 2014; 5:5307. [PMID: 25329095 PMCID: PMC4218959 DOI: 10.1038/ncomms6307] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.
Collapse
Affiliation(s)
- Suzanne E. McGaugh
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maryline Blin
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Richard Borowsky
- Department of Biology, New York University, New York, New York 10003-6688, USA
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Hélène Hinaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - William R. Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Alex Keene
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Patrick Minx
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| | - Daniel Murphy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kelly E. O’Quin
- Department of Biology, Centre College, 600 West Walnut St, Danville, Kentucky 40422, USA
| | - Sylvie Rétaux
- DECA group, Neurobiology and Development Laboratory, CNRS-Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Nicolas Rohner
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Steve M. J. Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, 711B Rieveschl Hall, 312 College Drive, Cincinnati, Ohio 45221, USA
| | - Cliff Tabin
- Harvard Medical School Department of Genetics, 77 Avenue Louis Pasteur; NRB 360, Boston, Massachusetts 02115, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR 5242, UCBL, 46 allée d’Italie, Lyon F-69364, France
| | - Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wesley C. Warren
- The Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA
| |
Collapse
|
77
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
78
|
Elipot Y, Legendre L, Père S, Sohm F, Rétaux S. Astyanax Transgenesis and Husbandry: How Cavefish Enters the Laboratory. Zebrafish 2014; 11:291-9. [DOI: 10.1089/zeb.2014.1005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yannick Elipot
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Laurent Legendre
- CNRS, UMS 3504, AMAGEN, Gif-sur-Yvette, France
- INRA, UMS 1374, AMAGEN, Jouy en Josas, France
| | - Stéphane Père
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Frédéric Sohm
- CNRS, UMS 3504, AMAGEN, Gif-sur-Yvette, France
- INRA, UMS 1374, AMAGEN, Jouy en Josas, France
| | - Sylvie Rétaux
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| |
Collapse
|
79
|
Katz PS, Lillvis JL. Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr Opin Neurobiol 2014; 29:39-47. [PMID: 24878891 DOI: 10.1016/j.conb.2014.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/05/2023]
Abstract
The evolution of behavior seems inconsistent with the deep homology of neuromodulatory signaling. G protein coupled receptors (GPCRs) evolved slowly from a common ancestor through a process involving gene duplication, neofunctionalization, and loss. Neuropeptides co-evolved with their receptors and exhibit many conserved functions. Furthermore, brain areas are highly conserved with suggestions of deep anatomical homology between arthropods and vertebrates. Yet, behavior evolved more rapidly; even members of the same genus or species can differ in heritable behavior. The solution to the paradox involves changes in the compartmentalization, or subfunctionalization, of neuromodulation; neurons shift their expression of GPCRs and the content of monoamines and neuropeptides. Furthermore, parallel evolution of neuromodulatory signaling systems suggests a route for repeated evolution of similar behaviors.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302, United States.
| | - Joshua L Lillvis
- Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
| |
Collapse
|
80
|
Glazer AM, Cleves PA, Erickson PA, Lam AY, Miller CT. Parallel developmental genetic features underlie stickleback gill raker evolution. EvoDevo 2014; 5:19. [PMID: 24851181 PMCID: PMC4029907 DOI: 10.1186/2041-9139-5-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023] Open
Abstract
Background Convergent evolution, the repeated evolution of similar phenotypes in independent lineages, provides natural replicates to study mechanisms of evolution. Cases of convergent evolution might have the same underlying developmental and genetic bases, implying that some evolutionary trajectories might be predictable. In a classic example of convergent evolution, most freshwater populations of threespine stickleback fish have independently evolved a reduction of gill raker number to adapt to novel diets. Gill rakers are a segmentally reiterated set of dermal bones important for fish feeding. A previous large quantitative trait locus (QTL) mapping study using a marine × freshwater F2 cross identified QTL on chromosomes 4 and 20 with large effects on evolved gill raker reduction. Results By examining skeletal morphology in adult and developing sticklebacks, we find heritable marine/freshwater differences in gill raker number and spacing that are specified early in development. Using the expression of the Ectodysplasin receptor (Edar) gene as a marker of raker primordia, we find that the differences are present before the budding of gill rakers occurs, suggesting an early change to a lateral inhibition process controlling raker primordia spacing. Through linkage mapping in F2 fish from crosses with three independently derived freshwater populations, we find in all three crosses QTL overlapping both previously identified QTL on chromosomes 4 and 20 that control raker number. These two QTL affect the early spacing of gill raker buds. Conclusions Collectively, these data demonstrate that parallel developmental genetic features underlie the convergent evolution of gill raker reduction in freshwater sticklebacks, suggesting that even highly polygenic adaptive traits can have a predictable developmental genetic basis.
Collapse
Affiliation(s)
- Andrew M Glazer
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Cleves
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Priscilla A Erickson
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Angela Y Lam
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Craig T Miller
- Molecular and Cell Biology Department, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
81
|
A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun 2014; 5:3647. [DOI: 10.1038/ncomms4647] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/13/2014] [Indexed: 01/15/2023] Open
|