51
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
52
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|
53
|
Sakata N, Yamaguchi Y, Chen Y, Shimoda M, Yoshimatsu G, Unno M, Sumi S, Ohki R. Pleckstrin homology-like domain family A, member 3 (PHLDA3) deficiency improves islets engraftment through the suppression of hypoxic damage. PLoS One 2017; 12:e0187927. [PMID: 29121094 PMCID: PMC5679611 DOI: 10.1371/journal.pone.0187927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
Islet transplantation is a useful cell replacement therapy that can restore the glycometabolic function of severe diabetic patients. It is known that many transplanted islets failed to engraft, and thus, new approaches for overcoming graft loss that may improve the outcome of future clinical islet transplantations are necessary. Pleckstrin homology-like domain family A, member 3 (PHLDA3) is a known suppressor of neuroendocrine tumorigenicity, yet deficiency of this gene increases islet proliferation, prevents islet apoptosis, and improves their insulin-releasing function without causing tumors. In this study, we examined the potential use of PHLDA3-deficient islets in transplantation. We observed that: 1) transplanting PHLDA3-deficient islets into diabetic mice significantly improved their glycometabolic condition, 2) the improved engraftment of PHLDA3-deficient islets resulted from increased cell survival during early transplantation, and 3) Akt activity was elevated in PHLDA3-deficient islets, especially under hypoxic conditions. Thus, we determined that PHLDA3-deficient islets are more resistant against stresses induced by islet isolation and transplantation. We conclude that use of islets with suppressed PHLDA3 expression could be a novel and promising treatment for improving engraftment and consequent glycemic control in islet transplantation.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Surgery, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| | - Yohko Yamaguchi
- Divisions of Rare Cancer Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yu Chen
- Divisions of Rare Cancer Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Gumpei Yoshimatsu
- Department of Surgery, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Shoichiro Sumi
- Department of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Rieko Ohki
- Divisions of Rare Cancer Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
54
|
Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24:R315-R334. [PMID: 28710117 DOI: 10.1530/erc-17-0012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | | | - Aurel Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
55
|
Hamada N. Ionizing radiation response of primary normal human lens epithelial cells. PLoS One 2017; 12:e0181530. [PMID: 28746371 PMCID: PMC5528879 DOI: 10.1371/journal.pone.0181530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Whilst the cataractogenic potential of ionizing radiation has been known for over the past 120 years, little is known about radiation responses of lens cells. Our previous work was the first to evaluate the radiosensitivity of lens cells with the clonogenic assay, documenting that the survival of HLEC1 human lens epithelial cells is comparable to that of WI-38 human lung fibroblasts. Moreover, HLEC1 cells were found to contain subsets where irradiation stimulates proliferation or facilitates formation of abortive colonies with fewer cells than human fibroblasts. This study aims to gain insights into these mechanisms. Irradiation of HLEC1 cells with 10% survival dose caused a growth delay but did not reduce viability. HLEC1 cells at high cumulative population doubling level were more susceptible to radiogenic premature senescence than WI-38 cells. Concerning p53 binding protein 1 (53BP1) foci, HLEC1 cells harbored less spontaneous foci but more radiogenic foci than in WI-38 cells, and the focus number returned to spontaneous levels within 48 h postirradiation both in HLEC1 and WI-38. The chemical inhibition of DNA repair kinases ataxia telangiectasia mutated, DNA-dependent protein kinase or both delayed and attenuated the appearance and disappearance of radiogenic 53BP1 foci, increased radiogenic premature senescence and enhanced clonogenic inactivation. The DNA microarray analysis suggested both radiogenic stimulation and inhibition of cell proliferation. Treatment with conditioned medium from irradiated cells did not change growth and the plating efficiency of nonirradiated cells. These results partially explain mechanisms of our previous observations, such that unrepaired or incompletely repaired DNA damage causes a growth delay in a subset of HLEC1 cells without changing viability through induction of premature senescence, thereby leading to clonogenic inactivation, but that growth is stimulated in another subset via as yet unidentified mechanisms, warranting further studies.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
56
|
PHLDA3 impedes somatic cell reprogramming by activating Akt-GSK3β pathway. Sci Rep 2017; 7:2832. [PMID: 28588267 PMCID: PMC5460190 DOI: 10.1038/s41598-017-02982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells holds great promise in clinical therapy. Increasing evidences have shown that p53 and its target genes play important roles in somatic cell reprogramming. In this study, we report that PHLDA3, a p53 target gene, functions as a blockage of iPSCs generation by activating the Akt-GSK3β pathway. Furthermore, PHLDA3 is found to be transcriptionally regulated by Oct4. These findings reveal that PHLDA3 acts as a new member of the regulatory network of somatic cell reprogramming.
Collapse
|
57
|
Takikawa M, Ohki R. A vicious partnership between AKT and PHLDA3 to facilitate neuroendocrine tumors. Cancer Sci 2017; 108:1101-1108. [PMID: 28295876 PMCID: PMC5480075 DOI: 10.1111/cas.13235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNET) are rare cancers that generally have a poor prognosis. Accurate diagnosis and proper treatment of these tumors requires a better understanding of the molecular mechanisms underlying the development of PanNET. It has been shown that the mTOR inhibitor everolimus can improve the progression‐free survival of PanNET patients, suggesting that inhibition of the PI3K‐Akt‐mTOR pathway may suppress the progression of PanNET. PHLDA3 is a novel tumor suppressor protein that inhibits Akt activation by competition for binding to PIP3. Our analysis of PanNET revealed frequent loss‐of‐heterozygosity and DNA methylation at the PHLDA3 locus, resulting in strong suppression of PHLDA3 transcription. Such alterations in the PHLDA3 gene were also frequently found in lung neuroendocrine tumors (NET), suggesting the possibility that various types of NET have in common the functional loss of the PHLDA3 gene.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Rieko Ohki
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
58
|
Pappas K, Xu J, Zairis S, Resnick-Silverman L, Abate F, Steinbach N, Ozturk S, Saal LH, Su T, Cheung P, Schmidt H, Aaronson S, Hibshoosh H, Manfredi J, Rabadan R, Parsons R. p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res 2017; 15:1051-1062. [PMID: 28483946 DOI: 10.1158/1541-7786.mcr-17-0089] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023]
Abstract
TP53 is the most commonly mutated tumor suppressor gene and its mutation drives tumorigenesis. Using ChIP-seq for p53 in the absence of acute cell stress, we found that wild-type but not mutant p53 binds and activates numerous tumor suppressor genes, including PTEN, STK11(LKB1), miR-34a, KDM6A(UTX), FOXO1, PHLDA3, and TNFRSF10B through consensus binding sites in enhancers and promoters. Depletion of p53 reduced expression of these target genes, and analysis across 18 tumor types showed that mutation of TP53 associated with reduced expression of many of these genes. Regarding PTEN, p53 activated expression of a luciferase reporter gene containing the p53-consensus site in the PTEN enhancer, and homozygous deletion of this region in cells decreased PTEN expression and increased growth and transformation. These findings show that p53 maintains expression of a team of tumor suppressor genes that may together with the stress-induced targets mediate the ability of p53 to suppress cancer development. p53 mutations selected during tumor initiation and progression, thus, inactivate multiple tumor suppressor genes in parallel, which could account for the high frequency of p53 mutations in cancer.Implications: In this study, we investigate the activities of p53 under normal low-stress conditions and discover that p53 is capable of maintaining the expression of a group of important tumor suppressor genes at baseline, many of which are haploinsufficient, which could contribute to p53-mediated tumor suppression. Mol Cancer Res; 15(8); 1051-62. ©2017 AACR.
Collapse
Affiliation(s)
- Kyrie Pappas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University Medical Center, New York, New York
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francesco Abate
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Nicole Steinbach
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Arts and Sciences, Columbia University Medical Center, New York, New York
| | - Sait Ozturk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund University Cancer Center, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Tao Su
- Department of Pathology, Columbia University Medical Center, New York, New York
| | - Pamela Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hank Schmidt
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Dubin Breast Center, The Mount Sinai Hospital, New York, New York.,Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stuart Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology, Columbia University Medical Center, New York, New York
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
59
|
Naruoka A, Ohnami S, Nagashima T, Serizawa M, Ohshima K, Ohnami S, Urakami K, Horiuchi Y, Kiyozumi Y, Abe M, Nakajima T, Sugiura T, Uesaka K, Kusuhara M, Yamaguchi K. Germline and somatic genetic changes in multicentric tumors obtained from a patient with multiple endocrine neoplasia type 1. Hum Genome Var 2017; 4:17013. [PMID: 28503312 PMCID: PMC5406389 DOI: 10.1038/hgv.2017.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/12/2017] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a hereditary cancer syndrome caused by germline mutations of the MEN1 gene located in chromosome 11q13. In patients with MEN1, multicentric tumors develop in the involved organs; however, precise evaluation of genetic changes in these multicentric tumors has not been performed. In the present study, using whole-exome sequencing, we analyzed germline and somatic genetic changes in blood cells, two pancreatic endocrine tumors and one duodenal tumor obtained from a patient with MEN1 gastrinoma. We found that this patient possessed a novel germline mutation of the MEN1 gene [NM_137099.2:c.1505dupA (p.Lys502Lysfs); the localization was Chr11:64572134 on Assembly GRCh37], in which an adenine insertion in codon 502 of the MEN1 gene resulted in a frame shift and a premature stop codon. In terms of heterozygosity, the mutated allele was heterozygous in blood cells, hemizygous in the two pancreatic tumors and homozygous in the duodenal tumor. Immunohistochemical staining confirmed that only truncated menin protein accumulated in the nucleus of the tumor tissues. Further evaluation of tumor-specific somatic mutations in two pancreatic tumors did not detect single-nucleotide variations (SNVs) in 609 cancer-associated genes designated by the COSMIC cancer gene census, suggesting that the germline MEN1 mutation and resultant loss of heterozygosity played a major role in tumorigenesis. In the duodenal tumor, in addition to the germline MEN1 mutation, single-nucleotide variations in two cancer-associated genes were found. Further studies are required to clarify the role of these somatic single-nucleotide variations in the progression of MEN1 tumors.
Collapse
Affiliation(s)
- Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasue Horiuchi
- Division of Genetic Counseling, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshimi Kiyozumi
- Division of Genetic Counseling, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masato Abe
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Nakajima
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | |
Collapse
|
60
|
Ito T, Hijioka S, Masui T, Kasajima A, Nakamoto Y, Kobayashi N, Komoto I, Hijioka M, Lee L, Igarashi H, Jensen RT, Imamura M. Advances in the diagnosis and treatment of pancreatic neuroendocrine neoplasms in Japan. J Gastroenterol 2017; 52:9-18. [PMID: 27539256 DOI: 10.1007/s00535-016-1250-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Several new developments have occurred in the field of pancreatic neuroendocrine neoplasm (PNEN) recently in Japan. First, the utility of chromogranin A (CgA), useful for the diagnosis and monitoring of the treatment response of neuroendocrine neoplasm (NEN), has been demonstrated in Japan. For PNEN diagnosis and treatment, grading and correct histological diagnosis according to the WHO 2010 classification is important. Regarding the histological diagnosis, the advent of endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) has enabled correct pathological diagnosis and suitable treatment for the affected tissue. Furthermore, EUS-FNA has also facilitates the assessment of the presence or absence of gene mutations. In addition, patients who have a well-differentiated neuroendocrine tumor (NET) showing a Ki-67 index of higher than 20 % according to the WHO 2010 classification, have also been identified, and their responses to treatment were found to be different from those of patients with poorly differentiated neuroendocrine carcinoma (NEC). Therefore, the concept of NET G3 was proposed. Additionally, somatostatin receptor type 2 is expressed in several cases of NET, and somatostatin receptor scintigraphy (111In-octreoscan) has also been approved in Japan. This advancement will undoubtedly contribute to the localization diagnosis, the identification of remote metastasis, and assessments of the treatment responses of PNEN. Finally, regarding the treatment strategy for PNEN, the management of liver metastasis is important. The advent of novel molecular-targeted agents has dramatically improved the prognosis of advanced PNEN. Multimodality therapy that accounts for the tumor stage, degree of tumor differentiation, tumor volume, and speed of tumor growth is required.
Collapse
Affiliation(s)
- Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noritoshi Kobayashi
- Department of Oncology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Izumi Komoto
- Department of Surgery, Kansai Electric Power Hospital, Osaka, Japan
| | - Masayuki Hijioka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lingaku Lee
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Robert Thomas Jensen
- Digestive Diseases Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masayuki Imamura
- Neuroendocrine Tumor Center, Kansai Electric Power Hospital, Osaka, Japan
| |
Collapse
|
61
|
Chao T, Zhou X, Cao B, Liao P, Liu H, Chen Y, Park HW, Zeng SX, Lu H. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nat Commun 2016; 7:13755. [PMID: 28008906 PMCID: PMC5196188 DOI: 10.1038/ncomms13755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The tumour suppressor p53 transactivates the expression of its target genes to exert its functions. Here, we identify a pleckstrin homology domain-containing protein (PHLDB3)-encoding gene as a p53 target. PHLDB3 overexpression increases proliferation and restrains apoptosis of wild-type p53-harboring cancer cells by reducing p53 protein levels. PHLDB3 binds to MDM2 (mouse double minute 2 homolog) and facilitates MDM2-mediated ubiquitination and degradation of p53. Knockdown of PHLDB3 more efficiently inhibits the growth of mouse xenograft tumours derived from human colon cancer HCT116 cells that contain wild type p53 compared with p53-deficient HCT116 cells, and also sensitizes tumour cells to doxorubicin and 5-Fluorouracil. Analysis of cancer genomic databases reveals that PHLDB3 is amplified and/or highly expressed in numerous human cancers. Altogether, these results demonstrate that PHLDB3 promotes tumour growth by inactivating p53 in a negative feedback fashion and suggest PHLDB3 as a potential therapeutic target in various human cancers. p53 is an oncosuppressor regulating several genes at the transcriptional level. Here, the authors identify a negative feedback loop between PHLDB3 and p53; PHLDB3 is a transcriptional target of p53 which facilitates MDM2-mediated p53 ubiquitination and degradation, impacting on tumorigenesis.
Collapse
Affiliation(s)
- Tengfei Chao
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Peng Liao
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Hongbing Liu
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Yun Chen
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Hee-Won Park
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
62
|
Pavel ME, Sers C. WOMEN IN CANCER THEMATIC REVIEW: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr Relat Cancer 2016; 23:T135-T154. [PMID: 27649723 DOI: 10.1530/erc-16-0370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Neuroendocrine tumors (NETs) are a group of heterogenous neoplasms. Evidence-based treatment options for antiproliferative therapy include somatostatin analogues, the mTOR inhibitor everolimus, the multiple tyrosine kinase inhibitor sunitinib and peptide receptor radionuclide therapy with 177-Lu-octreotate. In the absence of definite predictive markers, therapeutic decision making follows clinical and pathological criteria. As objective response rates with targeted drugs are rather low, and response duration is limited in most patients, numerous combination therapies targeting multiple pathways have been explored in the field. Upfront combination of drugs, however, is associated with increasing toxicity and has shown little benefit. Major advancements in the molecular understanding of NET based on genomic, epigenomic and transcriptomic analysis have been achieved with prognostic and therapeutic impact. New insight into molecular alterations has paved the way to biomarker-driven clinical trials and may facilitate treatment stratification toward personalized medicine in the near future. However, an improved understanding of the complexity of pathway interactions is required for successful treatment. A systems biology approach is one of the tools that may help to achieve this endeavor.
Collapse
Affiliation(s)
- Marianne E Pavel
- Medical DepartmentDivision of Hepatology and Gastroenterology including Metabolic Diseases, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Christine Sers
- Institute of PathologyCharité University Medicine, Berlin, Germany
| |
Collapse
|
63
|
Abstract
Pancreatic neoplasms have a wide range of histologic types with distinct clinical outcomes. Recent advances in high-throughput sequencing technologies have greatly deepened our understanding of pancreatic neoplasms. Now, the exomes of major histologic types of pancreatic neoplasms have been sequenced, and their genetic landscapes have been revealed. This article reviews the molecular changes underlying pancreatic neoplasms, with a special focus on the genetic changes that characterize the histologic types of pancreatic neoplasms. Emphasis is also made on the molecular features of key genes that have the potential for therapeutic targets.
Collapse
|
64
|
Han CY, Lim SW, Koo JH, Kim W, Kim SG. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury. Gut 2016; 65:1377-88. [PMID: 25966993 PMCID: PMC4975835 DOI: 10.1136/gutjnl-2014-308506] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) stress is involved in liver injury, but molecular determinants are largely unknown. This study investigated the role of pleckstrin homology-like domain, family A, member-3 (PHLDA3), in hepatocyte death caused by ER stress and the regulatory basis. DESIGN Hepatic PHLDA3 expression was assessed in HCV patients with hepatitis and in several animal models with ER stress. Immunoblottings, PCR, reporter gene, chromatin immunoprecipitation (ChIP) and mutation analyses were done to explore gene regulation. The functional effect of PHLDA3 on liver injury was validated using lentiviral delivery of shRNA. RESULTS PHLDA3 was overexpressed in relation to hepatocyte injury in patients with acute liver failure or liver cirrhosis or in toxicant-treated mice. In HCV patients with liver injury, PHLDA3 was upregulated in parallel with the induction of ER stress marker. Treatment of mice with tunicamycin (Tm) (an ER stress inducer) increased PHLDA3 expression in the liver. X box-binding protein-1 (Xbp1) was newly identified as a transcription factor responsible for PHLDA3 expression. Inositol-requiring enzyme 1 (IRE1) (an upstream regulator of Xbp1) was required for PHLDA3 induction by Tm, whereas other pathways (c-Jun N-terminal kinase (JNK), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6)) were not. PHLDA3 overexpression correlated with the severity of hepatocyte injury in animal or cell model of ER stress. In p53-deficient cells, ER stress inducers transactivated PHLDA3 with a decrease in cell viability. ER stress-induced hepatocyte death depended on serine/threonine protein kinase B (Akt) inhibition by PHLDA3. Lentiviral delivery of PHLDA3 shRNA to mice abrogated p-Akt inhibition in the liver by Tm, attenuating hepatocyte injury. CONCLUSIONS ER stress in hepatocytes induces PHLDA3 via IRE1-Xbp1s pathway, which facilitates liver injury by inhibiting Akt.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Woo Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
65
|
Hackeng WM, Hruban RH, Offerhaus GJA, Brosens LAA. Surgical and molecular pathology of pancreatic neoplasms. Diagn Pathol 2016; 11:47. [PMID: 27267993 PMCID: PMC4897815 DOI: 10.1186/s13000-016-0497-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/28/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histologic characteristics have proven to be very useful for classifying different types of tumors of the pancreas. As a result, the major tumor types in the pancreas have long been classified based on their microscopic appearance. MAIN BODY Recent advances in whole exome sequencing, gene expression profiling, and knowledge of tumorigenic pathways have deepened our understanding of the underlying biology of pancreatic neoplasia. These advances have not only confirmed the traditional histologic classification system, but also opened new doors to early diagnosis and targeted treatment. CONCLUSION This review discusses the histopathology, genetic and epigenetic alterations and potential treatment targets of the five major malignant pancreatic tumors - pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor, solid-pseudopapillary neoplasm, acinar cell carcinoma and pancreatoblastoma.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Carcinoma, Acinar Cell/diagnosis
- Carcinoma, Acinar Cell/genetics
- Carcinoma, Acinar Cell/surgery
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/surgery
- Eye Diseases, Hereditary/diagnosis
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/surgery
- Humans
- Neuroendocrine Tumors/diagnosis
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/surgery
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/surgery
- Pancreas/pathology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/surgery
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
66
|
Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, Kobayashi Y, Tashiro F, Namiki H, Kondo T, Semba K, Aburatani H, Taya Y, Nakagama H, Ohki R. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci 2016; 107:734-45. [PMID: 26998741 PMCID: PMC4968591 DOI: 10.1111/cas.12933] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor p53 functions by inducing the transcription of a collection of target genes. We previously attempted to identify p53 target genes by microarray expression and ChIP‐sequencing analyses. In this study, we describe a novel p53 target gene, FUCA1, which encodes a fucosidase. Although fucosidase, α‐l‐1 (FUCA1) has been reported to be a lysosomal protein, we detected it outside of lysosomes and observed that its activity is highest at physiological pH. As there is a reported association between fucosylation and tumorigenesis, we investigated the potential role of FUCA1 in cancer. We found that overexpression of FUCA1, but not a mutant defective in enzyme activity, suppressed the growth of cancer cells and induced cell death. Furthermore, we showed that FUCA1 reduced fucosylation and activation of epidermal growth factor receptor, and concomitantly suppressed epidermal growth factor signaling pathways. FUCA1 loss‐of‐function mutations are found in several cancers, its expression is reduced in cancers of the large intestine, and low FUCA1 expression is associated with poorer prognosis in several cancers. These results show that protein defucosylation mediated by FUCA1 is involved in tumor suppression.
Collapse
Affiliation(s)
- Issei Ezawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichiro Sawai
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tatsuya Kawase
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hideo Namiki
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kentaro Semba
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoichi Taya
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Rieko Ohki
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan.,Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
67
|
Pancreatic neuroendocrine tumors: Challenges in an underestimated disease. Crit Rev Oncol Hematol 2016; 101:193-206. [PMID: 27021395 DOI: 10.1016/j.critrevonc.2016.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic neuroendocrine tumours (PanNETs) are considered a relatively unusual oncologic entity. Due to its relative good prognosis, surgery remains the goal standard therapy not only in localized disease but also in the setting of locally or metastatic disease. Most of the patients are diagnosed in metastatic scenario, where multidisciplinary approach based on surgery, chemotherapies, liver-directed and/or molecular targeted therapies are commonly used. Owing to a deeper molecular knowledge of this disease, these targeted therapies are nowadays widely implemented, being the likely discovery of predictive biomarkers that would allow its use in other settings. This review is focused on describing the different classifications, etiology, prognostic biomarkers and multidisciplinary approaches that are typically used in PanNET.
Collapse
|
68
|
Yu R. Animal models of spontaneous pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2016; 421:60-7. [PMID: 26261055 DOI: 10.1016/j.mce.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 01/20/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are usually low-grade neoplasms derived from the endocrine pancreas. PNETs can be functioning and cause well-described hormonal hypersecretion syndromes or non-functioning and cause only tumor mass effect. PNETs appear to be more common recently likely due to incidental detection by imaging. Although the diagnosis and management of PNETs have been evolving rapidly, much remains to be studied in the areas of molecular pathogenesis, molecular markers of tumor behavior, early detection, and targeted drug therapy. Unique challenges facing PNETs studies are long disease course, the deep location of pancreas and difficult access to pancreatic tissue, and the variety of tumors, which make animal models valuable tools for PNETs studies. Existing animal models of PNETs have provided insights into the pathogenesis and natural history of human PNETs. Future studies on animal models of PNETs should address early tumor detection, molecular markers of tumor behavior, and novel targeted therapies.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
69
|
How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B, Tost J. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics 2015; 7:1245-58. [PMID: 26360914 DOI: 10.2217/epi.15.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Most studies have considered gastroenteropancreatic neuroendocrine tumors (GEP-NETs) as a homogenous group of samples or distinguish only gastrointestinal from pancreatic endocrine tumors. This article investigates if DNA methylation patterns could distinguish subtypes of GEP-NETs. MATERIALS & METHODS The DNA methylation level of 807 cancer-related genes was investigated in insulinomas, gastrinomas, non-functioning pancreatic endocrine tumors and small intestine endocrine tumors. RESULTS DNA methylation patterns were found to be tumor type specific for each of the pancreatic tumor subtypes and identified two distinct methylation-based groups in small intestine endocrine tumors. Differences of DNA methylation levels were validated by pyrosequencing for 20 candidate genes and correlated with differences at the transcriptional level for four candidate genes. CONCLUSION The heterogeneity of DNA methylation patterns in the different subtypes of gastroenteropancreatic neuroendocrine tumors suggests different underlying pathways and, therefore, these tumors should be considered as distinct entities in molecular and clinical studies.
Collapse
Affiliation(s)
- Alexandre How-Kit
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Emelyne Dejeux
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Bertrand Dousset
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, Hôpital Cochin, AP-HP, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Marion Baudry
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France.,Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Benoit Terris
- Service d'Anatomie et de Cytologie Pathologique, Hôpital Cochin, AP-HP, Paris, France.,Institut Cochin de Génétique Moléculaire, Université Paris V René Descartes, CNRS (UMR8104), France.,Institut National de la Santé et de la Recherche Médicale U567, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
70
|
Taïeb D, Garrigue P, Bardiès M, Abdullah AE, Pacak K. Application and Dosimetric Requirements for Gallium-68-labeled Somatostatin Analogues in Targeted Radionuclide Therapy for Gastroenteropancreatic Neuroendocrine Tumors. PET Clin 2015; 10:477-86. [PMID: 26384594 DOI: 10.1016/j.cpet.2015.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroendocrine tumors (NETs) are associated with variable prognosis, with grade 1 and 2 NETs having more favorable outcomes than grade 3. Patients with gastroenteropancreatic (GEP)-NET need individualized interdisciplinary evaluations and treatment. New treatment options have become available with significant improvements in progression-free survival. Peptide receptor radionuclide therapy (PRRT) using (90)Y or (177)Lu-labeled somatostatin analogues (SSTa) has also shown promise in the treatment of advanced progressive NETs. (68)Ga-1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA)-SSTa can be used as companion imaging agents to assist in radionuclide therapy selection. (68)Ga-DOTA-SSTa PET/computed tomography might also provide information for prognosis, tumor response assessment to PRRT, and internal dosimetry.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, Marseille 13385, France; European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France; Marseille Cancerology Research Center, Inserm UMR1068, Institut Paoli-Calmettes, Marseille, France.
| | - Philippe Garrigue
- Department of Radiopharmacy, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Manuel Bardiès
- UMR 1037 Inserm/UPS, Cancer Research Center of Toulouse, Toulouse, France
| | - Ahmad Esmaeel Abdullah
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, Marseille 13385, France
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
71
|
Leszczynska KB, Foskolou IP, Abraham AG, Anbalagan S, Tellier C, Haider S, Span PN, O’Neill EE, Buffa FM, Hammond EM. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J Clin Invest 2015; 125:2385-98. [PMID: 25961455 PMCID: PMC4497762 DOI: 10.1172/jci80402] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/19/2015] [Indexed: 12/31/2022] Open
Abstract
Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.
Collapse
Affiliation(s)
- Katarzyna B. Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Iosifina P. Foskolou
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Aswin G. Abraham
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Selvakumar Anbalagan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Céline Tellier
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Syed Haider
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul N. Span
- Radboud University Medical Centre, Department of Radiation Oncology 874, Nijmegen, Netherlands
| | - Eric E. O’Neill
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca M. Buffa
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ester M. Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
72
|
The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 2015; 21:619-27. [PMID: 25985365 DOI: 10.1038/nm.3862] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic beta cell death is a hallmark of type 1 (T1D) and type 2 (T2D) diabetes, but the molecular mechanisms underlying this aspect of diabetic pathology are poorly understood. Here we report that expression of the microRNA (miR)-200 family is strongly induced in islets of diabetic mice and that beta cell-specific overexpression of miR-200 in mice is sufficient to induce beta cell apoptosis and lethal T2D. Conversely, mir-200 ablation in mice reduces beta cell apoptosis and ameliorates T2D. We show that miR-200 negatively regulates a conserved anti-apoptotic and stress-resistance network that includes the essential beta cell chaperone Dnajc3 (also known as p58IPK) and the caspase inhibitor Xiap. We also observed that mir-200 dosage positively controls activation of the tumor suppressor Trp53 and thereby creates a pro-apoptotic gene-expression signature found in islets of diabetic mice. Consequently, miR-200-induced T2D is suppressed by interfering with the signaling of Trp53 and Bax, a proapoptotic member of the B cell lymphoma 2 protein family. Our results reveal a crucial role for the miR-200 family in beta cell survival and the pathophysiology of diabetes.
Collapse
|
73
|
Abstract
Cancer is caused by the accumulation of inherited and/or acquired alterations in specific genes. The recent decline in the cost of DNA sequencing has allowed tumor sequencing to be conducted on a large scale, which, in turn, has led to an unprecedented understanding of the genetic events that drive neoplasia. This understanding, when integrated with meticulous histologic analyses and with clinical findings, has direct clinical implications. The recent sequencing of all of the major types of cystic and noncystic neoplasms of the pancreas has revealed opportunities for molecular diagnoses and for personalized treatment. This review summarizes the results from these recent studies focusing on the clinical relevance of genomic data.
Collapse
|
74
|
Vandamme T, Peeters M, Dogan F, Pauwels P, Van Assche E, Beyens M, Mortier G, Vandeweyer G, de Herder W, Van Camp G, Hofland LJ, Op de Beeck K. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1. J Mol Endocrinol 2015; 54:137-47. [PMID: 25612765 DOI: 10.1530/jme-14-0304] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human BON-1 and QGP-1 cell lines are two frequently used models in pancreatic neuroendocrine tumor (PNET) research. Data on the whole-exome genetic constitution of these cell lines is largely lacking. This study presents, to our knowledge, the first whole-exome profile of the BON-1 and QGP-1 cell lines. Cell line identity was confirmed by short tandem repeat profiling. Using GTG-banding and a CytoSNP-12v2 Beadchip array, cell line ploidy and chromosomal alterations were determined in BON-1 and QGP-1. The exomes of both cell lines were sequenced on Ilumina's HiSeq next-generation sequencing (NGS) platform. Single-nucleotide variants (SNVs) and insertions and deletions (indels) were detected using the Genome Analysis ToolKit. SNVs were validated by Sanger sequencing. Ploidy of BON-1 and QGP-1 was 3 and 4 respectively, with long stretches of loss of heterozygosity across multiple chromosomes, which is associated with aggressive tumor behavior. In BON-1, 57 frameshift indels and 1725 possible protein-altering SNVs were identified in the NGS data. In the QGP-1 cell line, 56 frameshift indels and 1095 SNVs were identified. ATRX, a PNET-associated gene, was mutated in both cell lines, while mutation of TSC2 was detected in BON-1. A mutation in NRAS was detected in BON-1, while KRAS was mutated in QGP-1, implicating aberrations in the RAS pathway in both cell lines. Homozygous mutations in TP53 with possible loss of function were identified in both cell lines. Various MUC genes, implicated in cell signaling, lubrication and chemical barriers, which are frequently expressed in PNET tissue samples, showed homozygous protein-altering SNVs in the BON-1 and QGP-1 cell lines.
Collapse
Affiliation(s)
- Timon Vandamme
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Fadime Dogan
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Patrick Pauwels
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Elvire Van Assche
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Matthias Beyens
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Geert Mortier
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Wouter de Herder
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Guy Van Camp
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Leo J Hofland
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Ken Op de Beeck
- Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium Department of OncologyUniversity of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, BelgiumSection of EndocrinologyDepartment of Internal Medicine, Erasmus Medical Center, Dr. Molenwaterplein 50, 3015GE Rotterdam, The NetherlandsCenter of Medical GeneticsDepartment of PathologyUniversity of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
75
|
Santhanam P, Chandramahanti S, Kroiss A, Yu R, Ruszniewski P, Kumar R, Taïeb D. Nuclear imaging of neuroendocrine tumors with unknown primary: why, when and how? Eur J Nucl Med Mol Imaging 2015; 42:1144-55. [DOI: 10.1007/s00259-015-3027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 01/22/2023]
|
76
|
Pea A, Hruban RH, Wood LD. Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol 2015; 9:1407-19. [PMID: 26413978 PMCID: PMC4890468 DOI: 10.1586/17474124.2015.1092383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated.
Collapse
Affiliation(s)
- Antonio Pea
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center,Unit of Surgery B, The Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Ralph H. Hruban
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center
| | - Laura D. Wood
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center
| |
Collapse
|