51
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
52
|
Kong W, Li B, Wang Q, Wang B, Duan X, Ding L, Lu Y, Liu LW, La H. Analysis of the DNA methylation patterns and transcriptional regulation of the NB-LRR-encoding gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2018; 96:563-575. [PMID: 29525832 DOI: 10.1007/s11103-018-0715-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/02/2018] [Indexed: 05/26/2023]
Abstract
The relationships between transcription and methylation were revealed in Arabidopsis thaliana NB-LRR-encoding genes in wild type (Col-0) and different mutants. Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins constitute a large family that plays predominant roles in disease resistance. However, the regulation of NB-LRR-encoding genes at the transcriptional level is still poorly understood. Recently, DNA cytosine methylation in eukaryotes has been described as serving an important function in regulating gene expression. Here, we analysed the DNA methylation patterns of NB-LRR-encoding genes in Arabidopsis thaliana in samples from a wild type (Col-0) and ago4, met1, cmt3, drm1/2, and ddm1 mutants. Our results revealed that the vast majority of the NB-LRR-encoding genes in Col-0 were methylated, and the DNA methylation occurred predominantly in the CG sequence context. Moreover, DNA methylation was widely distributed in both the promoters and the bodies of most NB-LRR-encoding genes. Our results also showed that the loss of AGO4, MET1, CMT3, DRM1/2 or DDM1 functions generally led to decreased cytosine methylation in the NB-LRR-encoding genes. Analysis of the available transcriptome data from the wild type and the met1, cmt3, drm1/2 and ddm1 mutants revealed that differences in the transcription levels between the wild type and mutants were statistically significant for 63 of the NB-LRR-encoding genes. Of these genes, 38 were significantly upregulated, and the other 25 were significantly downregulated. Some NB-LRR-encoding genes with differential expression levels, which were revealed by the mRNA-Seq data, were confirmed to be significantly upregulated or downregulated in the mutants compared to the wild type by using quantitative RT-PCR. These data suggest that some Arabidopsis NB-LRR-encoding genes are likely to be regulated by altered DNA methylation patterns.
Collapse
Affiliation(s)
- Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Bin Li
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Bin Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoke Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanke Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
53
|
Hosaka A, Kakutani T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr Opin Genet Dev 2018. [DOI: 10.1016/j.gde.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
55
|
Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E1069-E1074. [PMID: 29339507 PMCID: PMC5798360 DOI: 10.1073/pnas.1716300115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In plants, DNA cytosine methylation plays a central role in diverse cellular functions, from transcriptional regulation to maintenance of genome integrity. Vast numbers of whole-genome bisulphite sequencing (WGBS) datasets have been generated to profile DNA methylation at single-nucleotide resolution, yet computational analyses vary widely among research groups, making it difficult to cross-compare findings. Here we reprocessed hundreds of publicly available Arabidopsis WGBS libraries using a uniform pipeline. We identified high-confidence differentially methylated regions and compared libraries using a hierarchical framework, allowing us to identify relationships between methylation pathways. Furthermore, by using a large number of independent wild-type controls, we effectively filtered out spontaneous methylation changes from those that are biologically meaningful. Genome-wide characterization by next-generation sequencing has greatly improved our understanding of the landscape of epigenetic modifications. Since 2008, whole-genome bisulfite sequencing (WGBS) has become the gold standard for DNA methylation analysis, and a tremendous amount of WGBS data has been generated by the research community. However, the systematic comparison of DNA methylation profiles to identify regulatory mechanisms has yet to be fully explored. Here we reprocessed the raw data of over 500 publicly available Arabidopsis WGBS libraries from various mutant backgrounds, tissue types, and stress treatments and also filtered them based on sequencing depth and efficiency of bisulfite conversion. This enabled us to identify high-confidence differentially methylated regions (hcDMRs) by comparing each test library to over 50 high-quality wild-type controls. We developed statistical and quantitative measurements to analyze the overlapping of DMRs and to cluster libraries based on their effect on DNA methylation. In addition to confirming existing relationships, we revealed unanticipated connections between well-known genes. For instance, MET1 and CMT3 were found to be required for the maintenance of asymmetric CHH methylation at nonoverlapping regions of CMT2 targeted heterochromatin. Our comparative methylome approach has established a framework for extracting biological insights via large-scale comparison of methylomes and can also be adopted for other genomics datasets.
Collapse
|
56
|
Bräutigam K, Cronk Q. DNA Methylation and the Evolution of Developmental Complexity in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1447. [PMID: 30349550 PMCID: PMC6186995 DOI: 10.3389/fpls.2018.01447] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
All land plants so far examined use DNA methylation to silence transposons (TEs). DNA methylation therefore appears to have been co-opted in evolution from an original function in TE management to a developmental function (gene regulation) in both phenotypic plasticity and in normal development. The significance of DNA methylation to the evolution of developmental complexity in plants lies in its role in the management of developmental pathways. As such it is more important in fine tuning the presence, absence, and placement of organs rather than having a central role in the evolution of new organs. Nevertheless, its importance should not be underestimated as it contributes considerably to the range of phenotypic expression and complexity available to plants: the subject of the emerging field of epi-evodevo. Furthermore, changes in DNA methylation can function as a "soft" mutation that may be important in the early stages of major evolutionary novelty.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Quentin Cronk
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Quentin Cronk,
| |
Collapse
|
57
|
A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E7377-E7384. [PMID: 28808009 DOI: 10.1073/pnas.1710683114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In several eukaryotic organisms, heterochromatin (HC) in the introns of genes can regulate RNA processing, including polyadenylation, but the mechanism underlying this regulation is poorly understood. By promoting distal polyadenylation, the bromo-adjacent homology (BAH) domain-containing and RNA recognition motif-containing protein ASI1 and the H3K9me2-binding protein EDM2 are required for the expression of functional full-length transcripts of intronic HC-containing genes in Arabidopsis Here we report that ASI1 and EDM2 form a protein complex in vivo via a bridge protein, ASI1-Immunoprecipitated Protein 1 (AIPP1), which is another RNA recognition motif-containing protein. The complex also may contain the Pol II CTD phosphatase CPL2, the plant homeodomain-containing protein AIPP2, and another BAH domain protein, AIPP3. As is the case with dysfunction of ASI1 and EDM2, dysfunction of AIPP1 impedes the use of distal polyadenylation sites at tested intronic HC-containing genes, such as the histone demethylase gene IBM1, resulting in a lack of functional full-length transcripts. A mutation in AIPP1 causes silencing of the 35S-SUC2 transgene and genome-wide CHG hypermethylation at gene body regions, consistent with the lack of full-length functional IBM1 transcripts in the mutant. Interestingly, compared with asi1, edm2, and aipp1 mutations, mutations in CPL2, AIPP2, and AIPP3 cause the opposite effects on the expression of intronic HC-containing genes and other genes, suggesting that CPL2, AIPP2, and AIPP3 may form a distinct subcomplex. These results advance our understanding of the interplay between heterochromatic epigenetic modifications and RNA processing in higher eukaryotes.
Collapse
|
58
|
Wang T, Wang H, Cai D, Gao Y, Zhang H, Wang Y, Lin C, Ma L, Gu L. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:684-699. [PMID: 28493303 DOI: 10.1111/tpj.13597] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 05/21/2023]
Abstract
Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system.
Collapse
Affiliation(s)
- Taotao Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
59
|
Wang J, Zhou Y, Li X, Meng X, Fan M, Chen H, Xue J, Chen M. Genome-Wide Analysis of the Distinct Types of Chromatin Interactions in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:57-70. [PMID: 28064247 DOI: 10.1093/pcp/pcw194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The three-dimensional shapes of chromosomes regulate gene expression and genome function. Our knowledge of the role of chromatin interaction is evolving rapidly. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. High-throughput experimental techniques have been developed to map long-range interactions within chromatin. We have integrated data from multiple experimental sources including Hi-C, BS-seq, ChIP-chip and ChIP-seq data for 17 epigenetic marks and 35 transcription factors. We identified seven groups of interacting loci, which can be distinguished by their epigenetic profiles. Furthermore, the seven groups of interacting loci can be divided into three types of chromatin linkages based on expression status. We observed that two interacting loci sometimes share common epigenetic and transcription factor-binding profiles. Different groups of loci display very different relationships between epigenetic marks and the binding of transcription factors. Distinctive types of chromatin linkages exhibit different gene expression profiles. Our study unveils an entirely unexplored regulatory interaction, linking epigenetic profiles, transcription factor binding and the three-dimensional spatial organization of the Arabidopsis nuclear genome.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Yincong Zhou
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Xue Li
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Xianwen Meng
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Miao Fan
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Hongjun Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Jitong Xue
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Ming Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, PR China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, PR China
- College of Life Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
60
|
Wang Y, Xue X, Zhu JK, Dong J. Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development. Development 2016; 143:4452-4461. [PMID: 27697902 PMCID: PMC5201038 DOI: 10.1242/dev.129932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone modifications interact to modulate gene expression in biological organisms. The histone demethylase IBM1 suppresses DNA methylation and gene silencing, primarily by targeting genic regions in the Arabidopsis genome. The chromatin regulator EDM2 is also required for prevention of genic DNA methylation because it maintains IBM1 expression by promoting IBM1 mRNA distal polyadenylation. Loss-of-function ibm1 and edm2 mutant plants display a wide range of developmental defects, but little is known about which developmentally important genes are regulated by IBM1 and EDM2. Here, we show that both ibm1 and edm2 mutants display defects in production of stomatal lineage cells, which is linked to DNA hypermethylation of the ERECTA family genes, including ER, ERL1 and ERL2 Stomatal phenotypes and DNA methylation levels of ER genes in ibm1 and edm2 mutants are restored by mutations in the genes encoding the histone methyltransferase KYP and DNA methyltransferase CMT3. Our data demonstrate that a specific plant developmental context is influenced by IBM1-regulated histone modification and DNA methylation on the gene body region of the ERECTA receptors.
Collapse
Affiliation(s)
- Yuhua Wang
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xueyi Xue
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
61
|
Deleris A, Halter T, Navarro L. DNA Methylation and Demethylation in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:579-603. [PMID: 27491436 DOI: 10.1146/annurev-phyto-080615-100308] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.
Collapse
Affiliation(s)
- A Deleris
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - T Halter
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - L Navarro
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| |
Collapse
|
62
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
63
|
Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun 2016; 7:11715. [PMID: 27273316 PMCID: PMC4899616 DOI: 10.1038/ncomms11715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. Transposons and repetitive sequences are typically subject to transcription silencing. Here, Zhang et al. find that the bromodomain-containing protein BRAT1 forms a complex with BRP1, recognizes histone acetylation and acts to prevent transcriptional silencing in Arabidopsis.
Collapse
Affiliation(s)
- Cui-Jun Zhang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chang-Rong Shao
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
64
|
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:157-165. [PMID: 27235540 DOI: 10.1016/j.bbagrm.2016.05.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023]
Abstract
Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
65
|
Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LYD, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. PLANT & CELL PHYSIOLOGY 2016; 57:339-58. [PMID: 26861787 PMCID: PMC4788410 DOI: 10.1093/pcp/pcw020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/22/2015] [Indexed: 05/04/2023]
Abstract
Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem-loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes.
Collapse
Affiliation(s)
- Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Guan-Zong Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Mario A Arteaga-Vazquez
- Instituto de Biotecnologia y Ecologia Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa Veracruz, Mexico
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, 1 Sec. 4, Roosevelt Rd. Taipei, Taiwan 106
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan 701
| | - Gong-Min Su
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Sabine Zachgo
- University of Osnabrück, Botany Department, D-49076 Osnabrück, Germany
| | - Felix Althoff
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Mizuki Takenaka
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 115 Center of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
66
|
Espinas NA, Saze H, Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1201. [PMID: 27563304 PMCID: PMC4980392 DOI: 10.3389/fpls.2016.01201] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Yusuke Saijo
- Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| |
Collapse
|
67
|
MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genet 2015; 11:e1005559. [PMID: 26492035 PMCID: PMC4619598 DOI: 10.1371/journal.pgen.1005559] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. DNA cytosine methylation is a major epigenetic mark that confers transcriptional regulation. Active removal of DNA methylation is important for plants and mammals during development and in responses to various stress conditions. In the model plant species Arabidopsis thaliana, active DNA demethylation depends on a family of 5-methylcytosine DNA glycosylases/demethylases including ROS1, DME, and others. While the epigenetic function of this demethylase family is well-known, little is known about how their enzymatic activities may be regulated. In this report, we carried out a forward genetic screen for anti-silencing factors and identified MET18, a conserved component of cytosolic iron-sulfur cluster assembly (CIA) pathway in eukaryotes, as being required for the ROS1-dependent active DNA demethylation. Dysfunction of MET18 causes DNA hyper-methylation at thousands of genomic loci where DNA methylation is pruned by ROS1. In addition, ROS1 physically interacts with MET18 and other CIA pathway components; while a conserved iron-sulfur-binding motif is indispensable for ROS1 enzyme activity. Our results suggested that MET18 affects DNA demethylation by influencing ROS1 enzymatic activity via direct interaction with the iron-sulfur-binding motif of ROS1, highlighting a direct connection between iron-sulfur cluster assembly and active DNA demethylation.
Collapse
|
68
|
To TK, Saze H, Kakutani T. DNA Methylation within Transcribed Regions. PLANT PHYSIOLOGY 2015; 168:1219-25. [PMID: 26143255 PMCID: PMC4528756 DOI: 10.1104/pp.15.00543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 05/10/2023]
Abstract
DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation.
Collapse
Affiliation(s)
- Taiko K To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Hidetoshi Saze
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| |
Collapse
|
69
|
Le TN, Miyazaki Y, Takuno S, Saze H. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res 2015; 43:3911-21. [PMID: 25813042 PMCID: PMC4417168 DOI: 10.1093/nar/gkv258] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022] Open
Abstract
Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units.
Collapse
Affiliation(s)
- Tu N Le
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yuji Miyazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
70
|
Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:3553-7. [PMID: 25733903 DOI: 10.1073/pnas.1502279112] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5' UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression.
Collapse
|
71
|
Lang Z, Lei M, Wang X, Tang K, Miki D, Zhang H, Mangrauthia SK, Liu W, Nie W, Ma G, Yan J, Duan CG, Hsu CC, Wang C, Tao WA, Gong Z, Zhu JK. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol Cell 2015; 57:971-983. [PMID: 25684209 DOI: 10.1016/j.molcel.2015.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in plant and vertebrate development, genome stability, and gene regulation. Canonical Methyl-CpG-binding domain (MBD) proteins are important interpreters of DNA methylation that recognize methylated CG sites and recruit chromatin remodelers, histone deacetylases, and histone methyltransferases to repress transcription. Here, we show that Arabidopsis MBD7 and Increased DNA Methylation 3 (IDM3) are anti-silencing factors that prevent gene repression and DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1 and the alpha-crystallin domain proteins IDM2 and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn limit DNA methylation and prevent transcriptional gene silencing.
Collapse
Affiliation(s)
- Zhaobo Lang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Mingguang Lei
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Xingang Wang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Satendra K Mangrauthia
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; Biotechnology Section, Directorate of Rice Research, Hyderabad 500030, India
| | - Wenshan Liu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wenfeng Nie
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Guojie Ma
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jun Yan
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Cheng-Guo Duan
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
72
|
AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping. Sci Rep 2014; 4:7300. [PMID: 25466435 PMCID: PMC4252907 DOI: 10.1038/srep07300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
We describe methods for the assessment of amplified-fragment single nucleotide polymorphism and methylation (AFSM) sites using a quick and simple molecular marker-assisted breeding strategy based on the use of two restriction enzyme pairs (EcoRI-MspI and EcoRI-HpaII) and a next-generation sequencing platform. Two sets of 85 adapter pairs were developed to concurrently identify SNPs, indels and methylation sites for 85 lines of cassava population in this study. In addition to SNPs and indels, the simplicity of the AFSM protocol makes it particularly suitable for high-throughput full methylation and hemi-methylation analyses. To further demonstrate the ease of this approach, a cassava genetic linkage map was constructed. This approach should be widely applicable for genetic mapping in a variety of organisms and will improve the application of crop genomics in assisted breeding.
Collapse
|
73
|
Hunt AG. The Arabidopsis polyadenylation factor subunit CPSF30 as conceptual link between mRNA polyadenylation and cellular signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:128-132. [PMID: 25104048 DOI: 10.1016/j.pbi.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Alternative polyadenylation plays important roles in growth processes in plants. Although the scope and significance of the phenomenon have been described to considerable extent, the mechanisms that govern differential poly(A) site selection remain active areas of investigation. Of particular interest are the means by which the factors that control differential poly(A) site choice are themselves activated and inhibited. In this review, the case is made that one particular Arabidopsis polyadenylation factor subunit, termed AtCPSF30, stands out as a conceptual link between cellular signaling pathways and differential poly(A) site choice.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
74
|
Zhao Y, Xie S, Li X, Wang C, Chen Z, Lai J, Gong Z. REPRESSOR OF SILENCING5 Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in Arabidopsis. THE PLANT CELL 2014; 26:2660-2675. [PMID: 24920332 PMCID: PMC4114958 DOI: 10.1105/tpc.114.126730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter-LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)-NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.
Collapse
Affiliation(s)
- Yusheng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaojie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China National Center for Plant Gene Research, Beijing 100193, China
| |
Collapse
|
75
|
Mathieu O, Bouché N. Interplay between chromatin and RNA processing. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:60-65. [PMID: 24631845 DOI: 10.1016/j.pbi.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
The processing of pre-mRNAs, including the selection of polyadenylation sites, is influenced by the surrounding chromatin context. We review here recent studies in Arabidopsis thaliana highlighting the intricate and reciprocal interplay between chromatin state and RNA processing. The studies have revealed that transcription can be influenced by the presence, in gene introns, of combination of epigenetic marks typical of heterochromatin. New factors binding to these marks have been identified and shown to play key roles in controlling the use of polyadenylation sites and processing of functional mRNAs. Concomitantly, several proteins of both the splicing and the polyadenylation machineries are also emerging as regulators of DNA methylation patterns and chromatin silencing.
Collapse
Affiliation(s)
- Olivier Mathieu
- Clermont Université, Université Blaise Pascal, GReD, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63001 Clermont-Ferrand, France; INSERM, UMR 1103, GReD, F-63001 Clermont-Ferrand, France.
| | - Nicolas Bouché
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
76
|
Tsuchiya T, Eulgem T. The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides. PLANT SIGNALING & BEHAVIOR 2014; 9:e29202. [PMID: 25763495 PMCID: PMC4203584 DOI: 10.4161/psb.29202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain.
Collapse
Affiliation(s)
- Tokuji Tsuchiya
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Currently at Shanghai Center for Plant Stress Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, PR China
| | - Thomas Eulgem
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Correspondence to: Thomas Eulgem,
| |
Collapse
|
77
|
Role of alternative polyadenylation in epigenetic silencing and antisilencing. Proc Natl Acad Sci U S A 2013; 111:9-10. [PMID: 24335801 DOI: 10.1073/pnas.1321025111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|