51
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:470-479. [PMID: 29222295 PMCID: PMC6142568 DOI: 10.1182/asheducation-2017.1.470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
52
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood 2017; 130:2475-2483. [PMID: 29212804 DOI: 10.1182/blood-2017-06-782037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
53
|
Lin N, Fu W, Zhao C, Li B, Yan X, Li Y. Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia. Biochem Biophys Res Commun 2017; 494:270-277. [DOI: 10.1016/j.bbrc.2017.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/20/2022]
|
54
|
Gu J, Wang Z, Xiao M, Mao X, Zhu L, Wang Y, Huang W. Chronic myelomonocytic leukemia with double-mutations in DNMT3A and FLT3-ITD treated with decitabine and sorafenib. Cancer Biol Ther 2017; 18:843-849. [PMID: 28102729 DOI: 10.1080/15384047.2017.1281491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a heterogeneous neoplastic hematologic disorder with worse overall survival. Half of CMML have mutations, but case with concomitant mutations of DNA methyltransferase 3A (DNMT3A) and Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3-ITD) in CMML was not reported before. We reported a 51-year-old man who had CMML with concomitant mutations in DNMT3A and FLT3-ITD.The patient received decitabine and sorafenib combined treatment. In this report, we reviewed DNMT3A mutation and FLT3 mutation, and we reviewed treatment of decitabine and sorafenib. This report is significant. First: This is the first report on CMML with double-mutations of DNMT3A and FLT3-ITD. Second: It shows the importance of targeted drug in combined treatment of CMML.
Collapse
Affiliation(s)
- Jia Gu
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Zhiqiong Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Min Xiao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Xia Mao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Li Zhu
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Ying Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| | - Wei Huang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Jiefang Da Dao, Wuhan , P. R. China
| |
Collapse
|
55
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
56
|
Integration of DNA methylation and gene transcription across nineteen cell types reveals cell type-specific and genomic region-dependent regulatory patterns. Sci Rep 2017; 7:3626. [PMID: 28620196 PMCID: PMC5472622 DOI: 10.1038/s41598-017-03837-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022] Open
Abstract
Despite numerous studies done on understanding the role of DNA methylation, limited work has focused on systems integration of cell type-specific interplay between DNA methylation and gene transcription. Through a genome-wide analysis of DNA methylation across 19 cell types with T-47D as reference, we identified 106,252 cell type-specific differentially-methylated CpGs categorized into 7,537 differentially (46.6% hyper- and 53.4% hypo-) methylated regions. We found 44% promoter regions and 75% CpG islands were T-47D cell type-specific methylated. Pyrosequencing experiments validated the cell type-specific methylation across three benchmark cell lines. Interestingly, these DMRs overlapped with 1,145 known tumor suppressor genes. We then developed a Bayesian Gaussian Regression model to measure the relationship among DNA methylation, genomic segment distribution, differential gene expression and tumor suppressor gene status. The model uncovered that 3′UTR methylation has much less impact on transcriptional activity than other regions. Integration of DNA methylation and 82 transcription factor binding information across the 19 cell types suggested diverse interplay patterns between the two regulators. Our integrative analysis reveals cell type-specific and genomic region-dependent regulatory patterns and provides a perspective for integrating hundreds of various omics-seq data together.
Collapse
|
57
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
58
|
Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int J Hematol 2017; 106:34-44. [PMID: 28555413 DOI: 10.1007/s12185-017-2257-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022]
Abstract
Recent genetic analyses have revealed that premalignant somatic mutations in hematopoietic cells are common in older people without an evidence of hematologic malignancies, leading to clonal hematopoietic expansion. This phenomenon has been termed clonal hematopoiesis of indeterminate potential (CHIP). Frequency of such clonal somatic mutations increases with age: in 5-10% of people older than 70 years and around 20% of people older than 90 years. The most commonly mutated genes found in individuals with CHIP were epigenetic regulators, including DNA methyltransferase 3A (DNMT3A), Ten-eleven-translocation 2 (TET2), and Additional sex combs-like 1 (ASXL1), which are also recurrently mutated in myeloid malignancies. Recent functional studies have uncovered pleiotropic effect of mutations in DNMT3A, TET2, and ASXL1 in hematopoietic stem cell regulation and leukemic transformation. Of note, CHIP is associated with an increased risk of hematologic malignancy and all-cause mortality, albeit the annual risk of leukemic transformation was relatively low (0.5-1%). These findings suggest that clonal hematopoiesis per se may not be sufficient to engender preleukemic state. Further studies are required to decipher the exact mechanism by which preleukemic stem cells originate and transform into a full-blown leukemic state.
Collapse
|
59
|
Dai YJ, Wang YY, Huang JY, Xia L, Shi XD, Xu J, Lu J, Su XB, Yang Y, Zhang WN, Wang PP, Wu SF, Huang T, Mi JQ, Han ZG, Chen Z, Chen SJ. Conditional knockin of Dnmt3a R878H initiates acute myeloid leukemia with mTOR pathway involvement. Proc Natl Acad Sci U S A 2017; 114:5237-5242. [PMID: 28461508 PMCID: PMC5441829 DOI: 10.1073/pnas.1703476114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNMT3A is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot DNMT3A R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged Lin-Sca1+cKit+ cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G2/M phase, CDK1 was up-regulated due to mTOR activation associated with DNA hypomethylation. Overexpressed CDK1-mediated EZH2 phosphorylation resulted in an abnormal trimethylation of H3K27 profile. The mTOR inhibitor rapamycin elicited a significant therapeutic response in Dnmt3aR878H/WT mice.
Collapse
Affiliation(s)
- Yu-Jun Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jin-Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xia
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Dong Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Na Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pan-Pan Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Song-Fang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian-Qing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
60
|
Zou Y, Liu FY, Wang LQ, Guo JB, Yang BC, Wan XD, Wang F, He M, Huang OP. Downregulation of DNA methyltransferase 3 alpha promotes cell proliferation and invasion of ectopic endometrial stromal cells in adenomyosis. Gene 2017; 604:41-47. [DOI: 10.1016/j.gene.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
|
61
|
Xu Q, Li Y, Lv N, Jing Y, Xu Y, Li Y, Li W, Yao Z, Chen X, Huang S, Wang L, Li Y, Yu L. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res 2017; 23:4511-4522. [PMID: 28246275 DOI: 10.1158/1078-0432.ccr-16-2628] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Whether isocitrate dehydrogenase (IDH) gene aberrations affected prognosis of patients with acute myeloid leukemia (AML) was controversial. Here, we conducted a meta-analysis to evaluate their prognostic value.Experimental Design: PubMed, Embase, Cochrane, and Chinese databases were searched to identify studies exploring how IDH gene aberrations affected AML outcome. Pooled HRs and relative risks (RR) were calculated, along with 95% confidence intervals (CI).Results: Thirty-three reports were included. IDH mutations seemed not to affect overall survival (OS: HR, 1.05; 95% CI, 0.89-1.23) and event-free survival (EFS: HR, 0.97; 95% CI, 0.80-1.18) when considered as a single factor, but improved accumulative incidence of relapse (CIR: HR, 1.44; 95% CI, 1.18-1.76) in patients with intermediate-risk karyotypes (IR-AML). However, IDH1 mutation conferred worse OS (HR, 1.17; 95% CI, 1.05-1.31) and EFS (HR, 1.29; 95% CI, 1.07-1.56), especially in patients with normal cytogenetics (OS: HR, 1.21; 95% CI, 1.01-1.46; EFS: HR, 1.56; 95% CI, 1.23-1.98). Prognosis of the IDH1 single-nucleotide polymorphism rs11554137 was also poor (OS: HR, 1.34; 95% CI, 1.03-1.75). IDH2 mutation improved OS (HR, 0.78; 95% CI, 0.66-0.93), particularly in IR-AML patients (OS: HR, 0.65; 95% CI, 0.49-0.86). The IDH2 (R140) mutation was associated with better OS among younger cases (HR, 0.64; 95% CI, 0.49-0.82). Treatment outcome was poor [RR for complete remission rates in IDH1 mutation: 1.21; 95% CI, 1.02-1.44; IDH2 (R172) mutation: 2.14; 95% CI, 1.61-2.85].Conclusions: Various subtypes of IDH mutations might contribute to different prognosis and be allowed to stratify IR-AML further. Clin Cancer Res; 23(15); 4511-22. ©2017 AACR.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Nankai University, Tianjin, China
| | - Yan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Jing
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yihan Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yuyan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjun Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Zilong Yao
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaosu Chen
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Nankai University, Tianjin, China
| | - Sai Huang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
62
|
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 2017; 5:1. [PMID: 28127428 PMCID: PMC5251331 DOI: 10.1186/s40364-017-0081-z] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
DNA methylation plays an important role in gene expression, chromatin stability, and genetic imprinting. In mammals, DNA methylation patterns are written and regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT3A and DNMT3B. Recent emerging evidence shows that defects in DNMTs are involved in tumor transformation and progression, thus indicating that epigenetic disruptions caused by DNMT abnormalities are associated with tumorigenesis. Herein, we review the latest findings related to DNMT alterations in cancer cells and discuss the contributions of these effects to oncogenic phenotypes.
Collapse
Affiliation(s)
- Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| | - Jie Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| |
Collapse
|
63
|
Xu J, Zhang W, Yan XJ, Lin XQ, Li W, Mi JQ, Li JM, Zhu J, Chen Z, Chen SJ. DNMT3A mutation leads to leukemic extramedullary infiltration mediated by TWIST1. J Hematol Oncol 2016; 9:106. [PMID: 27724883 PMCID: PMC5057205 DOI: 10.1186/s13045-016-0337-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNMT3A mutations are frequently discovered in acute myeloid leukemia (AML), associated with poor outcome. Recently, a relapse case report of AML extramedullary disease has showed that AML cells harboring DNMT3A variation were detected in the cerebral spinal fluid. However, whether a causal relationship exists between DNMT3A mutation (D3Amut) and extramedullary infiltration (EMI) is unclear. METHODS We took advantage of DNMT3A (R882C) mutation-carrying AML cell strain, that is, OCI-AML3, assessing its migration ability in vitro and in vivo. By RNA interfering technology and a xenograft mouse model, we evaluated the effect of DNMT3A mutation on cell mobility and explored the possible mechanism. RESULTS OCI-AML3 displayed extraordinary migration ability in vitro and infiltrated into meninges of NOD/SCID mice after intravenous transfusion. We found that this leukemic migration or infiltration capacity was significantly compromised by the knockdown of DNMT3A mutant. Notably, TWIST1, a critical inducer of epithelial-mesenchymal transition, which underlies the metastasis of carcinomas, was highly expressed in association with R882 mutations. Abrogation of TWIST1 in DNMT3A mutated cells considerably weakened their mobility or infiltration. CONCLUSIONS Our results demonstrate that D3Amut in OCI-AML3 strain enhances leukemic aggressiveness by promoting EMI process, which is partially through upregulating TWIST1.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China.
| | - Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China
| | - Xiao-Jing Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, China
| | - Xue-Qiu Lin
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Bioinformatics, School of Life Sciences and Technology, Tong-Ji University, Shanghai, China
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jian-Qing Mi
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China
| | - Jun-Min Li
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin Er Road, Shanghai, 200025, China.
| |
Collapse
|
64
|
Pruitt K. Molecular and Cellular Changes During Cancer Progression Resulting From Genetic and Epigenetic Alterations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:3-47. [PMID: 27865461 DOI: 10.1016/bs.pmbts.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumorigenesis is a complex process that involves a persistent dismantling of cellular safeguards and checkpoints. These molecular and cellular changes that accumulate over months or decades lead to a change in the fundamental identity of a cell as it transitions from normal to malignant. In this chapter, we will examine some of the molecular changes in the evolving relationship between the genome and epigenome and highlight some of the key changes that occur as normal cells progress to tumor cells. For many years tumorigenesis was almost exclusively attributed to mutations in protein-coding genes. This notion that mutations in protein-coding genes were a fundamental driver of tumorigenesis enabled the development of several novel therapeutics that targeted the mutant protein or overactive pathway responsible for driving a significant portion of the tumor growth. However, because many therapeutic challenges remained in the face of these advances, it was clear that other pieces to the puzzle had yet to be discovered. Advances in molecular and genomics techniques continued and the study of epigenetics began to expand and helped reshape the view that drivers of tumorigenesis extended beyond mutations in protein-coding genes. Studies in the field of epigenetics began to identify aberrant epigenetic marks which created altered chromatin structures and enabled protein expression in tissues that defied rules governing tissue-specificity. Not only were epigenetic alterations found to enable overexpression of proto-oncogenes, they also led to the silencing of tumor suppressor genes. With these discoveries, it became clear that tumor growth could be stimulated by much more than mutations in protein-coding genes. In fact, it became increasingly clear that much of the human genome, while transcribed, did not lead to proteins. This discovery further led to studies that began to uncover the role of noncoding RNAs in regulating chromatin structure, gene transcription, and tumor biology. In this chapter, some of the key alterations in the genome and epigenome will be explored, and some of the cancer therapies that were developed as a result of these discoveries will be discussed.
Collapse
Affiliation(s)
- K Pruitt
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
65
|
Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse. Front Med 2016; 9:412-20. [PMID: 26482067 DOI: 10.1007/s11684-015-0423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Genetic mutations are considered to drive the development of acute myeloid leukemia (AML). With therapid progress in sequencing technologies, many newly reported genes that are recurrently mutated in AML have been found to govern the initiation and relapse of AML. These findings suggest the need to distinguish the driver mutations, especially the most primitive single mutation, from the subsequent passenger mutations. Recent research on DNA methyltransferase 3A (DNMT3A) mutations provides the first proof-of-principle investigation on the identification of preleukemic stem cells (pre-LSCs) in AML patients. Although DNMT3A mutations alone may only transform hematopoietic stem cells into pre-LSCs without causing the full-blown leukemia, the function of this driver mutation appear to persist from AML initiation up to relapse. Therefore, identifying and targeting preleukemic mutations, such as DNMT3A mutations, in AML is a promising strategy for treatment and reduction of relapse risk.
Collapse
|
66
|
Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, Chen WY, Abdel-Wahab O, Wade PA, Zheng D, Wang GG. Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development. Cancer Cell 2016; 30:92-107. [PMID: 27344947 PMCID: PMC4945461 DOI: 10.1016/j.ccell.2016.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/03/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that the DNMT3A mutational hotspot at Arg882 (DNMT3A(R882H)) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A(R882H) directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1, and Hoxa gene cluster. DNMT3A(R882H) induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A(R882H)-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A(R882H)-induced gene-expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.
Collapse
MESH Headings
- Animals
- Arginine/genetics
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA Methyltransferase 3A
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, ras
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Methyltransferases/antagonists & inhibitors
- Mice
- Mutation
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/genetics
- Neoplasms, Experimental
- Promoter Regions, Genetic
- Stem Cells/cytology
- Stem Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Trevor Parton
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kaliopi Chrysovergis
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Shira Rockowitz
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
67
|
Koya J, Kataoka K, Sato T, Bando M, Kato Y, Tsuruta-Kishino T, Kobayashi H, Narukawa K, Miyoshi H, Shirahige K, Kurokawa M. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat Commun 2016; 7:10924. [PMID: 27010239 PMCID: PMC4820786 DOI: 10.1038/ncomms10924] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
Despite the clinical impact of DNMT3A mutation on acute myeloid leukaemia, the molecular mechanisms regarding how this mutation causes leukaemogenesis in vivo are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant haematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are downregulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells, representing a DNA methylation-independent role of mutated DNMT3A. DNMT3A R882H also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, the DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), causing transcriptional silencing, revealing a DNA methylation-independent role of DNMT3A mutation. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. From our data, it is shown that DNMT3A mutants can block the differentiation of HSCs and leukaemic cells via PRC1. This interaction could be targetable in DNMT3A-mutated leukaemias. DNMT3A mutations are known to cause acute myeloid leukaemia. Here, Koya et al. show that DNMT3A R882H mutation causes monoblastic transformation and haematopoietic stem cell accumulation in a methylation-independent manner, by suppressing the polycomb repressive complex 1, causing transcriptional silencing.
Collapse
Affiliation(s)
- Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kato
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takako Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
68
|
|
69
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
70
|
Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, Deng D. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol 2015; 16:252. [PMID: 26592237 PMCID: PMC4656189 DOI: 10.1186/s13059-015-0819-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection significantly decreases P16 promoter activity, induces complete methylation of P16 CpG islands, and inactivates P16 transcription in the HEK293T cell line. The P16-Dnmt coding fragment is integrated into an expression controllable vector and used to induce P16-specific DNA methylation in GES-1 and BGC823 cell lines. Transwell assays show enhanced migration and invasion of these cancer cells following P16-specific DNA methylation. Such effects are not observed in the P16 mutant A549 cell line. These results are confirmed using an experimental mouse pneumonic metastasis model. Moreover, enforced overexpression of P16 in these cells reverses the migration phenotype. Increased levels of RB phosphorylation and NFκB subunit P65 expression are also seen following P16-specific methylation and might further contribute to cancer metastasis. Conclusion P16 methylation could directly inactivate gene transcription and drive cancer metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0819-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenghua Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,Department of Pathology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, 300020, China.
| | - Ying Gan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - James Wilson
- GRU Cancer Center, Georgia Regents University, Augusta, GA30912, USA.
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
71
|
Kitamura T, Watanabe-Okochi N, Enomoto Y, Nakahara F, Oki T, Komeno Y, Kato N, Doki N, Uchida T, Kagiyama Y, Togami K, Kawabata KC, Nishimura K, Hayashi Y, Nagase R, Saika M, Fukushima T, Asada S, Fujino T, Izawa Y, Horikawa S, Fukuyama T, Tanaka Y, Ono R, Goyama S, Nosaka T, Kitaura J, Inoue D. Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD). J Biochem 2015; 159:17-25. [PMID: 26590301 DOI: 10.1093/jb/mvv114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 11/12/2022] Open
Abstract
Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult. Fifteen years ago, it was proposed that combination of two types of mutations induce acute leukemia; Class I mutations induce cell growth or inhibit apoptosis while class II mutations block differentiation, co-operating in inducing acute leukemia. This notion has been proven using a variety of mouse models, however most of recently found mutations are not typical class I/II mutations. Although some novel mutations have been found to functionally work as class I or II mutation in leukemogenesis, the classical class I/II theory seems to be too simple to explain the whole story. We here overview the molecular basis of hematological malignancies based on clinical and experimental results, and propose a new working hypothesis for leukemogenesis.
Collapse
Affiliation(s)
- Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Watanabe-Okochi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yukiko Komeno
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Kato
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Doki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Uchida
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuki Kagiyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuhiro Togami
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reina Nagase
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Saika
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Asada
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuto Izawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryoichi Ono
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsuya Nosaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daichi Inoue
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
72
|
Ko M, An J, Rao A. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol 2015; 37:91-101. [PMID: 26595486 DOI: 10.1016/j.ceb.2015.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
Abstract
Maintenance of the balance of DNA methylation and demethylation is fundamental for normal cellular development and function. Members of the Ten-Eleven-Translocation (TET) family proteins are Fe(II)-dependent and 2-oxoglutarate-dependent dioxygenases that catalyze sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and subsequent oxidized derivatives in DNA. In addition to their roles as intermediates in DNA demethylation, these oxidized methylcytosines are novel epigenetic modifications of DNA. DNA methylation and hydroxymethylation profiles are markedly disrupted in a wide range of cancers but how these changes are related to the pathogenesis of cancers is still ambiguous. In this review, we discuss the current understanding of TET protein functions in normal and malignant hematopoietic development and the ongoing questions to be resolved.
Collapse
Affiliation(s)
- Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea.
| | - Jungeun An
- Center for Genomic Integrity, Institute for Basic Science (IBS), UNIST-gil 50, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
73
|
Wang C, Jia Z, Ma H, Cao D, Wu X, Wen S, You L, Cao X, Jiang J. DNA methyltransferase 3a rs1550117 genetic polymorphism predicts poor survival in gastric cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14864-14874. [PMID: 26823816 PMCID: PMC4713602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
DNA methyltransferase 3a (DNMT3a) have been suggested to play a crucial role in human cancer prognosis. Single nucleotide polymorphisms (SNPs) in DNMT3a genes may have an impact on the prognosis of cancers. This study aimed to investigate the association between SNPs of DNMT3a gene and prognosis of gastric cancer (GC). Two sites of DNMT3a SNPs, rs1550117 and rs13420827 were selected and genotyped using TaqMan assay in 447 GC patients who received gastrectomy. Effects of genotypes on clinical outcomes of GC were calculated by Kaplan-Meier survival analysis and Cox regression model. We found that the AG or AA genotype of rs1550117 was associated with significantly poorer survival and increased death risk of GC compared with GG genotype (dominant model: HR=1.35, 95% CI=1.01-1.80, P=0.043). Further multivariate Cox regression analysis revealed that in addition to the known factors including male, larger tumor sizes and high clinical stage, rs1550117 variant was an independently predictive factor for survival in GC patients. No significant association was found between rs13420827 genetic variants and GC prognosis. Our findings first demonstrated that DNMT3a rs1550117 polymorphism may be a potential biomarker in predicting overall survival of GC patients.
Collapse
Affiliation(s)
- Chuan Wang
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Hongxi Ma
- Division of Pathology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Donghui Cao
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Xing Wu
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Simin Wen
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Lili You
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin UniversityChangchun 130021, China
| | - Jing Jiang
- Division of Clinical Epidemiology, First Hospital of Jilin UniversityChangchun 130021, China
| |
Collapse
|
74
|
Abstract
A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting.
Collapse
Affiliation(s)
- Chun Yew Fong
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Jessica Morison
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne
| | - Mark A Dawson
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
75
|
Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7:247-65. [PMID: 25942534 DOI: 10.2217/epi.14.80] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation plays a critical role in the regulation of chromatin structure and gene expression and is involved in a variety of biological processes. The levels and patterns of DNA methylation are regulated by both DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and 'demethylating' proteins, including the ten-eleven translocation (TET) family of dioxygenases (TET1, TET2 and TET3). The effects of DNA methylation on chromatin and gene expression are largely mediated by methylated DNA 'reader' proteins, including MeCP2. Numerous mutations in DNMTs, TETs and MeCP2 have been identified in cancer and developmental disorders, highlighting the importance of the DNA methylation machinery in human development and physiology. In this review, we describe these mutations and discuss how they may lead to disease phenotypes.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, 1808 Park Road 1C, P. O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
76
|
Ko M, An J, Pastor WA, Koralov SB, Rajewsky K, Rao A. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol Rev 2015; 263:6-21. [PMID: 25510268 DOI: 10.1111/imr.12239] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation has pivotal regulatory roles in mammalian development, retrotransposon silencing, genomic imprinting, and X-chromosome inactivation. Cancer cells display highly dysregulated DNA methylation profiles characterized by global hypomethylation in conjunction with hypermethylation of promoter CpG islands that presumably lead to genome instability and aberrant expression of tumor suppressor genes or oncogenes. The recent discovery of ten-eleven-translocation (TET) family dioxygenases that oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in DNA has led to profound progress in understanding the mechanism underlying DNA demethylation. Among the three TET genes, TET2 recurrently undergoes inactivating mutations in a wide range of myeloid and lymphoid malignancies. TET2 functions as a bona fide tumor suppressor particularly in the pathogenesis of myeloid malignancies resembling chronic myelomonocytic leukemia (CMML) and myelodysplastic syndromes (MDS) in human. Here we review diverse functions of TET proteins and the novel epigenetic marks that they generate in DNA methylation/demethylation dynamics and normal and malignant hematopoietic differentiation. The impact of TET2 inactivation in hematopoiesis and various mechanisms modulating the expression or activity of TET proteins are also discussed. Furthermore, we also present evidence that TET2 and TET3 collaborate to suppress aberrant hematopoiesis and hematopoietic transformation. A detailed understanding of the normal and pathological functions of TET proteins may provide new avenues to develop novel epigenetic therapies for treating hematological malignancies.
Collapse
Affiliation(s)
- Myunggon Ko
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
77
|
Yang L, Liu Y, Zhu L, Xiao M. DNMT3A R882 mutation is associated with elevated expression of MAFB and M4/M5 immunophenotype of acute myeloid leukemia blasts. Leuk Lymphoma 2015; 56:2914-22. [PMID: 25721756 DOI: 10.3109/10428194.2015.1015123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Researchers have recognized that aberrant methylation is an important initiating event in the pathogenesis of hematological malignancies. DNMT3A is a DNA methyltransferase that plays a vital role in de novo methylation of DNA. Somatic mutation of DNMT3A, especially at the Arg882 (R882) site of the DNMT3A coding sequence, has been identified in pre-leukemic stem cell clones as one of the driver mutations of acute myeloid leukemia (AML). Statistical analysis has indicated that patients with AML with DNMT3A mutation tend to have the M4/M5 subtype of AML according to the French-American-British classification. In this study we aimed to investigate the association between the typical immunophenotype of leukemic blasts and mutation of DNMT3A R882. In addition, we further determined the relationship between DNMT3A R882 mutation and the expression of monocytic differentiation genes, and its clinical significance.
Collapse
Affiliation(s)
- Li Yang
- a Department of Hematology , Tongji Hospital affiliated by Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Ya'Nan Liu
- a Department of Hematology , Tongji Hospital affiliated by Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Li Zhu
- a Department of Hematology , Tongji Hospital affiliated by Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Min Xiao
- a Department of Hematology , Tongji Hospital affiliated by Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| |
Collapse
|
78
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
79
|
Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood 2015; 125:619-28. [PMID: 25416276 DOI: 10.1182/blood-2014-08-594564] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genome sequencing studies of patient samples have implicated the involvement of various components of the epigenetic machinery in myeloid diseases, including the de novo DNA methyltransferase DNMT3A. We have recently shown that Dnmt3a is essential for hematopoietic stem cell differentiation. Here, we investigated the effect of loss of Dnmt3a on hematopoietic transformation by forcing the normally quiescent hematopoietic stem cells to divide in vivo. Mice transplanted with Dnmt3a-null bone marrow in the absence of wildtype support cells succumbed to bone marrow failure (median survival, 328 days) characteristic of myelodysplastic syndromes with symptoms including anemia, neutropenia, bone marrow hypercellularity, and splenomegaly with myeloid infiltration. Two out of 25 mice developed myeloid leukemia with >20%blasts in the blood and bone marrow. Four out of 25 primary mice succumbed to myeloproliferative disorders, some of which progressed to secondary leukemia after long latency. Exome sequencing identified cooperating c-Kit mutations found only in the leukemic samples. Ectopic introduction of c-Kit variants into a Dnmt3a-deficient background produced acute leukemia with a short latency (median survival, 67 days). Our data highlight crucial roles of Dnmt3a in normal and malignant hematopoiesis and suggest that a major role for this enzyme is to facilitate developmental progression of progenitor cells at multiple decision checkpoints.
Collapse
|
80
|
Epigenetic deregulation in myeloid malignancies. Transl Res 2015; 165:102-14. [PMID: 24813528 DOI: 10.1016/j.trsl.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022]
Abstract
Abnormal epigenetic patterning commonly is observed in cancer, including the myeloid malignancies acute myeloid leukemia and myelodysplastic syndromes. However, despite the universal nature of epigenetic deregulation, specific subtypes of myeloid disorders are associated with distinct epigenetic profiles, which accurately reflect the biologic heterogeneity of these disorders. In addition, mutations and genetic alterations of epigenetic-modifying enzymes frequently have been reported in these myeloid malignancies, emphasizing the importance of epigenetic deregulation in the initiation, progression, and outcome of these disorders. These aberrant epigenetic modifiers have become new targets for drug design, because their inhibition can potentially reverse the altered epigenetic landscapes that contribute to the development of the leukemia. In this review, we provide an overview of the role of epigenetic deregulation in leukemic transformation and their potential for therapeutic targeting.
Collapse
|
81
|
Woods BA, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Immunol Rev 2014; 263:22-35. [DOI: 10.1111/imr.12246] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Brittany A. Woods
- Louis V. Gerstner Sloan Kettering Graduate School of Biomedical Sciences; Memorial Sloan Kettering Cancer Center; New York NY USA
- Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center; New York NY USA
| | - Ross L. Levine
- Louis V. Gerstner Sloan Kettering Graduate School of Biomedical Sciences; Memorial Sloan Kettering Cancer Center; New York NY USA
- Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center; New York NY USA
- Leukemia Service; Department of Medicine; Memorial Sloan Kettering Cancer Center; New York NY USA
| |
Collapse
|
82
|
Abstract
Abstract
Our understanding of the genetic basis of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) has moved forward at a staggering pace over the last decade. With the discoveries of underlying mutations in JAK2, MPL, and, most recently, calreticulin (CALR), that together account for ∼90% of patients with MPNs, these conditions are now among the best characterized of hematological malignancies. While JAK-STAT pathway activation has been shown to be central to the pathogenesis of the MPN phenotype, the mechanism by which mutant CALR alters cellular function to result in myeloid proliferation remains unclear. Other mutations in several epigenetic modifiers, such as ASXL1, DNMT3a, TET2, EZH2, IDH1, and IDH2, as well as in genes involved in mRNA splicing, such as SF3B1 and U2AF2, have also been described in recent years in patients with MPNs, and evidence is emerging as to how these may be contributing to disease biology. From a therapeutic perspective, the discovery of aberrations in JAK2 has rapidly translated into the successful clinical use of JAK inhibitors in MPNs. Mutant calreticulin has the potential to be a tumor-specific therapeutic target because the mutations generate a novel protein C-terminus. In this chapter, we detail the genomic alterations that underlie MPNs, with a focus on the recent discovery of mutations in CALR, and explore the clinical and biological relevance of the altered genomic landscape in MPNs.
Collapse
|
83
|
Emperle M, Rajavelu A, Reinhardt R, Jurkowska RZ, Jeltsch A. Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase. J Biol Chem 2014; 289:29602-13. [PMID: 25147181 DOI: 10.1074/jbc.m114.572032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.
Collapse
Affiliation(s)
- Max Emperle
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | - Arumugam Rajavelu
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | | | - Renata Z Jurkowska
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | - Albert Jeltsch
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| |
Collapse
|
84
|
Aumann S, Abdel-Wahab O. Somatic alterations and dysregulation of epigenetic modifiers in cancers. Biochem Biophys Res Commun 2014; 455:24-34. [PMID: 25111821 DOI: 10.1016/j.bbrc.2014.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/19/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022]
Abstract
Genomic discovery efforts in patients with cancer have been critical in identifying a recurrent theme of mutations in epigenetic modifiers. A number of novel and exciting basic biological findings have come from this work including the discovery of an enzymatic pathway for DNA cytosine demethylation, a link between cancer metabolism and epigenetics, and the critical importance of post-translational modifications at specific histone residues in malignant transformation. Identification of cancer cell dependency on a number of these mutations has quickly resulted in the development of therapies targeting several of these genetic alterations. This includes, the development of mutant-selective IDH1 and IDH2 inhibitors, DOT1L inhibitors for MLL rearranged leukemias, EZH2 inhibitors for several cancer types, and the development of bromodomain inhibitors for many cancer types--all of which are in early phase clinical trials. In many cases, however, specific genetic targets linked to malignant transformation following mutations in individual epigenetic modifiers are not yet known. In this review we present functional evidence of how alterations in frequently mutated epigenetic modifiers promote malignant transformation and how these alterations are being targeted for cancer therapeutics.
Collapse
Affiliation(s)
- Shlomzion Aumann
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
85
|
Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One 2014; 9:e99769. [PMID: 24914952 PMCID: PMC4051762 DOI: 10.1371/journal.pone.0099769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Mutations in the human DNA methyl transferase 3A (DNMT3A) gene are recurrently identified in several hematologic malignancies such as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML). They have been shown to confer worse prognosis in some of these entities. Notably, about 2/3 of these mutations are missense mutations in codon R882 of the gene. We aimed at the development and validation of a novel easily applicable in routine practice method for quantitative detection of the DNMT3A p.R882C/H/R/S mutations bead-based suspension assay. Initial testing on plasmid constructs showed excellent performance of BNA(NC)-modified probes with an optimal hybridization temperature of 66°C. The method appeared to be quantitative and showed sensitivity of 2.5% for different mutant alleles, making it significantly superior to direct sequencing. The assay was further validated on plasmid standards at different ratios between wild type and mutant alleles and on clinical samples from 120 patients with known or suspected myeloid malignancies. This is the first report on the quantitative detection of DNMT3A R882 mutations using bead-based suspension assay with BNA(NC)-modified probes. Our data showed that it could be successfully implemented in the diagnostic work-up for patients with myeloid malignancies, as it is rapid, easy and reliable in terms of specificity and sensitivity.
Collapse
|
86
|
The mechanistic role of DNA methylation in myeloid leukemogenesis. Leukemia 2014; 28:1765-73. [PMID: 24913729 DOI: 10.1038/leu.2014.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
The importance of epigenetic aberrations in the pathogenesis of leukemias has been revealed by recurrent gene mutations that highlight epigenetic pathways as well as by the clinical success of therapies like 5-azacytidine and decitabine that work through epigenetic mechanisms. However, precise mechanisms of how gene mutations lead to leukemias and how epigenetic therapies induce clinical remissions are elusive. Current scientific inquiries that take advantage of techniques that can distinguish among the various covalent cytosine modifications at single base resolution are likely to shed light on the ways epigenetic pathways drive leukemogenesis as well as how the hypomethylating drugs induce clinical remissions. The hope is that these studies will also reveal which patients are likely to respond to epigenetic therapies. Thus, the future is likely to bring a new wave of diagnostic and prognostic tools that probe the epigenomics of leukemia to help clinicians in their management of patients.
Collapse
|
87
|
KITAMURA T, INOUE D, OKOCHI-WATANABE N, KATO N, KOMENO Y, LU Y, ENOMOTO Y, DOKI N, UCHIDA T, KAGIYAMA Y, TOGAMI K, KAWABATA KC, NAGASE R, HORIKAWA S, HAYASHI Y, SAIKA M, FUKUYAMA T, IZAWA K, OKI T, NAKAHARA F, KITAURA J. The molecular basis of myeloid malignancies. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:389-404. [PMID: 25504228 PMCID: PMC4335136 DOI: 10.2183/pjab.90.389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis. A decade ago, these gene alterations were subdivided into two categories: class I mutations stimulating cell growth or inhibiting apoptosis; and class II mutations that hamper differentiation of hematopoietic cells. In mouse models, class I mutations such as the Bcr-Abl fusion kinase induce MPN by themselves and some class II mutations such as Runx1 mutations induce MDS. Combinations of class I and class II mutations induce AML in a variety of mouse models. Thus, it was postulated that hematopoietic cells whose differentiation is blocked by class II mutations would autonomously proliferate with class I mutations leading to the development of leukemia. Recent progress in high-speed sequencing has enabled efficient identification of novel mutations in a variety of molecules including epigenetic factors, splicing factors, signaling molecules and proteins in the cohesin complex; most of these are not categorized as either class I or class II mutations. The functional consequences of these mutations are now being extensively investigated. In this article, we will review the molecular basis of hematological malignancies, focusing on mouse models and the interfaces between these models and clinical findings, and revisit the classical class I/II hypothesis.
Collapse
Affiliation(s)
- Toshio KITAMURA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: T. Kitamura, Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (e-mail: )
| | - Daichi INOUE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoko OKOCHI-WATANABE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoko KATO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukiko KOMENO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yang LU
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka ENOMOTO
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko DOKI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki UCHIDA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki KAGIYAMA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro TOGAMI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito C. KAWABATA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina NAGASE
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayuri HORIKAWA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutaka HAYASHI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto SAIKA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa FUKUYAMA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kumi IZAWA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko OKI
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumio NAKAHARA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro KITAURA
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|