51
|
Pini F, De Nisco NJ, Ferri L, Penterman J, Fioravanti A, Brilli M, Mengoni A, Bazzicalupo M, Viollier PH, Walker GC, Biondi EG. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti. PLoS Genet 2015; 11:e1005232. [PMID: 25978424 PMCID: PMC4433202 DOI: 10.1371/journal.pgen.1005232] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/21/2015] [Indexed: 01/23/2023] Open
Abstract
In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable insight into how highly conserved genetic networks can evolve, possibly to fit the diverse lifestyles of different bacteria. In order to propagate, all living cells must ensure that their genetic material is faithfully copied and properly partitioned into the daughter cells before division. These coordinated processes of DNA replication and cell division are termed the “cell cycle” and are controlled by a complex network of regulatory proteins in all organisms. In the class Alphaproteobacteria, the regulation of the cell cycle is closely linked to cellular differentiation processes that are vital for survival in the environment. In these bacteria, the cell cycle regulator CtrA is thought to serve as the primary link between the coordination of the cell cycle and cellular differentiation. The alphaproteobacterium, Sinorhizobium meliloti, an important model symbiont of alfalfa plants, undergoes a striking cellular differentiation that is vital to the formation of an efficient symbiosis dedicated to the conversion of atmospheric nitrogen to biologically available organic nitrogen. However, the link between cellular differentiation and cell cycle control in S. meliloti has not been made. In this study, we showed that S. meliloti cells without CtrA are similar to the symbiotic form. By the identification of the genes whose expression is directly and indirectly controlled by CtrA, we found that CtrA regulates vital cell cycle processes, including DNA replication and cell division, but through different genetic pathways than in other alphaproteobacteria. We importantly show that the levels of CtrA protein are governed by an essential cell cycle regulated proteolysis, which may also be an important mode of CtrA down-regulation during symbiosis to drive cellular differentiation.
Collapse
Affiliation(s)
- Francesco Pini
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS—Université de Lille, Villeneuve d'Ascq, France
| | - Nicole J. De Nisco
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lorenzo Ferri
- Meyer Children Hospital, University of Florence, Firenze, Italy
| | - Jon Penterman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Antonella Fioravanti
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS—Université de Lille, Villeneuve d'Ascq, France
| | - Matteo Brilli
- Fondazione Edmund Mach/CRI, Functional genomics, San Michele all'Adige, Italy
| | | | | | - Patrick H. Viollier
- Dept. Microbiology & Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Emanuele G. Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS—Université de Lille, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
52
|
Topological control of the Caulobacter cell cycle circuitry by a polarized single-domain PAS protein. Nat Commun 2015; 6:7005. [PMID: 25952018 PMCID: PMC4432633 DOI: 10.1038/ncomms8005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the myriad of different sensory domains encoded in bacteria, only a few types are known to control the cell cycle. Here we use a forward genetic screen for Caulobacter crescentus motility mutants to identify a conserved single-domain PAS (Per-Arnt-Sim) protein (MopJ) with pleiotropic regulatory functions. MopJ promotes re-accumulation of the master cell cycle regulator CtrA after its proteolytic destruction is triggered by the DivJ kinase at the G1-S transition. MopJ and CtrA syntheses are coordinately induced in S-phase, followed by the sequestration of MopJ to cell poles in Caulobacter. Polarization requires Caulobacter DivJ and the PopZ polar organizer. MopJ interacts with DivJ and influences the localization and activity of downstream cell cycle effectors. Because MopJ abundance is upregulated in stationary phase and by the alarmone (p)ppGpp, conserved systemic signals acting on the cell cycle and growth phase control are genetically integrated through this conserved single PAS-domain protein. The bacterium Caulobacter crescentus is a model organism for research on the bacterial cell cycle and cell division processes. Here, Sanselicio et al. show that the MopJ protein contributes to the control of cell cycle and growth in C. crescentus.
Collapse
|
53
|
A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 2015; 11:e1005153. [PMID: 25923724 PMCID: PMC4414408 DOI: 10.1371/journal.pgen.1005153] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/18/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. Microorganisms frequently encounter adverse conditions unfavorable for cell proliferation. They have evolved diverse mechanisms, including transcriptional control and targeted protein degradation, to adjust cell cycle progression in response to environmental cues. Non-coding RNAs are widespread regulators of various cellular processes in all domains of life. In prokaryotes, trans-encoded small non-coding RNAs (trans-sRNAs) contribute to a rapid cellular response to changing environments, but so far have not been directly related to cell cycle regulation. Here, we report the first example of a trans-sRNA (EcpR1) with two experimentally confirmed targets in the core of cell cycle regulation and demonstrate that in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti the regulatory mechanism involves base-pairing of this sRNA with the dnaA and gcrA mRNAs. Most trans-sRNAs are restricted to closely related species, but the stress-induced EcpR1 is broadly conserved in the order of Rhizobiales suggesting an evolutionary advantage conferred by ecpR1. It broadens the functional diversity of prokaryotic sRNAs and adds a new regulatory level to the mechanisms that contribute to interlinking stress responses with the cell cycle machinery.
Collapse
|
54
|
Francez-Charlot A, Kaczmarczyk A, Vorholt JA. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation. Mol Microbiol 2015; 97:47-63. [PMID: 25825287 DOI: 10.1111/mmi.13011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/29/2022]
Abstract
The CckA-ChpT-CtrA phosphorelay is central to the regulation of the cell cycle in Caulobacter crescentus. The three proteins are conserved in Alphaproteobacteria, but little is known about their roles in most members of this class. Here, we characterized the system in Sphingomonas melonis. We found that the transcription factor CtrA is the master regulator of flagella synthesis genes, the hierarchical transcriptional organization of which is herein described. CtrA also regulates genes involved in exopolysaccharide synthesis and cyclic-di-GMP signaling, and is important for biofilm formation. In addition, the ctrA mutant exhibits an aberrant morphology, suggesting a role for CtrA in cell division. An analysis of the regulation of CtrA indicates that the phosphorelay composed of CckA and ChpT is conserved and that the absence of the bifunctional kinase/phosphatase CckA apparently results in overactivation of CtrA through ChpT. Suppressors of this phenotype identified the hybrid histidine kinase CcsA. Phosphorelays initiated by CckA or CcsA were reconstituted in vitro, suggesting that in S. melonis, CtrA phosphorylation is controlled by a branched pathway upstream of ChpT. This study thus suggests that signals can directly converge at the level of ChpT phosphorylation through multiple hybrid kinases to coordinate a number of important physiological processes.
Collapse
Affiliation(s)
| | | | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
55
|
Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1. J Bacteriol 2015; 197:2139-2149. [PMID: 25897034 DOI: 10.1128/jb.02593-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CbrA is a DivJ/PleC-like histidine kinase of DivK that is required for cell cycle progression and symbiosis in the alphaproteobacterium Sinorhizobium meliloti. Loss of cbrA results in increased levels of CtrA as well as its phosphorylation. While many of the known Caulobacter crescentus regulators of CtrA phosphorylation and proteolysis are phylogenetically conserved within S. meliloti, the latter lacks the PopA regulator that is required for CtrA degradation in C. crescentus. In order to investigate whether CtrA proteolysis occurs in S. meliloti, CtrA stability was assessed. During exponential growth, CtrA is unstable and therefore likely to be degraded in a cell cycle-regulated manner. Loss of cbrA significantly increases CtrA stability, but this phenotype is restored to that of the wild type by constitutive ectopic expression of a CpdR1 variant that cannot be phosphorylated (CpdR1(D53A)). Addition of CpdR1(D53A) fully suppresses cbrA mutant cell cycle defects, consistent with regulation of CtrA stability playing a key role in mediating proper cell cycle progression in S. meliloti. Importantly, the cbrA mutant symbiosis defect is also suppressed in the presence of CpdR1(D53A). Thus, regulation of CtrA stability by CbrA and CpdR1 is associated with free-living cell cycle outcomes and symbiosis. IMPORTANCE The cell cycle is a fundamental process required for bacterial growth, reproduction, and developmental differentiation. Our objective is to understand how a two-component signal transduction network directs cell cycle events during free-living growth and host colonization. The Sinorhizobium meliloti nitrogen-fixing symbiosis with plants is associated with novel cell cycle events. This study identifies a link between the regulated stability of an essential response regulator, free-living cell cycle progression, and symbiosis.
Collapse
|
56
|
Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB, Pham JQ, Cui ZZ, Dill DL, McAdams HH, Shapiro L. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet 2015; 11:e1004831. [PMID: 25569173 PMCID: PMC4287350 DOI: 10.1371/journal.pgen.1004831] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. The generation of diverse cell types occurs through two fundamental processes; asymmetric cell division and cell differentiation. Cells progress through these developmental changes guided by complex and layered genetic programs that lead to differential expression of the genome. To explore how a genetic program directs cell cycle progression, we examined the global activity of promoters at distinct stages of the cell cycle of the bacterium Caulobacter crescentus, that undergoes cellular differentiation and divides asymmetrically at each cell division. We found that approximately 21% of transcription start sites are cell cycle-regulated, driving the transcription of both mRNAs and non-coding and antisense RNAs. In addition, 102 cell cycle-regulated genes are transcribed from multiple promoters, allowing multiple regulatory inputs to control the logic of gene activation. We found combinatorial control by the five master transcription regulators that provide the core regulation for the genetic circuitry controlling the cell cycle. Much of this combinatorial control appears to be directed at refinement of temporal expression of various genes over the cell cycle, and at tighter control of asymmetric gene expression between the swarmer and stalked daughter cells.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jared M. Schrader
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Virginia S. Kalogeraki
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eduardo Abeliuk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cong B. Dinh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James Q. Pham
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Zhongying Z. Cui
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - David L. Dill
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Panis G, Murray SR, Viollier PH. Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. FEMS Microbiol Rev 2014; 39:120-33. [PMID: 25793963 DOI: 10.1093/femsre/fuu002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent data indicate that cell cycle transcription in many alpha-Proteobacteria is executed by at least three conserved functional modules in which pairs of antagonistic regulators act jointly, rather than in isolation, to control transcription in S-, G2- or G1-phase. Inactivation of module components often results in pleiotropic defects, ranging from cell death and impaired cell division to fairly benign deficiencies in motility. Expression of module components can follow systemic (cell cycle) or external (nutritional/cell density) cues and may be implemented by auto-regulation, ancillary regulators or other (unknown) mechanisms. Here, we highlight the recent progress in understanding the molecular events and the genetic relationships of the module components in environmental, pathogenic and/or symbiotic alpha-proteobacterial genera. Additionally, we take advantage of the recent genome-wide transcriptional analyses performed in the model alpha-Proteobacterium Caulobacter crescentus to illustrate the complexity of the interactions of the global regulators at selected cell cycle-regulated promoters and we detail the consequences of (mis-)expression when the regulators are absent. This review thus provides the first detailed mechanistic framework for understanding orthologous operational principles acting on cell cycle-regulated promoters in other alpha-Proteobacteria.
Collapse
Affiliation(s)
- Gaël Panis
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Sean R Murray
- Department of Biology, Center for Cancer and Developmental Biology, Interdisciplinary Research Institute for the Sciences, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| |
Collapse
|
58
|
Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH. Cell cycle constraints on capsulation and bacteriophage susceptibility. eLife 2014; 3. [PMID: 25421297 PMCID: PMC4241560 DOI: 10.7554/elife.03587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Coralie Fumeaux
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Sunish Kumar Radhakrishnan
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
59
|
DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 2014; 22:528-35. [DOI: 10.1016/j.tim.2014.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/20/2023]
|
60
|
Fumeaux C, Radhakrishnan SK, Ardissone S, Théraulaz L, Frandi A, Martins D, Nesper J, Abel S, Jenal U, Viollier PH. Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators. Nat Commun 2014; 5:4081. [PMID: 24939058 PMCID: PMC4083442 DOI: 10.1038/ncomms5081] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/09/2014] [Indexed: 11/10/2022] Open
Abstract
Zinc-finger domain transcriptional regulators regulate a myriad of functions in eukaryotes. Interestingly, ancestral versions (MucR) from Alpha-proteobacteria control bacterial virulence/symbiosis. Whether virulence regulators can also control cell cycle transcription is unknown. Here we report that MucR proteins implement a hitherto elusive primordial S→G1 transcriptional switch. After charting G1-specific promoters in the cell cycle model Caulobacter crescentus by comparative ChIP-seq, we use one such promoter as genetic proxy to unearth two MucR paralogs, MucR1/2, as constituents of a quadripartite and homeostatic regulatory module directing the S→G1 transcriptional switch. Surprisingly, MucR orthologues that regulate virulence and symbiosis gene transcription in Brucella, Agrobacterium or Sinorhizobium support this S→G1 switch in Caulobacter. Pan-genomic ChIP-seq analyses in Sinorhizobium and Caulobacter show that this module indeed targets orthologous genes. We propose that MucR proteins and possibly other virulence regulators primarily control bacterial cell cycle (G1-phase) transcription, rendering expression of target (virulence) genes periodic and in tune with the cell cycle. The bacterium Caulobacter crescentus divides asymmetrically to generate a replicative stalk cell and a quiescent swarmer cell. Fumeaux et al. show that MucR zinc-finger transcription factors, which regulate virulence in other species, also control re-entry into quiescence in Caulobacter.
Collapse
Affiliation(s)
- Coralie Fumeaux
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Sunish Kumar Radhakrishnan
- 1] Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland [2]
| | - Silvia Ardissone
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Laurence Théraulaz
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Antonio Frandi
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Daniel Martins
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Jutta Nesper
- Biozentrum of the University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sören Abel
- 1] Biozentrum of the University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland [2]
| | - Urs Jenal
- Biozentrum of the University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Patrick H Viollier
- Department Microbiology and Molecular Medicine, Faculty of Medicine/CMU, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| |
Collapse
|
61
|
Profile of Graham C. Walker. Proc Natl Acad Sci U S A 2014; 111:3201-2. [DOI: 10.1073/pnas.1400519111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
62
|
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc Natl Acad Sci U S A 2014; 111:3561-6. [PMID: 24501120 DOI: 10.1073/pnas.1400450111] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.
Collapse
|