51
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
52
|
Song H, Fahrig-Kamarauskaitè J, Matabaro E, Kaspar H, Shirran SL, Zach C, Pace A, Stefanov BA, Naismith JH, Künzler M. Substrate Plasticity of a Fungal Peptide α- N-Methyltransferase. ACS Chem Biol 2020; 15:1901-1912. [PMID: 32491837 PMCID: PMC7372559 DOI: 10.1021/acschembio.0c00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
methylation of amide nitrogen atoms can improve the stability,
oral availability, and cell permeability of peptide therapeutics.
Chemical N-methylation of peptides is challenging.
Omphalotin A is a ribosomally synthesized, macrocylic dodecapeptide
with nine backbone N-methylations. The fungal natural
product is derived from the precursor protein, OphMA, harboring both
the core peptide and a SAM-dependent peptide α-N-methyltransferase domain. OphMA forms a homodimer and its α-N-methyltransferase domain installs the methyl groups in trans on the hydrophobic core dodecapeptide and some
additional C-terminal residues of the protomers. These post-translational
backbone N-methylations occur in a processive manner
from the N- to the C-terminus of the peptide substrate. We demonstrate
that OphMA can methylate polar, aromatic, and charged residues when
these are introduced into the core peptide. Some of these amino acids
alter the efficiency and pattern of methylation. Proline, depending
on its sequence context, can act as a tunable stop signal. Crystal
structures of OphMA variants have allowed rationalization of these
observations. Our results hint at the potential to control this fungal α-N-methyltransferase for biotechnological applications.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ju̅ratè Fahrig-Kamarauskaitè
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Emmanuel Matabaro
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannelore Kaspar
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, United Kingdom
| | - Christina Zach
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Amy Pace
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Bozhidar-Adrian Stefanov
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - James H. Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Rosalind Franklin Institute, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
53
|
Faugeras V, Duclos O, Bazile D, Thiam AR. Membrane determinants for the passive translocation of analytes through droplet interface bilayers. SOFT MATTER 2020; 16:5970-5980. [PMID: 32543614 DOI: 10.1039/d0sm00667j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding how small molecules cross cell membranes is crucial to pharmaceutics. Several methods have been developed to evaluate such a process, but they need improvement since many false-positive candidates are often selected. Robust tools enabling rapid and reproducible screening can increase confidence on hits, and artificial membranes based on droplet interface bilayers (DIBs) offer this possibility. DIBs consist in the adhesion of two phospholipid-covered water-in-oil droplets which reproduce a bilayer. By having donor and acceptor droplets, the permeability of an analyte can be studied. However, the relevance of this system relies on the comprehension of how well the physical chemistry of the produced bilayer recapitulates the behavior of cell membranes. This information is missing, and we address it here. Taking small fluorophores as model analytes, we studied their permeation through DIBs made of a wide range of phospholipids. We found that both the phospholipid acyl chain and polar head affect permeability. Overall, these parameters impact the phospholipid shape and thereupon the membrane lateral pressure, which is a major factor modulating with permeability in our system. These results depend on the nature of the chosen oil. We thereupon identified relevant physical chemistry conditions that best mimic the compactness and subsequent permeability of biological membranes.
Collapse
Affiliation(s)
- Vincent Faugeras
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Paris, France.
| | | | | | | |
Collapse
|
54
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
55
|
Le Roux A, Blaise É, Boudreault PL, Comeau C, Doucet A, Giarrusso M, Collin MP, Neubauer T, Kölling F, Göller AH, Seep L, Tshitenge DT, Wittwer M, Kullmann M, Hillisch A, Mittendorf J, Marsault E. Structure-Permeability Relationship of Semipeptidic Macrocycles-Understanding and Optimizing Passive Permeability and Efflux Ratio. J Med Chem 2020; 63:6774-6783. [PMID: 32453569 DOI: 10.1021/acs.jmedchem.0c00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein report the first thorough analysis of the structure-permeability relationship of semipeptidic macrocycles. In total, 47 macrocycles were synthesized using a hybrid solid-phase/solution strategy, and then their passive and cellular permeability was assessed using the parallel artificial membrane permeability assay (PAMPA) and Caco-2 assay, respectively. The results indicate that semipeptidic macrocycles generally possess high passive permeability based on the PAMPA, yet their cellular permeability is governed by efflux, as reported in the Caco-2 assay. Structural variations led to tractable structure-permeability and structure-efflux relationships, wherein the linker length, stereoinversion, N-methylation, and peptoids site-specifically impact the permeability and efflux. Extensive nuclear magnetic resonance, molecular dynamics, and ensemble-based three-dimensional polar surface area (3D-PSA) studies showed that ensemble-based 3D-PSA is a good predictor of passive permeability.
Collapse
Affiliation(s)
- Antoine Le Roux
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Émilie Blaise
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Christian Comeau
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Annie Doucet
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Marilena Giarrusso
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | - Thomas Neubauer
- Drug Discovery, Pharmaceuticals, Bayer AG, Wuppertal D-42096, Germany
| | - Florian Kölling
- Drug Discovery, Pharmaceuticals, Bayer AG, Wuppertal D-42096, Germany
| | - Andreas H Göller
- Drug Discovery, Pharmaceuticals, Bayer AG, Wuppertal D-42096, Germany
| | - Lea Seep
- Drug Discovery, Pharmaceuticals, Bayer AG, Wuppertal D-42096, Germany
| | | | - Matthias Wittwer
- Drug Discovery, Pharmaceuticals, Bayer AG, Wuppertal D-42096, Germany
| | | | | | | | - Eric Marsault
- Department of Pharmacology-Physiology, Institut de Pharmacologie de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
56
|
Nielsen DS, Lohman RJ, Hoang HN, Fairlie DP, Hill TA. High Cell Permeability Does Not Predict Oral Bioavailability for Analogues of Cyclic Heptapeptide Sanguinamide A. Aust J Chem 2020. [DOI: 10.1071/ch19479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic heptapeptide derivative, sanguinamide A, is a model scaffold for studying how component amino acids, heterocycles, and N-methylation influence membrane permeability and oral bioavailability. Membrane permeable sanguinamide A analogues have been reported, but there is limited data on their pharmacokinetic properties invivo. Here we report pharmacokinetic properties for highly cell and membrane permeable sanguinamide A analogues in rats and find that there is no correlation between reported permeability invitro and oral bioavailability invivo. We show that N-methylation of sanguinamide A analogues gives compounds with greater flexibility, greater susceptibility to degradation by rat liver microsomes, and lower oral bioavailability in rats.
Collapse
|
57
|
Morimoto J, Amano R, Ono T, Sando S. A parallel permeability assay of peptides across artificial membranes and cell monolayers using a fluorogenic reaction. Org Biomol Chem 2019; 17:2887-2891. [PMID: 30810151 DOI: 10.1039/c9ob00133f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here, we report a facile permeability assay to quantitatively evaluate the membrane permeability of multiple peptides in parallel. With a fluorogenic click reaction between azidocoumarin and a terminal alkyne tag introduced on a peptide, the peptide that crossed an artificial membrane or a cell monolayer was quantitatively detected. The method allows a rapid measurement of the permeability of multiple compounds on a plate reader even in the presence of a complex mixture of biological molecules.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
58
|
Liras S, Mcclure KF. Permeability of Cyclic Peptide Macrocycles and Cyclotides and Their Potential as Therapeutics. ACS Med Chem Lett 2019; 10:1026-1032. [PMID: 31312403 DOI: 10.1021/acsmedchemlett.9b00149] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Macrocycles have emerged as a viable approach for the modulation of tough targets in drug discovery. In this Innovations article we discuss recent progress toward the design of cell permeable and orally bioavailable peptide macrocycles and cyclotides and provide a perspective for their potential as therapeutics. We highlight design concepts that may be broadly relevant to drug discovery efforts beyond the rule of five.
Collapse
Affiliation(s)
- Spiros Liras
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kim F. Mcclure
- Pinteon Therapeutics, 1188 Centre Street, Newton Centre, Massachusetts 02549, United States
| |
Collapse
|
59
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
60
|
Ono S, Naylor MR, Townsend CE, Okumura C, Okada O, Lokey RS. Conformation and Permeability: Cyclic Hexapeptide Diastereomers. J Chem Inf Model 2019; 59:2952-2963. [PMID: 31042375 PMCID: PMC7751304 DOI: 10.1021/acs.jcim.9b00217] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conformational ensembles of eight cyclic hexapeptide diastereomers in explicit cyclohexane, chloroform, and water were analyzed by multicanonical molecular dynamics (McMD) simulations. Free-energy landscapes (FELs) for each compound and solvent were obtained from the molecular shapes and principal component analysis at T = 300 K; detailed analysis of the conformational ensembles and flexibility of the FELs revealed that permeable compounds have different structural profiles even for a single stereoisomeric change. The average solvent-accessible surface area (SASA) in cyclohexane showed excellent correlation with the cell permeability, whereas this correlation was weaker in chloroform. The average SASA in water correlated with the aqueous solubility. The average polar surface area did not correlate with cell permeability in these solvents. A possible strategy for designing permeable cyclic peptides from FELs obtained from McMD simulations is proposed.
Collapse
Affiliation(s)
- Satoshi Ono
- Modality Laboratories, Innovative Research Division,
Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama,
Kanagawa 227-0033, Japan
| | - Matthew R. Naylor
- Department of Chemistry and Biochemistry, University
of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United
States
| | - Chad E. Townsend
- Department of Chemistry and Biochemistry, University
of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United
States
| | - Chieko Okumura
- Modality Laboratories, Innovative Research Division,
Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama,
Kanagawa 227-0033, Japan
| | - Okimasa Okada
- Modality Laboratories, Innovative Research Division,
Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama,
Kanagawa 227-0033, Japan
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University
of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United
States
| |
Collapse
|
61
|
Saavedra CJ, Carro C, Hernández D, Boto A. Conversion of “Customizable Units” into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides. J Org Chem 2019; 84:8392-8410. [DOI: 10.1021/acs.joc.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Carmen Carro
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
62
|
Wei W, Ma J, Xie D, Zhou Y. Linking inhibitor motions to proteolytic stability of sunflower trypsin inhibitor-1. RSC Adv 2019; 9:13776-13786. [PMID: 35519558 PMCID: PMC9063939 DOI: 10.1039/c9ra02114k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The remarkable capability of an enzyme isn't only determined by its active site but also controlled by the environment. To unravel the environment role in catalysis, the dynamic motions as well as the static mechanism need to be studied. In this work, QM/MM MD simulations were employed to study the proteolysis process of SFTI-1 and BiKF, which revealed that a combination of static non-bonded interactions and dynamic motions along the reaction coordinate can account for the different hydrolysis rates between them. A comparison among SFTI-1 and three analogs with similar non-bonded interactions further revealed a positive correlation between the mobility of inhibitors and the hydrolysis rates. Apart from the cyclic backbone and disulfide bond, intramolecular hydrogen bonds also increase the rigidity of the backbone of inhibitors, and therefore hinder inhibitor motions to resist proteolysis. These new detailed mechanistic insights suggest the need to consider inhibitor motions in the rational design of peptide inhibitors. Besides the non-bonded interactions, inhibitor motions especially rotation of the scissile bond also influence proteolytic stability.![]()
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
63
|
Wei W, Chen Y, Xie D, Zhou Y. Molecular insight into chymotrypsin inhibitor 2 resisting proteolytic degradation. Phys Chem Chem Phys 2019; 21:5049-5058. [PMID: 30762035 DOI: 10.1039/c8cp07784c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chymotrypsin inhibitor 2 (CI2) is a special serine protease inhibitor which can resist hydrolysis for several days with a rapid equilibrium between the Michaelis complex and acyl-enzyme intermediate. The energies and conformational changes for subtilisin-catalyzed proteolysis of CI2 were examined in this paper for the first time by employing pseudo bond ab initio QM/MM MD simulations. In the acylation reaction, a low-barrier hydrogen bond between His64 and Asp32 in the transition state together with the lack of covalent backbone constraints makes the peptide bonds of CI2 break more easily than in other serine protease inhibitors. After acyl-enzyme formation, molecular dynamics simulations showed that the access of hydrolytic water to the active site requires partial dissociation of the leaving group. However, retention of the leaving group mainly by the intra- and inter-molecular H-bonding networks hinders the access of water and retards the deacylation reaction. Instead of the dissociation constant of inhibitors, we suggest employing the free energy at the acyl-enzyme state to predict the relative hydrolysis rates of CI2 mutants, which are testified by the experimental relative hydrolysis rates.
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
64
|
Vinogradov AA, Yin Y, Suga H. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. J Am Chem Soc 2019; 141:4167-4181. [PMID: 30768253 DOI: 10.1021/jacs.8b13178] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides as a therapeutic modality attract much attention due to their synthetic accessibility, high degree of specific binding, and the ability to target protein surfaces traditionally considered "undruggable". Unfortunately, at the same time, other pharmacological properties of a generic peptide, such as metabolic stability and cell permeability, are quite poor, which limits the success of de novo discovered biologically active peptides as drug candidates. Here, we review how macrocyclization as well as the incorporation of nonproteogenic amino acids and various conjugation strategies may be utilized to improve on these characteristics to create better drug candidates. We analyze recent progress and remaining challenges in improving individual pharmacological properties of bioactive peptides, and offer our opinion on interfacing these, often conflicting, considerations, to create balanced drug candidates as a potential way to make further progress in this area.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
65
|
Farley KA, Che Y, Navarro-Vázquez A, Limberakis C, Anderson D, Yan J, Shapiro M, Shanmugasundaram V, Gil RR. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis. J Org Chem 2019; 84:4803-4813. [PMID: 30605335 DOI: 10.1021/acs.joc.8b02811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclic peptides have long tantalized drug designers with their potential ability to combine the best attributes of antibodies and small molecules. An ideal cyclic peptide drug candidate would be able to recognize a protein surface like an antibody while achieving the oral bioavailability of a small molecule. It has been hypothesized that such cyclic peptides balance permeability and solubility using their solvent-dependent conformational flexibility. Herein we report a conformational deconvolution NMR methodology that combines residual dipolar couplings, J-couplings, and intramolecular hydrogen bond analysis along with conformational analysis using molecular dynamics simulations and density functional theory calculations for studying cyclic peptide conformations in both low-dielectric solvent (chloroform) and high-dielectric solvent (DMSO) to experimentally study the solvent-dependent conformational change hypothesis. Taken together, the combined experimental and computational approaches can illuminate conformational ensembles of cyclic peptides in solution and help identify design opportunities for better permeability.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Ye Che
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN , Universidade Federal de Pernambuco , Cidade Universitária, Recife , PE 50740-560 , Brazil
| | - Chris Limberakis
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Dennis Anderson
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Jiangli Yan
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Michael Shapiro
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Veerabahu Shanmugasundaram
- Medicinal Sciences, Pfizer Worldwide R&D , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Roberto R Gil
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
66
|
Lohman RJ, Nielsen DS, Kok WM, Hoang HN, Hill TA, Fairlie DP. Mirror image pairs of cyclic hexapeptides have different oral bioavailabilities and metabolic stabilities. Chem Commun (Camb) 2019; 55:13362-13365. [DOI: 10.1039/c9cc06234c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rule-of-five parameters and membrane permeabilities are not the only determinants of oral bioavailability.
Collapse
Affiliation(s)
- Rink-Jan Lohman
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| | - Daniel S. Nielsen
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| | - W. Mei Kok
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
67
|
Tezgel Ö, Noinville S, Bennevault V, Illy N, Guégan P. An alternative approach to create N-substituted cyclic dipeptides. Polym Chem 2019. [DOI: 10.1039/c8py01552j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Modified peptide backbones are promising peptidomimetics which offer several advantages in terms of improved biological activity and stability.
Collapse
Affiliation(s)
- Özgül Tezgel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | | | - Véronique Bennevault
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Nicolas Illy
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Philippe Guégan
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| |
Collapse
|
68
|
Tajimi T, Wakui N, Yanagisawa K, Yoshikawa Y, Ohue M, Akiyama Y. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques. BMC Bioinformatics 2018; 19:527. [PMID: 30598072 PMCID: PMC6311893 DOI: 10.1186/s12859-018-2529-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cyclic peptide-based drug discovery is attracting increasing interest owing to its potential to avoid target protein depletion. In drug discovery, it is important to maintain the biostability of a drug within the proper range. Plasma protein binding (PPB) is the most important index of biostability, and developing a computational method to predict PPB of drug candidate compounds contributes to the acceleration of drug discovery research. PPB prediction of small molecule drug compounds using machine learning has been conducted thus far; however, no study has investigated cyclic peptides because experimental information of cyclic peptides is scarce. RESULTS First, we adopted sparse modeling and small molecule information to construct a PPB prediction model for cyclic peptides. As cyclic peptide data are limited, applying multidimensional nonlinear models involves concerns regarding overfitting. However, models constructed by sparse modeling can avoid overfitting, offering high generalization performance and interpretability. More than 1000 PPB data of small molecules are available, and we used them to construct a prediction models with two enumeration methods: enumerating lasso solutions (ELS) and forward beam search (FBS). The accuracies of the prediction models constructed by ELS and FBS were equal to or better than those of conventional non-linear models (MAE = 0.167-0.174) on cross-validation of a small molecule compound dataset. Moreover, we showed that the prediction accuracies for cyclic peptides were close to those for small molecule compounds (MAE = 0.194-0.288). Such high accuracy could not be obtained by a simple method of learning from cyclic peptide data directly by lasso regression (MAE = 0.286-0.671) or ridge regression (MAE = 0.244-0.354). CONCLUSION In this study, we proposed a machine learning techniques that uses low-dimensional sparse modeling to predict the PPB value of cyclic peptides computationally. The low-dimensional sparse model not only exhibits excellent generalization performance but also improves interpretation of the prediction model. This can provide common an noteworthy knowledge for future cyclic peptide drug discovery studies.
Collapse
Affiliation(s)
- Takashi Tajimi
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoki Wakui
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Middle Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-0821, Japan
| | - Keisuke Yanagisawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasushi Yoshikawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Middle Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-0821, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Middle Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-0821, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 W8-76 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Middle Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-0821, Japan. .,Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
69
|
Ramalho SD, Wang CK, King GJ, Byriel KA, Huang YH, Bolzani VS, Craik DJ. Synthesis, Racemic X-ray Crystallographic, and Permeability Studies of Bioactive Orbitides from Jatropha Species. JOURNAL OF NATURAL PRODUCTS 2018; 81:2436-2445. [PMID: 30345754 DOI: 10.1021/acs.jnatprod.8b00447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Orbitides are small cyclic peptides with a diverse range of therapeutic bioactivities. They are produced by many plant species, including those of the Jatropha genus. Here, the objective was to provide new structural information on orbitides to complement the growing knowledge base on orbitide sequences and activities by focusing on three Jatropha orbitides: ribifolin (1), pohlianin C (7), and jatrophidin (12). To determine three-dimensional structures, racemic crystallography, an emerging structural technique that enables rapid crystallization of biomolecules by combining equal amounts of the two enantiomers, was used. The high-resolution structure of ribifolin (0.99 Å) was elucidated from its racemate and showed it was identical to the structure crystallized from its l-enantiomer only (1.35 Å). Racemic crystallography was also used to elucidate high-resolution structures of pohlianin C (1.20 Å) and jatrophidin (1.03 Å), for which there was difficulty forming crystals without using racemic mixtures. The structures were used to interpret membrane permeability data in PAMPA and a Caco-2 cell assay, showing they had poor permeability. Overall, the results show racemic crystallography can be used to obtain high-resolution structures of orbitides and is useful when enantiopure samples are difficult to crystallize or solution structures from NMR are of low resolution.
Collapse
Affiliation(s)
- Suelem D Ramalho
- Institute of Chemistry , São Paulo State University-UNESP , Araraquara , São Paulo 14800-060 , Brazil
| | - Conan K Wang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Gordon J King
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Karl A Byriel
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Vanderlan S Bolzani
- Institute of Chemistry , São Paulo State University-UNESP , Araraquara , São Paulo 14800-060 , Brazil
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
70
|
Chopra G, Chopra N, Kaur D. Elucidating the intermolecular hydrogen bonding interaction of proline with amides—quantum chemical calculations. Struct Chem 2018. [DOI: 10.1007/s11224-018-1235-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
71
|
Naylor MR, Ly AM, Handford MJ, Ramos DP, Pye CR, Furukawa A, Klein VG, Noland RP, Edmondson Q, Turmon AC, Hewitt WM, Schwochert J, Townsend CE, Kelly CN, Blanco MJ, Lokey RS. Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility. J Med Chem 2018; 61:11169-11182. [DOI: 10.1021/acs.jmedchem.8b01259] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew R. Naylor
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Andrew M. Ly
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Mason J. Handford
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Daniel P. Ramos
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Cameron R. Pye
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Akihiro Furukawa
- Modality Research Laboratories, Daiichi Sankyo Company, Ltd., 1-2-58 Hiromachi, Shingawa-ku, Tokyo 140-8710, Japan
| | - Victoria G. Klein
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ryan P. Noland
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Quinn Edmondson
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Alexandra C. Turmon
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - William M. Hewitt
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Joshua Schwochert
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Chad E. Townsend
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Colin N. Kelly
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Maria-Jesus Blanco
- Sage Therapeutics, 215 First Street, Suite 220, Cambridge, Massachusetts 02142, United States
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
72
|
Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: Past and future. A focus on spadin. Pharmacol Ther 2018; 194:185-198. [PMID: 30291907 DOI: 10.1016/j.pharmthera.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression is a devastating mood disorder and a leading cause of disability worldwide. Depression affects approximately one in five individuals in the world and represents heavy economic and social burdens. The neurobiological mechanisms of depression are not fully understood, but evidence highlights the role of monoamine neurotransmitter balance. Several antidepressants (ADs) are marketed to treat depression and related mood disorders. However, despite their efficacy, they remain nonspecific and unsafe because they trigger serious adverse effects. Therefore, developing new molecules for new targets in depression has become a real necessity. Eight years ago, spadin was described as a natural peptide with AD properties. This 17-amino acid peptide blocks TREK-1 channels, an original target in depression. Compared to the classical AD drugs such as fluoxetine, which requires 3-4 weeks for the AD effect to manifest, spadin acts rapidly within only 4 days of treatment. The AD properties are associated with increased neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting AD, the in vivo stability is weak and does not last for >7 h. The present review summarizes different strategies such as retro-inverso strategy, cyclization, and shortening the spadin sequence that has led to the development and optimization of spadin as an AD. Shortened spadin analogs present increased inhibition potency for TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating depression in the clinic, such as fluoxetine.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France.
| |
Collapse
|
73
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
74
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
75
|
|
76
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
77
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
78
|
Rigling C, Kisunzu JK, Duschmalé J, Häussinger D, Wiesner M, Ebert MO, Wennemers H. Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies. J Am Chem Soc 2018; 140:10829-10838. [PMID: 30106584 DOI: 10.1021/jacs.8b05459] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
Collapse
Affiliation(s)
- Carla Rigling
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jessica K Kisunzu
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jörg Duschmalé
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland.,Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Markus Wiesner
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
79
|
Masuda Y, Tanaka R, Ganesan A, Doi T. Systematic Analysis of the Relationship among 3D Structure, Bioactivity, and Membrane Permeability of PF1171F, a Cyclic Hexapeptide with Paralyzing Effects on Silkworms. J Org Chem 2018; 82:11447-11463. [PMID: 28981274 DOI: 10.1021/acs.joc.7b01975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PF1171 hexapeptides, a family of cyclic hexapeptides produced by fungi, exhibit paralyzing effects on the larvae of silkworms via oral administration. To elucidate the structural features of PF1171 hexapeptides that are crucial for bioactivity, the relationship among 3D structure, bioactivity, and membrane permeability of PF1171F (the peptide with the highest bioavailability) was systematically analyzed through the synthesis of 22 analogues. The PF1171F analogues were prepared by the solid-phase synthesis of a linear precursor and subsequent solution-phase macrolactamization. Analysis by NMR spectroscopy and molecular modeling indicated that the major 3D conformations of PF1171F in various solvents resemble its X-ray crystal structure. The analogues with this conformation tend to exhibit potent paralysis against silkworms, indicating the significance of the conformation in the paralysis. The biological activity was dependent on the mode of administration, varying between hemolymph injection and oral administration. Parallel artificial membrane permeability assay (PAMPA) of the analogues revealed a correlation between membrane permeabilities and paralytic activity by hemolymph injection, indicating that the target molecule of PF1171F is present inside the cell membrane.
Collapse
Affiliation(s)
- Yuichi Masuda
- Graduate School of Bioresources, Mie University , 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ren Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - A Ganesan
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
80
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
81
|
Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5. J Med Chem 2018; 61:4189-4202. [PMID: 29608068 DOI: 10.1021/acs.jmedchem.8b00347] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conformational flexibility has been proposed to significantly affect drug properties outside rule-of-5 (Ro5) chemical space. Here, we investigated the influence of dynamically exposed polarity on cell permeability and aqueous solubility for a structurally diverse set of drugs and clinical candidates far beyond the Ro5, all of which populated multiple distinct conformations as revealed by X-ray crystallography. Efflux-inhibited (passive) Caco-2 cell permeability correlated strongly with the compounds' minimum solvent-accessible 3D polar surface areas (PSA), whereas aqueous solubility depended less on the specific 3D conformation. Inspection of the crystal structures highlighted flexibly linked aromatic side chains and dynamically forming intramolecular hydrogen bonds as particularly effective in providing "chameleonic" properties that allow compounds to display both high cell permeability and aqueous solubility. These structural features, in combination with permeability predictions based on the correlation to solvent-accessible 3D PSA, should inspire drug design in the challenging chemical space far beyond the Ro5.
Collapse
Affiliation(s)
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Maria Backlund
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), a Node at the Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Pharmacy, BMC , Uppsala University , Box 580, SE-751 23 Uppsala , Sweden
| | | | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit , AstraZeneca R&D Gothenburg , SE-431 83 Mölndal , Sweden
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Quarello 15 , 10135 Torino , Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Quarello 15 , 10135 Torino , Italy
| | - Pär Matsson
- Department of Pharmacy, BMC , Uppsala University , Box 580, SE-751 23 Uppsala , Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| |
Collapse
|
82
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
83
|
Kheirabadi M, Creech GS, Qiao JX, Nirschl DS, Leahy DK, Boy KM, Carter PH, Eastgate MD. Leveraging a "Catch-Release" Logic Gate Process for the Synthesis and Nonchromatographic Purification of Thioether- or Amine-Bridged Macrocyclic Peptides. J Org Chem 2018. [PMID: 29537839 DOI: 10.1021/acs.joc.7b03124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides containing N-alkylated amino acids have emerged as a promising therapeutic modality, capable of modulating protein-protein interactions and an intracellular delivery of hydrophilic payloads. While multichannel automated solid-phase peptide synthesis (SPPS) is a practical approach for peptide synthesis, the requirement for slow and inefficient chromatographic purification of the product peptides is a significant limitation to exploring these novel compounds. Herein, we invent a "catch-release" strategy for the nonchromatographic purification of macrocyclic peptides. A traceless catch process is enabled by the invention of a dual-functionalized N-terminal acetate analogue, which serves as a handle for capture onto a purification resin and as a leaving group for macrocyclization. Displacement by a C-terminal nucleophilic side chain thus releases the desired macrocycle from the purification resin. By design, this catch/release process is a logic test for the presence of the key components required for cyclization, thus removing impurities which lack the required functionality, such as common classes of peptide impurities, including hydrolysis fragments and truncated sequences. The method was shown to be highly effective with three libraries of macrocyclic peptides, containing macrocycles of 5-20 amino acids, with either thioether- or amine-based macrocyclic linkages; in this latter class, the reported method represents an enabling technology. In all cases, the catch-release protocol afforded significant enrichment of the target peptides purity, in many cases completely obviating the need for chromatography. Importantly, we have adapted this process for automation on a standard multichannel peptide synthesizer, achieving an efficient and completely integrated synthesis and purification platform for the preparation of these important molecules.
Collapse
Affiliation(s)
- Mahboubeh Kheirabadi
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Gardner S Creech
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Jennifer X Qiao
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - David S Nirschl
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - David K Leahy
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Kenneth M Boy
- Discovery Chemistry , Bristol-Myers Squibb , Wallingford , Connecticut 06492 , United States
| | - Percy H Carter
- Discovery Chemistry , Bristol-Myers Squibb , Princeton , New Jersey 08543 , United States
| | - Martin D Eastgate
- Chemical and Synthetic Development , Bristol-Myers Squibb , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| |
Collapse
|
84
|
Lee LLH, Buckton LK, McAlpine SR. Converting polar cyclic peptides into membrane permeable molecules using N
-methylation. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Leo L. H. Lee
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Laura K. Buckton
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Shelli R. McAlpine
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
85
|
Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles. Bioorg Med Chem 2018; 26:2099-2106. [PMID: 29567297 DOI: 10.1016/j.bmc.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023]
Abstract
N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe)4-CONH2, was more lipophilic than its non-methylated analog Ac-(Phe)4-CONH2. In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe)4-CONH2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.
Collapse
|
86
|
Wang CK, Swedberg JE, Harvey PJ, Kaas Q, Craik DJ. Conformational Flexibility Is a Determinant of Permeability for Cyclosporin. J Phys Chem B 2018; 122:2261-2276. [DOI: 10.1021/acs.jpcb.7b12419] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
87
|
Nguyen QNN, Schwochert J, Tantillo DJ, Lokey RS. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach. Phys Chem Chem Phys 2018; 20:14003-14012. [DOI: 10.1039/c8cp01616j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), a new approach for determining solution structures.
Collapse
|
88
|
Cameron AJ, Edwards PJB, Harjes E, Sarojini V. Tyrocidine A Analogues Bearing the Planar d-Phe-2-Abz Turn Motif: How Conformation Impacts Bioactivity. J Med Chem 2017; 60:9565-9574. [DOI: 10.1021/acs.jmedchem.7b00953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alan J. Cameron
- School
of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Patrick J. B. Edwards
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Elena Harjes
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | |
Collapse
|
89
|
Cameron AJ, Squire CJ, Edwards PJB, Harjes E, Sarojini V. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides. Chem Asian J 2017; 12:3195-3202. [PMID: 29098772 DOI: 10.1002/asia.201701422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
90
|
Boehm M, Beaumont K, Jones R, Kalgutkar AS, Zhang L, Atkinson K, Bai G, Brown JA, Eng H, Goetz GH, Holder BR, Khunte B, Lazzaro S, Limberakis C, Ryu S, Shapiro MJ, Tylaska L, Yan J, Turner R, Leung SSF, Ramaseshan M, Price DA, Liras S, Jacobson MP, Earp DJ, Lokey RS, Mathiowetz AM, Menhaji-Klotz E. Discovery of Potent and Orally Bioavailable Macrocyclic Peptide-Peptoid Hybrid CXCR7 Modulators. J Med Chem 2017; 60:9653-9663. [PMID: 29045152 DOI: 10.1021/acs.jmedchem.7b01028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids. At the same time, theoretical calculations and experimental assays were used to track and reduce the polarity while closely monitoring the physicochemical properties. This strategy led to the discovery of macrocyclic peptide-peptoid hybrids with high CXCR7 binding affinities (Ki < 100 nM) and measurable passive permeability (Papp > 5 × 10-6 cm/s). Moreover, bioactive peptide 25 (Ki = 9 nM) achieved oral bioavailability of 18% in rats, which was commensurate with the observed plasma clearance values upon intravenous administration.
Collapse
Affiliation(s)
- Markus Boehm
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Kevin Beaumont
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Rhys Jones
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Liying Zhang
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Karen Atkinson
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Guoyun Bai
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Janice A Brown
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Heather Eng
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Gilles H Goetz
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Brian R Holder
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Bhagyashree Khunte
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Sarah Lazzaro
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Chris Limberakis
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Sangwoo Ryu
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Michael J Shapiro
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Laurie Tylaska
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Jiangli Yan
- Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Rushia Turner
- Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Siegfried S F Leung
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158, United States.,Circle Pharma , South San Francisco, California 94080, United States
| | - Mahesh Ramaseshan
- Circle Pharma , South San Francisco, California 94080, United States
| | - David A Price
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Spiros Liras
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158, United States
| | - David J Earp
- Circle Pharma , South San Francisco, California 94080, United States
| | - R Scott Lokey
- Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Alan M Mathiowetz
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| | - Elnaz Menhaji-Klotz
- Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
91
|
DeGoey DA, Chen HJ, Cox PB, Wendt MD. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. J Med Chem 2017; 61:2636-2651. [DOI: 10.1021/acs.jmedchem.7b00717] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David A. DeGoey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hui-Ju Chen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip B. Cox
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael D. Wendt
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
92
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
93
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 713] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
94
|
Craik DJ, Lee MH, Rehm FBH, Tombling B, Doffek B, Peacock H. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 2017; 26:2727-2737. [PMID: 28818463 DOI: 10.1016/j.bmc.2017.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Owing to their exceptional stability and favourable pharmacokinetic properties, plant-derived cyclic peptides have recently attracted significant attention in the field of peptide-based drug design. This article describes the three major classes of ribosomally-synthesised plant peptides - the cyclotides, the PawS-derived peptides and the orbitides - and reviews their applications as leads or scaffolds in drug design. These ribosomally-produced peptides have a range of biological activities, including anti-HIV, cytotoxic and immunomodulatory activity. In addition, recent interest has focused on their use as scaffolds to stabilise bioactive peptide sequences, thereby enhancing their biopharmaceutical properties. There are now more than 30 published papers on such 'grafting' applications, most of which have been reported only in the last few years, and several such studies have reported in vivo activity of orally delivered cyclic peptides. In this article, we describe approaches to the synthesis of cyclic peptides and their pharmaceutically-grafted derivatives as well as outlining their biosynthetic routes. Finally, we describe possible bioproduction routes for pharmaceutically active cyclic peptides, involving plants and plant suspension cultures.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Meng-Han Lee
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Doffek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayden Peacock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
95
|
Harner MJ, Mueller L, Robbins KJ, Reily MD. NMR in drug design. Arch Biochem Biophys 2017; 628:132-147. [DOI: 10.1016/j.abb.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/09/2023]
|
96
|
Poras H, Patouret R, Leiris S, Ouimet T, Fournié-Zaluski MC, Roques BP. Substituted α-mercaptoketones, new types of specific neprilysin inhibitors. Bioorg Med Chem Lett 2017; 27:3883-3890. [DOI: 10.1016/j.bmcl.2017.06.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 11/26/2022]
|
97
|
Cyclic peptide natural products chart the frontier of oral bioavailability in the pursuit of undruggable targets. Curr Opin Chem Biol 2017; 38:141-147. [DOI: 10.1016/j.cbpa.2017.04.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/23/2023]
|
98
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
99
|
Vorherr T, Lewis I, Berghausen J, Desrayaud S, Schaefer M. Modulation of Oral Bioavailability and Metabolism for Closely Related Cyclic Hexapeptides. Int J Pept Res Ther 2017. [PMID: 29527142 PMCID: PMC5838147 DOI: 10.1007/s10989-017-9590-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract Recently, a variety of studies concerned with the permeability and oral bioavailability of cyclic peptides have been reported. In particular, strategies aiming at modifying peptides to maintain or to enhance solubility while enabling permeability constitute a significant challenge, but are of high interest to ensure a smooth drug discovery process. Current methodologies include N-methylation, matching of hydrogen bonding acceptors and donors across the macrocycle, and additional masking of polarity. In this study, we investigate further the pivotal effects of shielding on permeability and studied the metabolism of the corresponding peptides in more detail by comparing peptide concentrations in the portal versus the jugular vein in rats. Interestingly, minor changes in one particular side chain impacts both permeability and liver metabolism. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (doi:10.1007/s10989-017-9590-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Vorherr
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Ian Lewis
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Joerg Berghausen
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | - Michael Schaefer
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
100
|
Wang CK, Craik DJ. Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers 2016; 106:901-909. [DOI: 10.1002/bip.22878] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|