51
|
Hittinger CT, Carroll SB. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 2007; 449:677-81. [PMID: 17928853 DOI: 10.1038/nature06151] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/08/2007] [Indexed: 11/09/2022]
Abstract
How gene duplication and divergence contribute to genetic novelty and adaptation has been of intense interest, but experimental evidence has been limited. The genetic switch controlling the yeast galactose use pathway includes two paralogous genes in Saccharomyces cerevisiae that encode a co-inducer (GAL3) and a galactokinase (GAL1). These paralogues arose from a single bifunctional ancestral gene as is still present in Kluyveromyces lactis. To determine which evolutionary processes shaped the evolution of the two paralogues, here we assess the effects of precise replacement of coding and non-coding sequences on organismal fitness. We suggest that duplication of the ancestral bifunctional gene allowed for the resolution of an adaptive conflict between the transcriptional regulation of the two gene functions. After duplication, previously disfavoured binding site configurations evolved that divided the regulation of the ancestral gene into two specialized genes, one of which ultimately became one of the most tightly regulated genes in the genome.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Howard Hughes Medical Institute, Laboratory of Genetics, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
52
|
Zacharioudakis I, Gligoris T, Tzamarias D. A yeast catabolic enzyme controls transcriptional memory. Curr Biol 2007; 17:2041-6. [PMID: 17997309 DOI: 10.1016/j.cub.2007.10.044] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
It has been postulated that chromatin modifications can persist through mitosis and meiosis, thereby securing memory of transcriptional states. Whether these chromatin marks can self-propagate in progeny independently of relevant trans-acting factors is an important question in phenomena related to epigenesis. "Adaptive cellular memory" displayed by yeast cells offers a convenient system to address this question. The yeast GAL genes are slowly activated by Gal4 when cells are first exposed to galactose, but their progeny, grown in glucose media, exhibit a fast activation mode upon re-exposure to this sugar. This "galactose memory" persists for several generations and was recently proposed to involve chromatin modifications and perinuclear topology of the GAL genes cluster. Here, we perform a heterokaryon assay demonstrating that this memory does not have a chromatin basis but is maintained by cytoplasmic factor(s) produced upon previous galactose induction. We show that Gal3, the cytoplasmic rate-limiting factor that releases the Gal4 activator, is dispensable for preserving galactose memory. Instead, the important memory determinant is a close Gal3 homolog, the highly expressed Gal1 galactokinase, the residual activity of which preserves memory in progeny cells by rapidly turning on the Gal4 activator upon cells' re-exposure to galactose.
Collapse
Affiliation(s)
- Ioannis Zacharioudakis
- Institute of Molecular Biology & Biotechnology-Foundation of Research and Technology, 71110 Heraklion, Crete, Greece
| | | | | |
Collapse
|
53
|
Lim MK, Tang V, Le Saux A, Schüller J, Bongards C, Lehming N. Gal11p dosage-compensates transcriptional activator deletions via Taf14p. J Mol Biol 2007; 374:9-23. [PMID: 17919657 DOI: 10.1016/j.jmb.2007.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/04/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Transcriptional activators work by recruiting transcription factors that are required for the process of transcription to their target genes. We have used the Split-Ubiquitin system to identify eight transcription factors that interacted with both the transcriptional activators Gal4p and Gcn4p in living cells. The over-expression of one of the activator-interacting proteins, Gal11p, partially suppressed GAL4 and GCN4 deletions. We have isolated two point mutants in Gal11p, F848L and F869S that were defective for the dosage compensation. We have identified 35 transcription factors that interacted with Gal11p in living cells, and the only protein-protein interaction affected by the Gal11p mutations was the one between Gal11p and Taf14p. We have further shown that the suppression of a GAL4 deletion by high levels of Gal11p required Taf14p, and that over-expression of Gal11p recruited Taf14p to the GAL1 promoter together with Tbp1p, Swi2p and Srb7p. Gal11p interacted with Mig1p, indicating that Mig1/2p could have recruited Gal11p to the GAL1 promoter in the absence of Gal4p. Our results suggest that transcriptional activators work by raising the local concentration of the limiting factor Gal11p, and that Gal11p works by recruiting Mediator and Taf14p-containing transcription factors like TFIID and SWI/SNF and by competing general repressors like Ssn6p-Tup1p off the target promoters.
Collapse
Affiliation(s)
- Mei Kee Lim
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
Transcriptional rewiring is an emerging evolutionary principle. Analysis of the galactose genetic pathway in Candida albicans and comparison with the classical pathway in Saccharomyces cerevisiae have revealed remarkable differences in its regulation in the two yeasts.
Collapse
Affiliation(s)
- Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B 351634, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
55
|
Boczko E, Gedeon T, Mischaikow K. Dynamics of a simple regulatory switch. J Math Biol 2007; 55:679-719. [PMID: 17622532 DOI: 10.1007/s00285-007-0102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/21/2007] [Indexed: 11/27/2022]
Abstract
We consider the dynamics of a model toggle switch abstracted from the genetic interactions operative in a fungal stress response circuit. The switch transduces an external signal and propagates it forward by mediating the transport between compartments of two interacting gene products. The transport between compartments is assumed to be related to the degree of association between the interacting proteins, a fact for which there exists a wealth of biological evidence. The ubiquity and modularity of this cellular control mechanism warrants a detailed study of the dynamics entailed by various modelling assumptions. Specifically, we consider a general gate model in which both of the associating proteins are freely transportable between compartments. A more restrictive, but biologically supported model, is considered in which only one of the two proteins undergoes transport. Under the strong assumption that the disassociation of the interacting proteins is unidirectional we show that the qualitative dynamics of the two models are similar; that is they both converge to unique periodic orbits. From a biophysical perspective the assumption of unidirectional dissociation is unrealistic. We show that the same result holds for the more restrictive model when one weakens the assumption of unidirectional binding or disassociation. We speculate that this is not true for the more general model. This difference in dynamics may have important biological implications and certainly points to promising avenues of research.
Collapse
Affiliation(s)
- Erik Boczko
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
56
|
Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M. Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 2007; 17:1007-13. [PMID: 17540568 PMCID: PMC3842258 DOI: 10.1016/j.cub.2007.05.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Leloir-pathway genes encode the enzymatic machinery involved in the metabolism of galactose. RESULTS In the distantly related fungi Saccharomyces cerevisiae and Candida albicans, the genes encoding these enzymes are syntenically arranged, but the upstream regulatory regions are highly divergent. In S. cerevisiae, the Leloir-pathway genes are positively regulated by Gal4p acting through the UAS(G) sequence CGG(N(11))CCG. However, in C. albicans, the Gal4p and UAS(G) combination is found to regulate genes unrelated to galactose metabolism. We identified a palindromic sequence that acts to control GAL10 expression in C. albicans in the presence of galactose. This palindrome is found upstream of other Leloir-pathway genes in C. albicans, and in the absence of other regulatory sequences, activation of expression through this sequence in the presence of galactose requires Cph1p, the homolog of the Ste12p transcription factor of S. cerevisiae. CONCLUSIONS Although the cellular process of galactose induction of the Leloir pathway is conserved between the two organisms, the regulatory circuits achieving the cellular process are completely distinct.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Anastasia Levitin
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| | - Herve Hogues
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| | - Andre Nantel
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| | - Malcolm Whiteway
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
- Genetics Group, Biotechnology Research Institute, National Research Council, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
57
|
Ferdous A, Sikder D, Gillette T, Nalley K, Kodadek T, Johnston SA. The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters. Genes Dev 2006; 21:112-23. [PMID: 17167105 PMCID: PMC1759896 DOI: 10.1101/gad.1493207] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have shown that the intersection between transcription and proteins involved in the ubiquitin-proteasome pathway encompasses both proteolytic and nonproteolytic functions. Examples of the latter type include evidence that monoubiquitylation of some transcriptional activators stimulates their activity. In addition, the proteasomal ATPases are recruited to many active promoters through binding to activators and play an important, nonproteolytic role in promoter escape and elongation. In this study, we report the discovery of a new nonproteolytic activity of the proteasome (specifically the proteasomal ATPases): the active destabilization of activator-promoter complexes. This reaction depends on the presence of an activation domain and ATP. Destabilization is inhibited in vitro and in vivo if the protein is monoubiquitylated or if ubiquitin is genetically fused to the activator. The fact that monoubiquitylated activator is resistant to the "stripping" activity of the proteasomal ATPases may explain, in part, why some activators require this modification in order to function efficiently.
Collapse
Affiliation(s)
- Anwarul Ferdous
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Devanjan Sikder
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas Gillette
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kip Nalley
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas Kodadek
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
- Corresponding authors.E-MAIL ; FAX (214) 648-4156
| | - Stephen Albert Johnston
- Center for Biomedical Inventions and Departments of Microbiology, Molecular Biology, and Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390, USA
- E-MAIL ; FAX (480) 727-0792
| |
Collapse
|
58
|
Martchenko M, Levitin A, Whiteway M. Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. EUKARYOTIC CELL 2006; 6:291-301. [PMID: 17158732 PMCID: PMC1797954 DOI: 10.1128/ec.00183-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C(6) zinc cluster (Gal4p) families; C. albicans has C. albicans Gcn4p (CaGcn4p) and CaGal4p with DNA binding domains highly similar to their S. cerevisiae counterparts. Deletion analysis of the CaGcn4p protein shows that the N' terminus is needed for transcriptional activation; an 81-amino-acid region is critical for this function, and this domain can be coupled to a lexA DNA binding module to provide transcription-activating function in a heterologous reporter system. Deletion analysis of the C. albicans Gal4p identifies a C-terminal 73-amino-acid-long transcription-activating domain that also can be transferred to a heterologous reporter construct to direct transcriptional activation. These two transcriptional activation regions show no sequence similarity to the respective domains in their S. cerevisiae homologs, and the two C. albicans transcription-activating domains themselves show little similarity.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| | | | | |
Collapse
|
59
|
Segrè AV, Murray AW, Leu JY. High-resolution mutation mapping reveals parallel experimental evolution in yeast. PLoS Biol 2006; 4:e256. [PMID: 16856782 PMCID: PMC1514788 DOI: 10.1371/journal.pbio.0040256] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/31/2006] [Indexed: 11/30/2022] Open
Abstract
Understanding the genetic basis of evolutionary adaptation is limited by our ability to efficiently identify the genomic locations of adaptive mutations. Here we describe a method that can quickly and precisely map the genetic basis of naturally and experimentally evolved complex traits using linkage analysis. A yeast strain that expresses the evolved trait is crossed to a distinct strain background and DNA from a large pool of progeny that express the trait of interest is hybridized to oligonucleotide microarrays that detect thousands of polymorphisms between the two strains. Adaptive mutations are detected by linkage to the polymorphisms from the evolved parent. We successfully tested our method by mapping five known genes to a precision of 0.2–24 kb (0.1–10 cM), and developed computer simulations to test the effect of different factors on mapping precision. We then applied this method to four yeast strains that had independently adapted to a fluctuating glucose–galactose environment. All four strains had acquired one or more missense mutations in
GAL80, the repressor of the galactose utilization pathway. When transferred into the ancestral strain, the
gal80 mutations conferred the fitness advantage that the evolved strains show in the transition from glucose to galactose. Our results show an example of parallel adaptation caused by mutations in the same gene.
An array hybridization method enables genetic mapping via linkage analysis; applied here this new method shows parallel adaptation to a fluctuating glucose-galactose environment evidenced by mutations in the
GAL80 gene.
Collapse
Affiliation(s)
- Ayellet V Segrè
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W Murray
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jun-Yi Leu
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
60
|
Thoden JB, Sellick CA, Reece RJ, Holden HM. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 2006; 282:1534-8. [PMID: 17121853 DOI: 10.1074/jbc.c600285200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In yeast, the GAL genes encode the enzymes required for normal galactose metabolism. Regulation of these genes in response to the organism being challenged with galactose has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins, the activator Gal4p, the repressor Gal80p, and the ligand sensor Gal3p, control the switch between inert and active gene expression. Gal80p, the focus of this investigation, plays a pivotal role both in terms of repressing the activity of Gal4p and allowing the GAL switch to respond to galactose. Here we present the three-dimensional structure of Gal80p from Kluyveromyces lactis and show that it is structurally homologous to glucose-fructose oxidoreductase, an enzyme in the sorbitol-gluconate pathway. Our results clearly define the overall tertiary and quaternary structure of Gal80p and suggest that Gal4p and Gal3p bind to Gal80p at distinct but overlapping sites. In addition to providing a molecular basis for previous biochemical and genetic studies, our structure demonstrates that much of the enzymatic scaffold of the oxidoreductase has been maintained in Gal80p, but it is utilized in a very different manner to facilitate transcriptional regulation.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
61
|
Smidtas S, Schächter V, Képès F. The adaptive filter of the yeast galactose pathway. J Theor Biol 2006; 242:372-81. [DOI: 10.1016/j.jtbi.2006.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 02/20/2006] [Accepted: 03/10/2006] [Indexed: 11/16/2022]
|
62
|
Anders A, Lilie H, Franke K, Kapp L, Stelling J, Gilles ED, Breunig KD. The Galactose Switch in Kluyveromyces lactis Depends on Nuclear Competition between Gal4 and Gal1 for Gal80 Binding. J Biol Chem 2006; 281:29337-48. [PMID: 16867978 DOI: 10.1074/jbc.m604271200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis. Here we demonstrate that K. lactis Gal80 (KlGal80) is a nuclear protein independent of the Gal4 activity status, whereas KlGal1 is detected throughout the entire cell, which implies that KlGal80 and KlGal1 interact in the nucleus. Consistently KlGal1 accumulates in the nucleus upon KlGAL80 overexpression. Furthermore, we show that the KlGal80-KlGal1 interaction blocks the galactokinase activity of KlGal1 and is incompatible with KlGal80-KlGal4-AD interaction. Thus, we propose that dissociation of KlGal80 from the AD forms the basis of KlGal4 activation in K. lactis. Quantitation of the dissociation constants for the KlGal80 complexes gives a much lower affinity for KlGal1 as compared with Gal4. Mathematical modeling shows that with these affinities a switch based on competition between Gal1 and Gal4 for Gal80 binding is nevertheless efficient provided two monomeric Gal1 molecules interact with dimeric Gal80. Consistent with such a mechanism, analysis of the sedimentation behavior by analytical ultracentrifugation demonstrates the formation of a heterotetrameric KlGal80-KlGal1 complex of 2:2 stoichiometry.
Collapse
Affiliation(s)
- Alexander Anders
- Institut für Genetik and Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW, de Atauri P, Bolouri H, Aitchison JD. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat Genet 2006; 38:1082-7. [PMID: 16936734 DOI: 10.1038/ng1869] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 07/28/2006] [Indexed: 11/09/2022]
Abstract
Transcriptional noise is known to be an important cause of cellular heterogeneity and phenotypic variation. The extent to which molecular interaction networks may have evolved to either filter or exploit transcriptional noise is a much debated question. The yeast genetic network regulating galactose metabolism involves two proteins, Gal3p and Gal80p, that feed back positively and negatively, respectively, on GAL gene expression. Using kinetic modeling and experimental validation, we demonstrate that these feedback interactions together are important for (i) controlling the cell-to-cell variability of GAL gene expression and (ii) ensuring that cells rapidly switch to an induced state for galactose uptake.
Collapse
Affiliation(s)
- Stephen A Ramsey
- Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Demir O, Aksan Kurnaz I. An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch. Comput Biol Chem 2006; 30:179-92. [PMID: 16679066 DOI: 10.1016/j.compbiolchem.2006.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 11/26/2022]
Abstract
Glucose and galactose are two alternative carbon sources in yeast for energy production, producing CO2 and alcohol. The yeast needs to switch from glucose to galactose metabolism as required, by transcriptional regulation of the respective metabolic enzymes. This regulation is achieved mainly through the GAL genetic switch, in addition to glucose repression mechanism. This study integrates the two metabolic pathways with the genetic regulatory circuit using the GEPASI 3.30 simulation environment, and investigates the model behavior under various nutrient conditions. Our system is successful in achieving transcriptional upregulation of the galactose metabolizing enzymes as required. Under high glucose and high galactose concentrations, the in silico yeast chooses to metabolize glucose first, after which it resorts to using the galactose available. We also show what the preferred storage macromolecules are in different metabolic pathways.
Collapse
Affiliation(s)
- Ozlem Demir
- Bogazici University, Department of Molecular Biology and Genetics, 34342 Bebek, Istanbul, Turkey
| | | |
Collapse
|
65
|
Hawkins KM, Smolke CD. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J Biol Chem 2006; 281:13485-13492. [PMID: 16524886 DOI: 10.1074/jbc.m512317200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GAL genetic switch of Saccharomyces cerevisiae exhibits an ultrasensitive response to the inducer galactose as well as the "all-or-none" behavior characteristic of many eukaryotic regulatory networks. We have constructed a strain that allows intermediate levels of gene expression from a tunable GAL1 promoter at both the population and the single cell level by altering the regulation of the galactose permease Gal2p. Similar modifications to other feedback loops regulating the Gal80p repressor and the Gal3p signaling protein did not result in similarly tuned responses, indicating that the level of inducer transport is unique in its ability to control the switch response of the network. In addition, removal of the Gal1p galactokinase from the network resulted in a regimed response due to the dual role of this enzyme in galactose catabolism and transport. These two activities have competing effects on the response of the network to galactose such that the transport effects of Gal1p are dominant at low galactose concentrations, whereas its catabolic effects are dominant at high galactose concentrations. In addition, flow cytometry analysis revealed the unexpected phenomenon of multiple populations in the gal1delta strains, which were not present in the isogenic GAL1 background. This result indicates that Gal1p may play a previously undescribed role in the stability of the GAL network response.
Collapse
Affiliation(s)
- Kristy M Hawkins
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christina D Smolke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
66
|
Cliften PF, Fulton RS, Wilson RK, Johnston M. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 2006; 172:863-72. [PMID: 16322519 PMCID: PMC1456250 DOI: 10.1534/genetics.105.048900] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/08/2005] [Indexed: 11/18/2022] Open
Abstract
The ancient duplication of the Saccharomyces cerevisiae genome and subsequent massive loss of duplicated genes is apparent when it is compared to the genomes of related species that diverged before the duplication event. To learn more about the evolutionary effects of the duplication event, we compared the S. cerevisiae genome to other Saccharomyces genomes. We demonstrate that the whole genome duplication occurred before S. castellii diverged from S. cerevisiae. In addition to more accurately dating the duplication event, this finding allowed us to study the effects of the duplication on two separate lineages. Analyses of the duplication regions of the genomes indicate that most of the duplicated genes (approximately 85%) were lost before the speciation. Only a small amount of paralogous gene loss (4-6%) occurred after speciation. On the other hand, S. castellii appears to have lost several hundred genes that were not retained as duplicated paralogs. These losses could be related to genomic rearrangements that reduced the number of chromosomes from 16 to 9. In addition to S. castellii, other Saccharomyces sensu lato species likely diverged from S. cerevisiae after the duplication. A thorough analysis of these species will likely reveal other important outcomes of the whole genome duplication.
Collapse
Affiliation(s)
- Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
67
|
Diep CQ, Peng G, Bewley M, Pilauri V, Ropson I, Hopper JE. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch. Genetics 2006; 172:77-87. [PMID: 16219783 PMCID: PMC1456197 DOI: 10.1534/genetics.105.050807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022] Open
Abstract
Gal4-mediated activation of GAL gene transcription in Saccharomyces cerevisiae requires the interaction of Gal3 with Gal80, the Gal4 inhibitor protein. While it is known that galactose and ATP activates Gal3 interaction with Gal80, neither the mechanism of activation nor the surface that binds to Gal80 is known. We addressed this through intragenic suppression of GAL3C alleles that cause galactose-independent Gal3-Gal80 interaction. We created a new allele, GAL3SOC, and showed that it suppressed a new GAL3C allele. We tested the effect of GAL3SOC on several newly isolated and existing GAL3C alleles that map throughout the gene. All except one GAL3C allele, D368V, were suppressible by GAL3SOC. GAL3SOC and all GAL3C alleles were localized on a Gal3 homology model that is based on the structure of the highly related Gal1 protein. These results provide evidence for allosterism in the galactose- and ATP-activation of Gal3 binding to Gal80. In addition, because D368V and residues corresponding to Gal80-nonbinder mutations colocalized to a domain that is absent in homologous proteins that do not bind to Gal80, we suggest that D368 is a part of the Gal80-binding surface.
Collapse
Affiliation(s)
- Cuong Q Diep
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
68
|
Jelicić B, Traven A, Filić V, Sopta M. Mitochondrial dysfunction enhances Gal4-dependent transcription. FEMS Microbiol Lett 2005; 253:207-13. [PMID: 16239078 DOI: 10.1016/j.femsle.2005.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial dysfunction has been shown to elicit broad effects on nuclear gene expression. We show here that transcription dependent on the prototypical acidic activator Gal4 is responsive to mitochondrial dysfunction. In cells with no mitochondrial DNA, Gal4-dependent gene expression is elevated. A minimal Gal4 activator containing the DNA binding and activation domain is sufficient for this response. Transcription dependent on a fusion of Gal4 to a heterologous DNA binding domain is similarly elevated in a mitochondrial mutant. Analysis of different Gal4-dependent promoters and gel mobility shift assays suggest that the effect of mitochondrial dysfunction on Gal4 activity is related to increased DNA binding to the cognate Gal4 element. Given that fermentation is the only means to obtain energy in respiratory deficient cells, it is possible that higher Gal4 activity in cells with dysfunctional mitochondria works to promote more efficient fermentation of galactose.
Collapse
Affiliation(s)
- Branka Jelicić
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
69
|
Sellick CA, Reece RJ. Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 2005; 30:405-12. [PMID: 15950477 DOI: 10.1016/j.tibs.2005.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/03/2005] [Accepted: 05/24/2005] [Indexed: 11/23/2022]
Abstract
The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well-characterized systems by which the presence or absence of an individual metabolite can be recognized by a cell. The recognition of a metabolite is, however, just one step of a process that often results in changes in the expression of sets of genes required to respond to that metabolite. The signalling pathway between metabolite recognition and transcriptional control is often complex. However, recent evidence from yeast suggests that complex signalling pathways might be circumvented via the direct interaction between individual metabolites and regulators of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Christopher A Sellick
- The University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
70
|
Lakshminarasimhan A, Bhat PJ. Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implications for signal transduction in the GAL regulon. Mol Genet Genomics 2005; 274:384-93. [PMID: 16160853 DOI: 10.1007/s00438-005-0031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/14/2005] [Indexed: 05/04/2023]
Abstract
The ability of Saccharomyces cerevisiae to utilize galactose is regulated by the nucleo-cytoplasmic shuttling of a transcriptional repressor, the Gal80 protein. Gal80 interacts with the transcriptional activator Gal4 in the nucleus and inhibits its function, preventing induction of the GAL genes. In response to galactose, the relative amounts of Gal80 in the cytoplasm and the nucleus are modulated by the action of a signal transducer, Gal3. Although it has been speculated that Gal3 binds galactose, this has not been experimentally demonstrated. In this study, we show that replacement of a conserved tyrosine in Gal3 by tryptophan leads to a reduction of its constitutive activity in the absence of galactose. In addition, this mutant protein was fully functional in vivo only when high concentrations of galactose were present in the medium. When overexpressed, the mutant was found to activate the genes GAL1 and GAL7/10 differentially. The implications of these findings for the fine regulation of GAL genes, and its physiological significance, are discussed.
Collapse
Affiliation(s)
- Anirudha Lakshminarasimhan
- Laboratory of Molecular Genetics, School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | | |
Collapse
|
71
|
Melcher K. Mutational hypersensitivity of a gene regulatory protein: Saccharomyces cerevisiae Gal80p. Genetics 2005; 171:469-76. [PMID: 15998719 PMCID: PMC1456764 DOI: 10.1534/genetics.105.045237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of galactose catabolic (GAL) gene expression in Saccharomyces cerevisiae, Gal80p, interacts with the activator Gal4p and the signal transducer Gal3p and self-associates. Selection for loss of Gal80p inhibitor function yielded gal80 mutants at an extremely high rate. Out of these, 21 nonoverlapping point mutants were identified; each were due to a single-amino-acid exchange in conserved residues. Semiquantitative biochemical analysis of the corresponding mutant proteins revealed that each of the 21 amino acid alterations caused simultaneous defects in every single protein-protein interaction and in Gal80's structural integrity. Thus, Gal80 provides an unprecedented example for a protein's structural sensitivity to minimal sequence alterations.
Collapse
Affiliation(s)
- Karsten Melcher
- Institute of Microbiology, Biocenter Niederursel, Goethe University, Frankfurt, Germany.
| |
Collapse
|
72
|
Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 2005; 5:1115-28. [PMID: 16014343 DOI: 10.1016/j.femsyr.2005.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 05/18/2005] [Indexed: 11/21/2022] Open
Abstract
Despite their close phylogenetic relationship, Kluyveromyces lactis and Saccharomyces cerevisiae have adapted their carbon utilization systems to different environments. Although they share identities in the arrangement, sequence and functionality of their GAL gene set, both yeasts have evolved important differences in the GAL genetic switch in accordance to their relative preference for the utilization of galactose as a carbon source. This review provides a comparative overview of the GAL-specific regulatory network in S. cerevisiae and K. lactis, discusses the latest models proposed to explain the transduction of the galactose signal, and describes some of the particularities that both microorganisms display in their regulatory response to different carbon sources. Emphasis is placed on the potential for improved strategies in biotechnological applications using yeasts.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
73
|
Verma M, Bhat P, Venkatesh K. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae. Biochem J 2005; 388:843-9. [PMID: 15698380 PMCID: PMC1183464 DOI: 10.1042/bj20041883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/13/2005] [Accepted: 02/08/2005] [Indexed: 11/17/2022]
Abstract
Glucose repression is a global transcriptional regulatory mechanism commonly observed in micro-organisms for the repression of enzymes that are not essential for glucose metabolism. In Saccharomyces cerevisiae, Mig1p, a homologue of Wilms' tumour protein, is a global repressor protein dedicated to glucose repression. Mig1p represses genes either by binding directly to the upstream repression sequence of structural genes or by indirectly repressing a transcriptional activator, such as Gal4p. In addition, some genes are repressed by both of the above mechanisms. This raises a fundamental question regarding the physiological relevance of the varied mechanisms of repression that exist involving Mig1p. We address this issue by comparing two well-known glucose-repression systems, that is, SUC2 and GAL gene expression systems, which encompass all the above three mechanisms. We demonstrate using steady-state analysis that these mechanisms lead to a hierarchical glucose repression profile of different family of genes. This switch over from one carbon source to another is well-calibrated as a function of glucose concentration through this hierarchical transcriptional response. The mechanisms prevailing in this repression system can achieve amplification and sensitivity, as observed in the well-characterized MAPK (mitogen-activated protein kinase) cascade system, albeit through a different structure. A critical feature of repression predicted by our steady-state model for the mutant strain of S. cerevisiae lacking Gal80p agrees well with the data reported here as well as that available in the literature.
Collapse
Affiliation(s)
- Malkhey Verma
- *Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Paike J. Bhat
- †School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - K. V. Venkatesh
- *Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
- †School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
74
|
Acar M, Becskei A, van Oudenaarden A. Enhancement of cellular memory by reducing stochastic transitions. Nature 2005; 435:228-32. [PMID: 15889097 DOI: 10.1038/nature03524] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/09/2005] [Indexed: 11/09/2022]
Abstract
On induction of cell differentiation, distinct cell phenotypes are encoded by complex genetic networks. These networks can prevent the reversion of established phenotypes even in the presence of significant fluctuations. Here we explore the key parameters that determine the stability of cellular memory by using the yeast galactose-signalling network as a model system. This network contains multiple nested feedback loops. Of the two positive feedback loops, only the loop mediated by the cytoplasmic signal transducer Gal3p is able to generate two stable expression states with a persistent memory of previous galactose consumption states. The parallel loop mediated by the galactose transporter Gal2p only increases the expression difference between the two states. A negative feedback through the inhibitor Gal80p reduces the strength of the core positive feedback. Despite this, a constitutive increase in the Gal80p concentration tunes the system from having destabilized memory to having persistent memory. A model reveals that fluctuations are trapped more efficiently at higher Gal80p concentrations. Indeed, the rate at which single cells randomly switch back and forth between expression states was reduced. These observations provide a quantitative understanding of the stability and reversibility of cellular differentiation states.
Collapse
Affiliation(s)
- Murat Acar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
75
|
Bhat PJ, Venkatesh KV. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network. FEBS Lett 2005; 579:597-603. [PMID: 15670814 DOI: 10.1016/j.febslet.2004.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/13/2004] [Indexed: 11/30/2022]
Abstract
In Saccharomyces cerevisiae, a recessive mutation in the signal transducer encoded by GAL3 leads to a significant lag in the induction of GAL genes, referred to as long term adaptation phenotype (LTA). Further, gal3 mutation in combination with other genetic defects leads to the non-inducibility of GAL genes. It was shown that the expression of GAL1 encoded galactokinase, a redundant GAL3 like signal transducer, eventually substitutes for the lack of GAL3 signal transduction function. However, how GAL1 gets induced in the absence of GAL3 is not clear. We hypothesize that GAL1 induction in gal3 cells exposed to galactose is due to a stochastic decrease in the repressor, Gal80p concentration, leading to heterogeneity in the population. This observation explains not only LTA observed in gal3 cells but also explains the non-inducibility of gal3 mutants in combination with other genetic defects. By recruiting a dedicated signal transducer, GAL3, S. cerevisiae GAL switch has evolved to overcome the fortuitous induction, which occurs due to low signal to noise ratio in certain mutants of Escherichia coli and Kluveromyces lactis.
Collapse
Affiliation(s)
- Paike Jayadeva Bhat
- School of Biosciences & Bioengineering, Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
76
|
Mehra S, Hu WS, Karypis G. A Boolean algorithm for reconstructing the structure of regulatory networks. Metab Eng 2005; 6:326-39. [PMID: 15491862 DOI: 10.1016/j.ymben.2004.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
Advances in transcriptional analysis offer great opportunities to delineate the structure and hierarchy of regulatory networks in biochemical systems. We present an approach based on Boolean analysis to reconstruct a set of parsimonious networks from gene disruption and over expression data. Our algorithms, Causal Predictor (CP) and Relaxed Causal Predictor (RCP) distinguish the direct and indirect causality relations from the non-causal interactions, thus significantly reducing the number of miss-predicted edges. The algorithms also yield substantially fewer plausible networks. This greatly reduces the number of experiments required to deduce a unique network from the plausible network structures. Computational simulations are presented to substantiate these results. The algorithms are also applied to reconstruct the entire network of galactose utilization pathway in Saccharomyces cerevisiae. These algorithms will greatly facilitate the elucidation of regulatory networks using large scale gene expression profile data.
Collapse
Affiliation(s)
- Sarika Mehra
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | |
Collapse
|
77
|
Abstract
The Saccharomyces cerevisiae Gal80 protein has two binding partners: Gal4 and Gal3. In the absence of galactose, Gal80 binds to and inhibits the transcriptional activation domain (AD) of the GAL gene activator, Gal4, preventing GAL gene expression. Galactose triggers an association between Gal3 and Gal80, relieving Gal80 inhibition of Gal4. We selected for GAL80 mutants with impaired capacity of Gal80 to bind to Gal3 or Gal4AD. Most Gal80 variants selected for impaired binding to Gal4AD retained their capacity to bind to Gal3 and to self-associate, whereas most of those selected for impaired binding to Gal3 lost their ability to bind to Gal4AD and self-associate. Thus, some Gal80 amino acids are determinants for both the Gal80-Gal3 association and the Gal80 self-association, and Gal80 self-association may be required for binding to Gal4AD. We propose that the binding of Gal3 to the Gal80 monomer competes with Gal80 self-association, reducing the amount of the Gal80 dimer available for inhibition of Gal4.
Collapse
Affiliation(s)
- Vepkhia Pilauri
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | | | |
Collapse
|
78
|
Weston AD, Baliga NS, Bonneau R, Hood L. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:345-57. [PMID: 15338636 DOI: 10.1101/sqb.2003.68.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A D Weston
- Institute for Systems Biology, Seattle, Washington 98103-8904, USA
| | | | | | | |
Collapse
|
79
|
Verma M, Bhat PJ, Bhartiya S, Venkatesh KV. A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 271:4064-74. [PMID: 15479235 DOI: 10.1111/j.1432-1033.2004.04344.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular regulation is a result of complex interactions arising from DNA-protein and protein-protein binding, autoregulation, and compartmentalization and shuttling of regulatory proteins. Experiments in molecular biology have identified these mechanisms recruited by a regulatory network. Mathematical models may be used to complement the knowledge-base provided by in vitro experimental methods. Interactions identified by in vitro experiments can lead to the hypothesis of multiple candidate models explaining the in vivo mechanism. The equilibrium dissociation constants for the various interactions and the total component concentration constitute constraints on the candidate models. In this work, we identify the most plausible in vivo network by comparing the output response to the experimental data. We demonstrate the methodology using the GAL system of Saccharomyces cerevisiae for which the steady-state analysis reveals that Gal3p neither dimerizes nor shuttles between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Malkhey Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | |
Collapse
|
80
|
Ruhela A, Verma M, Edwards JS, Bhat PJ, Bhartiya S, Venkatesh KV. Autoregulation of regulatory proteins is key for dynamic operation ofGALswitch inSaccharomyces cerevisiae. FEBS Lett 2004; 576:119-26. [PMID: 15474022 DOI: 10.1016/j.febslet.2004.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 08/30/2004] [Accepted: 09/02/2004] [Indexed: 11/30/2022]
Abstract
Autoregulation and nucleocytoplasmic shuttling play important roles in the operation of the GAL regulatory system. However, the significance of these mechanisms in the overall operation of the switch is unclear. In this work, we develop a dynamic model for the GAL system and further validate the same using steady-state and dynamic experimental expression data. Next, the model is used to delineate the relevance of shuttling and autoregulation in response to inducing, repressing, and non-inducing-non-repressing media. The analysis indicates that autoregulation of the repressor, Gal80p, is key in obtaining three distinct steady states in response to the three media. In particular, the analysis rationalizes the intuitively paradoxical observation that the concentration of repressor, Gal80p, actually increases in response to an increase in the inducer concentration. On the other hand, although nucleocytoplasmic shuttling does not affect the dynamics of the system, it plays a dominant role in obtaining a sensitive response to galactose. The dynamic model was also used to obtain insights on the preculturing effect on the system behavior.
Collapse
Affiliation(s)
- Anurag Ruhela
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | | | | | | | | | |
Collapse
|
81
|
Stanford DR, Whitney ML, Hurto RL, Eisaman DM, Shen WC, Hopper AK. Division of labor among the yeast Sol proteins implicated in tRNA nuclear export and carbohydrate metabolism. Genetics 2004; 168:117-27. [PMID: 15454531 PMCID: PMC1448090 DOI: 10.1534/genetics.104.030452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 06/09/2004] [Indexed: 11/18/2022] Open
Abstract
SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1-SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed.
Collapse
Affiliation(s)
- D R Stanford
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | | | |
Collapse
|
82
|
Orrell D, Ramsey S, de Atauri P, Bolouri H. A method for estimating stochastic noise in large genetic regulatory networks. Bioinformatics 2004; 21:208-17. [PMID: 15319259 DOI: 10.1093/bioinformatics/bth479] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Genetic regulatory networks are often affected by stochastic noise, due to the low number of molecules taking part in certain reactions. The networks can be simulated using stochastic techniques that model each reaction as a stochastic event. As models become increasingly large and sophisticated, however, the solution time can become excessive; particularly if one wishes to determine the effect on noise of changes to a series of parameters, or the model structure. Methods are therefore required to rapidly estimate stochastic noise. RESULTS This paper presents an algorithm, based on error growth techniques from non-linear dynamics, to rapidly estimate the noise characteristics of genetic networks of arbitrary size. The method can also be used to determine analytical solutions for simple sub-systems. It is demonstrated on a number of cases, including a prototype model of the galactose regulatory pathway in yeast. AVAILABILITY A software tool which incorporates the algorithm is available for use as part of the stochastic simulation package Dizzy. It is available for download at http://labs.systemsbiology.net/bolouri/software/Dizzy/ CONTACT dorrell@systemsbiology.org SUPPLEMENTARY INFORMATION A conceptual model of the regulatory part of the galactose utilization pathway in yeast, used as an example in the paper, is available at http://labs.systemsbiology.net/bolouri/models/galconcept.dizzy
Collapse
Affiliation(s)
- David Orrell
- Institute for Systems Biology 1441 North 34th Street, Seattle, WA 98103, USA.
| | | | | | | |
Collapse
|
83
|
Hasper AA, Trindade LM, van der Veen D, van Ooyen AJJ, de Graaff LH. Functional analysis of the transcriptional activator XlnR from Aspergillus niger. MICROBIOLOGY-SGM 2004; 150:1367-1375. [PMID: 15133098 DOI: 10.1099/mic.0.26557-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptional activator XlnR from Aspergillus niger is a zinc binuclear cluster transcription factor that belongs to the GAL4 superfamily. Several putative structural domains in XlnR were predicted using database and protein sequence analysis. Thus far, only the functionality of the N-terminal DNA-binding domain has been determined experimentally. Deletion mutants of the xlnR gene were constructed to localize the functional regions of the protein. The results showed that a putative C-terminal coiled-coil region is involved in nuclear import of XlnR. After deletion of the C-terminus, including the coiled-coil region, XlnR was found in the cytoplasm, while deletion of the C-terminus downstream of the coiled-coil region resulted in nuclear import of XlnR. The latter mutant also showed increased xylanase activity, indicating the presence of a region with an inhibitory function in XlnR-controlled transcription. Previous findings had already shown that a mutation in the XlnR C-terminal region resulted in transcription of the structural genes under non-inducing conditions. A regulatory model of XlnR is presented in which the C-terminus responds to repressing signals, resulting in an inactive state of the protein.
Collapse
Affiliation(s)
- Alinda A Hasper
- Fungal Genomics section, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | - Luisa M Trindade
- Fungal Genomics section, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | - Douwe van der Veen
- Fungal Genomics section, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | - Albert J J van Ooyen
- Fungal Genomics section, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| | - Leo H de Graaff
- Fungal Genomics section, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, NL-6703 HA Wageningen, The Netherlands
| |
Collapse
|
84
|
de Atauri P, Orrell D, Ramsey S, Bolouri H. Evolution of design principles in biochemical networks. ACTA ACUST UNITED AC 2004; 1:28-40. [PMID: 17052113 DOI: 10.1049/sb:20045013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Computer modelling and simulation are commonly used to analyse engineered systems. Biological systems differ in that they often cannot be accurately characterised, so simulations are far from exact. Nonetheless, we argue in this paper that evolution results in recurring, dynamic organisational principles in biological systems, and that simulation can help to identify them and analyse their dynamic properties. As a specific example, we present a dynamic model of the galactose utilisation pathway in yeast, and highlight several features of the model that embody such 'design principles'.
Collapse
Affiliation(s)
- P de Atauri
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | |
Collapse
|
85
|
Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Mol Microbiol 2004; 51:1015-25. [PMID: 14763977 DOI: 10.1046/j.1365-2958.2003.03901.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactose is the only soluble carbon source which can be used economically for the production of cellulases or heterologous proteins under cellulase expression signals by Hypocrea jecorina (=Trichoderma reesei). Towards an understanding of lactose metabolism and its role in cellulase formation, we have cloned and characterized the gal1 (galactokinase) gene of H. jecorina, which catalyses the first step in d-galactose catabolism. It exhibits a calculated Mr of 57 kDa, and shows moderate identity (about 40%) to its putative homologues of Saccharomyces cerevisiae and Kluyveromyces lactis. Gal1 is a member of the GHMP family, shows conservation of a Gly/Ser rich region involved in ATP binding and of amino acids (Arg 51, Glu 57, Asp 60, Asp 214, Tyr 270) responsible for galactose binding. A single transcript was formed constitutively during the rapid growth phase on all carbon sources investigated and accumulated to about twice this level during growth on d-galactose, l-arabinose and their corresponding polyols. Deletion of gal1 reduces growth on d-galactose but does only slightly affect growth on lactose. This is the result of the operation of a second pathway for d-galactose catabolism, which involves galactitol as an intermediate, and whose transient concentration is strongly enhanced in the delta-gal1 strain. In this pathway, galactitol is catabolised by the lad1-encoded l-arabinitol-4-dehydrogenase, because a gal1/lad1 double delta-mutant failed to grow on d-galactose. In the delta-gal1 strain, induction of the Leloir pathway gene gal7 (encoding galactose-1-phosphate uridylyltransferase) by d-galactose, but not by l-arabinose, is impaired. Induction of cellulase gene expression by lactose is also impaired in a gal1 deleted strain, whereas their induction by sophorose (the putative cellulose-derived inducer) was shown to be normal, thus demonstrating that galactokinase is a key enzyme for cellulase induction during growth on lactose, and that induction by lactose and sophorose involves different mechanisms.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Division of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wein, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
86
|
Verma M, Bhat PJ, Venkatesh KV. Quantitative Analysis of GAL Genetic Switch of Saccharomyces cerevisiae Reveals That Nucleocytoplasmic Shuttling of Gal80p Results in a Highly Sensitive Response to Galactose. J Biol Chem 2003; 278:48764-9. [PMID: 14512430 DOI: 10.1074/jbc.m303526200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleocytoplasmic shuttling of the repressor Gal80p is known to play a pivotal role in the signal transduction process of GAL genetic switch of Saccharomyces cerevisiae (Peng, G., and Hopper, J. E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 8548-8553). We have developed a comprehensive model of this GAL switch to quantify the expression from the GAL promoter containing one or two Gal4p-binding sites and to understand the biological significance of the shuttling process. Our experiments show that the expression of proteins from the GAL promoter containing one and two binding sites for Gal4p is ultrasensitive (a steep response to a given input). Furthermore, the model revealed that the shuttling of Gal80p is the key step in imparting ultrasensitive response to the inducer. During induction, free Gal80p concentration is altered by sequestration, without any change in the distribution coefficient across the nuclear membrane. Furthermore, the estimated concentrations of Gal80p and Gal3p allow basal expression of alpha-galactosidase, but not beta-galactosidase, from the GAL promoter containing one and two binding sites for Gal4p, respectively. Conversely, the expression from genes with two binding sites is more sensitive to inducer concentration as compared with one binding site. We show that autoregulation of Gal80p is coincidental to the autoregulation of Gal3p, and it does not impart ultrasensitivity. We conclude from our analysis that the ultrasensitivity of the GAL genetic switch is solely because of the shuttling phenomena of the repressor Gal80p across the nuclear membrane.
Collapse
Affiliation(s)
- Malkhey Verma
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | | | | |
Collapse
|
87
|
Sellick CA, Reece RJ. Modulation of transcription factor function by an amino acid: activation of Put3p by proline. EMBO J 2003; 22:5147-53. [PMID: 14517252 PMCID: PMC204464 DOI: 10.1093/emboj/cdg480] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae are able to convert proline to glutamate so that it may be used as a source of nitrogen. Here, we show that the activator of the proline utilization genes, Put3p, is transcriptionally inert in the absence of proline but transcriptionally active in its presence. The activation of Put3p requires no additional yeast proteins and can occur in the presence of certain proline analogues: an unmodified pyrrolidine ring is able to activate Put3p as efficiently as proline itself. In addition, we show that a direct interaction occurs between Put3p and proline. These data, which represent direct control of transcriptional activator function by a metabolite, are discussed in terms of the regulation of proline-specific genes in yeast and as a general mechanism of the control of transcription.
Collapse
Affiliation(s)
- Christopher A Sellick
- School of Biological Sciences, The University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
88
|
Menezes RA, Amuel C, Engels R, Gengenbacher U, Labahn J, Hollenberg CP. Sites for interaction between Gal80p and Gal1p in Kluyveromyces lactis: structural model of galactokinase based on homology to the GHMP protein family. J Mol Biol 2003; 333:479-92. [PMID: 14556739 DOI: 10.1016/j.jmb.2003.08.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The induction of transcription of the galactose genes in yeast involves the galactose-dependent binding of ScGal3p (in Saccharomyces cerevisiae) or KlGal1p (in Kluyveromyces lactis) to Gal80p. This binding abrogates Gal80's inhibitory effect on the activation domain of Gal4p, which can then activate transcription. Here, we describe the isolation and characterization of new interaction mutants of K.lactis GAL1 and GAL80 using a two-hybrid screen. We present the first structural model for Gal1p to be based on the published crystal structures of other proteins belonging to the GHMP (galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) kinase family and our own X-ray diffraction data of Gal1p crystals at 3A resolution. The locations of the various mutations in the modelled Gal1p structure identify domains involved in the interaction with Gal80p and provide a structural explanation for the phenotype of constitutive GAL1 mutations.
Collapse
Affiliation(s)
- R A Menezes
- Institut für Mikrobiologie and Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Hertveldt K, Dechassa ML, Robben J, Volckaert G. Identification of Gal80p-interacting proteins by Saccharomyces cerevisiae whole genome phage display. Gene 2003; 307:141-9. [PMID: 12706896 DOI: 10.1016/s0378-1119(03)00454-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Networks of interacting proteins and protein interaction maps can help in functional annotation in genome analysis projects. We present the application of genomic phage display as a tool to identify interacting proteins in Saccharomyces cerevisiae. We have developed a large phagemid display library (approximately 7.7x10(7) independent clones) of sheared S. cerevisiae genomic DNA (12.1 Mbp genome size) fused to gene III (lacking the N1 domain) of the filamentous phage M13. Baits tagged with an N-terminal E-tag and a C-terminal His(6)-tag are prepared in a novel Escherichia coli expression system. Using E-Gal80-His(6) as bait, biopanning of the library resulted in the isolation of two different clones containing fragments of the known interacting partner Gal4p. In addition, three new ligands (Ubr1p, YCL045c and Prp8p) with potential physiological relevance were isolated. Interactions were confirmed by ELISA. These results demonstrate the accessibility of the S. cerevisiae genome to display technology for protein-protein interaction screening.
Collapse
Affiliation(s)
- Kirsten Hertveldt
- Laboratorium voor Gentechnologie, Katholieke Universiteit Leuven, Belgium.
| | | | | | | |
Collapse
|