51
|
Martinho M, Allegro D, Huvent I, Chabaud C, Etienne E, Kovacic H, Guigliarelli B, Peyrot V, Landrieu I, Belle V, Barbier P. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Sci Rep 2018; 8:13846. [PMID: 30218010 PMCID: PMC6138654 DOI: 10.1038/s41598-018-32096-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
Tau is a Microtubule-associated protein that induces and stabilizes the formation of the Microtubule cytoskeleton and plays an important role in neurodegenerative diseases. The Microtubules binding region of Tau has been determined for a long time but where and how Tau binds to its partner still remain a topic of debate. We used Site Directed Spin Labeling combined with EPR spectroscopy to monitor Tau upon binding to either Taxol-stabilized MTs or to αβ-tubulin when Tau is directly used as an inducer of MTs formation. Using maleimide-functionalized labels grafted on the two natural cysteine residues of Tau, we found in both cases that Tau remains highly flexible in these regions confirming the fuzziness of Tau:MTs complexes. More interestingly, using labels linked by a disulfide bridge, we evidenced for the first time thiol disulfide exchanges between αβ-tubulin or MTs and Tau. Additionally, Tau fragments having the two natural cysteines or variants containing only one of them were used to determine the role of each cysteine individually. The difference observed in the label release kinetics between preformed MTs or Tau-induced MTs, associated to a comparison of structural data, led us to propose two putative binding sites of Tau on αβ-tubulin.
Collapse
Affiliation(s)
- Marlène Martinho
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Diane Allegro
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Charlotte Chabaud
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.,Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Hervé Kovacic
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Vincent Peyrot
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Valérie Belle
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France.
| |
Collapse
|
52
|
Hernández-Vega A, Braun M, Scharrel L, Jahnel M, Wegmann S, Hyman BT, Alberti S, Diez S, Hyman AA. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Cell Rep 2018; 20:2304-2312. [PMID: 28877466 PMCID: PMC5828996 DOI: 10.1016/j.celrep.2017.08.042] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/23/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022] Open
Abstract
Non-centrosomal microtubule bundles play important roles in cellular organization and function. Although many diverse proteins are known that can bundle microtubules, biochemical mechanisms by which cells could locally control the nucleation and formation of microtubule bundles are understudied. Here, we demonstrate that the concentration of tubulin into a condensed, liquid-like compartment composed of the unstructured neuronal protein tau is sufficient to nucleate microtubule bundles. We show that, under conditions of macro-molecular crowding, tau forms liquid-like drops. Tubulin partitions into these drops, efficiently increasing tubulin concentration and driving the nucleation of microtubules. These growing microtubules form bundles, which deform the drops while remaining enclosed by diffusible tau molecules exhibiting a liquid-like behavior. Our data suggest that condensed compartments of microtubule bundling proteins could promote the local formation of microtubule bundles in neurons by acting as non-centrosomal microtubule nucleation centers and that liquid-like tau encapsulation could provide both stability and plasticity to long axonal microtubule bundles.
Collapse
Affiliation(s)
| | - Marcus Braun
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany; Institute of Biotechnology CAS, BIOCEV, Vestec 25250, Czech Republic
| | - Lara Scharrel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; BIOTEC, Biotechnology Center of the Technische Universität Dresden, Dresden 01307, Germany
| | - Susanne Wegmann
- Department Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Department Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Stefan Diez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| |
Collapse
|
53
|
Kadavath H, Cabrales Fontela Y, Jaremko M, Jaremko Ł, Overkamp K, Biernat J, Mandelkow E, Zweckstetter M. Der Bindungsmodus eines Tau-Peptids mit Tubulin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Harindranath Kadavath
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
- Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Yunior Cabrales Fontela
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
- Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Mariusz Jaremko
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
| | - Łukasz Jaremko
- Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Kerstin Overkamp
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
| | - Jacek Biernat
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
- CAESAR Forschungszentrum; Ludwig-Erhard-Allee 2 Bonn Deutschland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
- CAESAR Forschungszentrum; Ludwig-Erhard-Allee 2 Bonn Deutschland
| | - Markus Zweckstetter
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Von-Siebold Straße 3a 37075 Göttingen Deutschland
- Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
- Klinik für Neurologie; Universitätsmedizin Göttingen; Waldweg 33 37073 Göttingen Deutschland
| |
Collapse
|
54
|
Kadavath H, Cabrales Fontela Y, Jaremko M, Jaremko Ł, Overkamp K, Biernat J, Mandelkow E, Zweckstetter M. The Binding Mode of a Tau Peptide with Tubulin. Angew Chem Int Ed Engl 2018; 57:3246-3250. [PMID: 29314492 DOI: 10.1002/anie.201712089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/15/2017] [Indexed: 11/09/2022]
Abstract
The microtubule-associated protein Tau promotes the polymerization of tubulin and modulates the function of microtubules. As a consequence of the dynamic nature of the Tau-tubulin interaction, the structural basis of this complex has remained largely elusive. By using NMR methods optimized for ligand-receptor interactions in combination with site-directed mutagenesis we demonstrate that the flanking domain downstream of the four microtubule-binding repeats of Tau binds competitively to a site on the α-tubulin surface. The binding process is complex, involves partial coupling of different interacting regions, and is modulated by phosphorylation at Y394 and S396. This study strengthens the hypothesis of an intimate relationship between Tau phosphorylation and tubulin binding and highlights the power of the INPHARMA NMR method to characterize the interaction of peptides derived from intrinsically disordered proteins with their molecular partners.
Collapse
Affiliation(s)
- Harindranath Kadavath
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Yunior Cabrales Fontela
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariusz Jaremko
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany
| | - Łukasz Jaremko
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Kerstin Overkamp
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany
| | - Jacek Biernat
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany.,CAESAR Research Center, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany.,CAESAR Research Center, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Strasse 3a, 37075, Goettingen, Germany.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Klinik für Neurologie, Universitätsmedizin Göttingen, Waldweg 33, 37073, Göttingen, Germany
| |
Collapse
|
55
|
Goedert M, Yamaguchi Y, Mishra SK, Higuchi M, Sahara N. Tau Filaments and the Development of Positron Emission Tomography Tracers. Front Neurol 2018; 9:70. [PMID: 29497399 PMCID: PMC5818396 DOI: 10.3389/fneur.2018.00070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
A pathological pathway leading from soluble, monomeric to insoluble, filamentous Tau, is believed to underlie human Tauopathies. Cases of frontotemporal dementia are caused by dominantly inherited mutations in MAPT, the Tau gene. They show that dysfunction of Tau protein is sufficient to cause neurodegeneration and dementia. Extrapolation to the more common sporadic Tauopathies leads one to conclude that the pathological pathway is central to the development of all cases of disease, even if there are multiple reasons for Tau assembly. These findings are conceptually similar to those reported for beta-amyloid, alpha-synuclein and prion protein. Here, we provide an overview of Tau filaments and their positron emission tomography ligands.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba, Japan
| | | |
Collapse
|
56
|
IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr Opin Struct Biol 2018; 49:36-43. [PMID: 29306779 DOI: 10.1016/j.sbi.2017.12.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) have critical roles in a diverse array of cellular functions. Of relevance here is that they are components of macromolecular complexes, where their conformational flexibility helps mediate interactions with binding partners. IDPs often interact with their binding partners through short sequence motifs, commonly repeated within the disordered regions. As such, multivalent interactions are common for IDPs and their binding partners within macromolecular complexes. Here we discuss the importance of IDP multivalency in three very different macromolecular assemblies: biomolecular condensates, the nuclear pore, and the cytoskeleton.
Collapse
|
57
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
58
|
Song J, Gomes GN, Shi T, Gradinaru CC, Chan HS. Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins. Biophys J 2017; 113:1012-1024. [PMID: 28877485 DOI: 10.1016/j.bpj.2017.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
A mathematico-physically valid formulation is required to infer properties of disordered protein conformations from single-molecule Förster resonance energy transfer (smFRET). Conformational dimensions inferred by conventional approaches that presume a homogeneous conformational ensemble can be unphysical. When all possible-heterogeneous as well as homogeneous-conformational distributions are taken into account without prejudgment, a single value of average transfer efficiency 〈E〉 between dyes at two chain ends is generally consistent with highly diverse, multiple values of the average radius of gyration 〈Rg〉. Here we utilize unbiased conformational statistics from a coarse-grained explicit-chain model to establish a general logical framework to quantify this fundamental ambiguity in smFRET inference. As an application, we address the long-standing controversy regarding the denaturant dependence of 〈Rg〉 of unfolded proteins, focusing on Protein L as an example. Conventional smFRET inference concluded that 〈Rg〉 of unfolded Protein L is highly sensitive to [GuHCl], but data from SAXS suggested a near-constant 〈Rg〉 irrespective of [GuHCl]. Strikingly, our analysis indicates that although the reported 〈E〉 values for Protein L at [GuHCl] = 1 and 7 M are very different at 0.75 and 0.45, respectively, the Bayesian Rg2 distributions consistent with these two 〈E〉 values overlap by as much as 75%. Our findings suggest, in general, that the smFRET-SAXS discrepancy regarding unfolded protein dimensions likely arise from highly heterogeneous conformational ensembles at low or zero denaturant, and that additional experimental probes are needed to ascertain the nature of this heterogeneity.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory-Neal Gomes
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Claudiu C Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
59
|
Abstract
Tau is an intrinsically disordered protein with a central role in the pathology of a number of neurodegenerative diseases. Tau normally functions to stabilize neuronal microtubules, although the mechanism underlying this function is not well understood. Of note is that the interaction between tau and soluble tubulin, which has implications both in understanding tau function as well as its role in disease, is underexplored. Here we investigate the relationship between heterogeneity in tau-tubulin complexes and tau function. Specifically, we created a series of truncated and scrambled tau constructs and characterized the size and heterogeneity of the tau-tubulin complexes formed under nonpolymerizing conditions. Function of the constructs was verified by tubulin polymerization assays. We find that, surprisingly, the pseudo-repeat region of tau, which flanks the core microtubule-binding domain of tau, contributes largely to the formation of large, heterogeneous tau tubulin complexes; additional independent tubulin binding sites exist in repeats two and three of the microtubule binding domain. Of particular interest is that we find positive correlation between the size and heterogeneity of the complexes and rate of tau-promoted microtubule polymerization. We propose that tau-tubulin can be described as a "fuzzy" complex, and our results demonstrate the importance of heterogeneous complex formation in tau function. This work provides fundamental insights into the functional mechanism of tau, and more broadly underscores the relevance of heterogeneous and dynamic complexes in the functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
60
|
Melo AM, Elbaum-Garfinkle S, Rhoades E. Insights into tau function and dysfunction through single-molecule fluorescence. Methods Cell Biol 2017; 141:27-44. [PMID: 28882307 DOI: 10.1016/bs.mcb.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence correlation spectroscopy and single-molecule Förster resonance energy transfer are powerful and versatile techniques to quantify and describe molecular interactions. They are particularly well suited to the study of dynamic proteins and assemblies, as they can overcome some of the challenges that stymie more conventional ensemble approaches. In this chapter, we describe the application of these methods to study the interaction of tau with the molecular aggregation inducer, heparin, and the functional binding partner, soluble tubulin. Specifically, we outline the practical aspects of both techniques to characterize the critical first steps of tau aggregation and tau-mediated microtubule polymerization. The information gained from these measurements provides unique insight into tau function and its role in disease.
Collapse
Affiliation(s)
- Ana M Melo
- University of Pennsylvania, Philadelphia, PA, United States
| | | | | |
Collapse
|
61
|
Gomes GN, Gradinaru CC. Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28625737 DOI: 10.1016/j.bbapap.2017.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most proteins are not static structures, but many of them are found in a dynamic state, exchanging conformations on various time scales as a key aspect of their biological function. An entire spectrum of structural disorder exists in proteins and obtaining a satisfactory quantitative description of these states remains a challenge. Single-molecule fluorescence spectroscopy techniques are uniquely suited for this task, by measuring conformations without ensemble averaging and kinetics without interference from asynchronous processes. In this paper we review some of the recent successes in applying single-molecule fluorescence to different disordered protein systems, including interactions with their cellular targets and self-aggregation processes. We also discuss the implementation of computational methods and polymer physics models that are essential for inferring global dimension parameters for these proteins from smFRET data. Regarding future directions; 3- or 4-color FRET methods can provide multiple distances within a disordered ensemble simultaneously. In addition, integrating complementary experimental data from smFRET, NMR and SAXS will provide meaningful constraints for molecular simulations and will lead to more accurate structural representations of disordered proteins. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Claudiu C Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
| |
Collapse
|