51
|
Casalino L, Magistrato A. Unraveling the Molecular Mechanism of Pre-mRNA Splicing From Multi-Scale Simulations. Front Mol Biosci 2019; 6:62. [PMID: 31448284 PMCID: PMC6691188 DOI: 10.3389/fmolb.2019.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
52
|
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering , University of California Riverside , Riverside , California 92521 , United States
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Computational Biophysics Research Team , RIKEN Center for Computational Science , 7-1-26 Minatojima-Minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 1-6-5 Minatojima-Minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California San Diego , San Diego , California 92093-0340 , United States
| |
Collapse
|
53
|
Palermo G, Casalino L, Magistrato A, Andrew McCammon J. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. J Struct Biol 2019; 206:267-279. [PMID: 30880083 PMCID: PMC6637970 DOI: 10.1016/j.jsb.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Noncoding RNA (ncRNA) has a key role in regulating gene expression, mediating fundamental processes and diseases via a variety of yet unknown mechanisms. Here, we review recent applications of conventional and enhanced Molecular Dynamics (MD) simulations methods to address the mechanistic function of large biomolecular systems that are tightly involved in the ncRNA function and that are of key importance in life sciences. This compendium focuses of three biomolecular systems, namely the CRISPR-Cas9 genome editing machinery, group II intron ribozyme and the ribonucleoprotein complex of the spliceosome, which edit and process ncRNA. We show how the application of a novel accelerated MD simulations method has been key in disclosing the conformational transitions underlying RNA binding in the CRISPR-Cas9 complex, suggesting a mechanism for RNA recruitment and clarifying the conformational changes required for attaining genome editing. As well, we discuss the use of mixed quantum-classical MD simulations in deciphering the catalytic mechanism of RNA splicing as operated by group II intron ribozyme, one of the largest ncRNA structures crystallized so far. Finally, we debate the future challenges and opportunities in the field, discussing the recent application of MD simulations for unraveling the functional biophysics of the spliceosome, a multi-mega Dalton complex of proteins and small nuclear RNAs that performs RNA splicing in humans. This showcase of applications highlights the current talent of MD simulations to dissect atomic-level details of complex biomolecular systems instrumental for the design of finely engineered genome editing machines. As well, this review aims at inspiring future investigations of several other ncRNA regulatory systems, such as micro and small interfering RNAs, which achieve their function and specificity using RNA-based recognition and targeting strategies.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, Bourns College of Engineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, Democritos National Simulation Center c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States; National Biomedical Computation Resource, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
54
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
55
|
Structures of the human spliceosomes before and after release of the ligated exon. Cell Res 2019; 29:274-285. [PMID: 30728453 PMCID: PMC6461851 DOI: 10.1038/s41422-019-0143-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 11/08/2022] Open
Abstract
Pre-mRNA splicing is executed by the spliceosome, which has eight major functional states each with distinct composition. Five of these eight human spliceosomal complexes, all preceding exon ligation, have been structurally characterized. In this study, we report the cryo-electron microscopy structures of the human post-catalytic spliceosome (P complex) and intron lariat spliceosome (ILS) at average resolutions of 3.0 and 2.9 Å, respectively. In the P complex, the ligated exon remains anchored to loop I of U5 small nuclear RNA, and the 3′-splice site is recognized by the junction between the 5′-splice site and the branch point sequence. The ATPase/helicase Prp22, along with the ligated exon and eight other proteins, are dissociated in the P-to-ILS transition. Intriguingly, the ILS complex exists in two distinct conformations, one with the ATPase/helicase Prp43 and one without. Comparison of these three late-stage human spliceosomes reveals mechanistic insights into exon release and spliceosome disassembly.
Collapse
|
56
|
The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019. [DOI: 10.3390/catal9010081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by environmental factors, furnishing information often inaccessible to experimental means. In this review, after an introduction of computational methods commonly employed to tackle these systems, we report the current knowledge on three steroidogenic CYP450s—CYP11A1, CYP17A1, and CYP19A1—endowed with multiple catalytic functions and critically involved in cancer onset. In particular, besides discussing their catalytic mechanisms, we highlight how the membrane environment contributes to (i) regulate ligand channeling through these enzymes, (ii) modulate their interactions with specific protein partners, (iii) mediate post-transcriptional regulation induced by phosphorylation. The results presented set the basis for developing novel therapeutic strategies aimed at fighting diseases originating from steroid metabolism dysfunction.
Collapse
|
57
|
Spinello A, Vecile E, Abbate A, Dobrina A, Magistrato A. How Can Interleukin-1 Receptor Antagonist Modulate Distinct Cell Death Pathways? J Chem Inf Model 2019; 59:351-359. [PMID: 30586302 DOI: 10.1021/acs.jcim.8b00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple mechanisms of cell death exist (apoptosis, necroptosis, pyroptosis) and the subtle balance of several distinct proteins and inhibitors tightly regulates the cell fate toward one or the other pathway. Here, by combining coimmunoprecipitation, enzyme assays, and molecular simulations, we ascribe a new role, within this entangled regulatory network, to the interleukin-1 receptor antagonist (IL-1Ra). Our study enlightens that IL-1Ra, which usually inhibits the inflammatory effects of IL-1α/β by binding to IL-1 receptor, under advanced pathological states prevents apoptosis and/or necroptosis by noncompetitively inhibiting the activity of caspase-8 and -9. Consensus docking, followed by cumulative 10 μs of molecular dynamics simulations unprecedentedly reveal that IL-1Ra binds both caspases at their dimeric interface, preventing, in this manner, the formation of their catalytically/signaling active form. The resulting IL-1Ra/caspase-8(9) adducts are stabilized by hydrophobic and by few key hydrogen bonding interactions, formed by residues fully conserved across distinct caspases (-3, -6, -7, -8, and -9), and closely resemble the binding mode of the caspases inhibitors XIAP (X-linked inhibitor of apoptosis) and c-FLIP (cellular FLICE-like inhibitory protein). Tight regulation of the different forms of cell death has a major impact on distinct human illnesses (i.e., cancer, neurodegeneration, ischemic injury, atherosclerosis, viral/bacterial infections, and immune reaction). Hence, our study, pinpointing IL-1Ra as new actor of the intricate cell death regulatory network and gaining an atomic-scale understanding of its mechanism may open new avenues toward innovative therapeutic strategies to tackle major human diseases.
Collapse
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| | - Elena Vecile
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center , Virginia Commonwealth University , 1200 E Broad St , PO Box 980281, Richmond , Virginia United States of America
| | - Aldo Dobrina
- Department of Life Sciences , University of Trieste , via Giorgieri 1 , I-34127 , Trieste , Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos c/o International School for Advanced Studies (SISSA) , via Bonomea 265 , 34136 , Trieste , Italy
| |
Collapse
|
58
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Osamu Miyashita
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
59
|
Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA. Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain. Q Rev Biophys 2018; 51:e91. [PMID: 30555184 PMCID: PMC6292676 DOI: 10.1017/s0033583518000070] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Understanding the conformational dynamics of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 is of the utmost importance for improving its genome editing capability. Here, molecular dynamics simulations performed using Anton-2 - a specialized supercomputer capturing micro-to-millisecond biophysical events in real time and at atomic-level resolution - reveal the activation process of the endonuclease Cas9 toward DNA cleavage. Over the unbiased simulation, we observe that the spontaneous approach of the catalytic domain HNH to the DNA cleavage site is accompanied by a remarkable structural remodeling of the recognition (REC) lobe, which exerts a key role for DNA cleavage. Specifically, the significant conformational changes and the collective conformational dynamics of the REC lobe indicate a mechanism by which the REC1-3 regions 'sense' nucleic acids, 'regulate' the HNH conformational transition, and ultimately 'lock' the HNH domain at the cleavage site, contributing to its catalytic competence. By integrating additional independent simulations and existing experimental data, we provide a solid validation of the activated HNH conformation, which had been so far poorly characterized, and we deliver a comprehensive understanding of the role of REC1-3 in the activation process. Considering the importance of the REC lobe in the specificity of Cas9, this study poses the basis for fully understanding how the REC components control the cleavage of off-target sequences, laying the foundation for future engineering efforts toward improved genome editing.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, University of California, Riverside, CA 92507
| | - Janice S. Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Clarisse G. Ricci
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure (ENS) de Lyon, CNRS, Lyon 1, France
| | - Martin Jinek
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|