51
|
Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y, Liu H, Zickler D, Chen Z, Kleckner N, Zhang L. Per-Nucleus Crossover Covariation and Implications for Evolution. Cell 2019; 177:326-338.e16. [PMID: 30879787 PMCID: PMC6472931 DOI: 10.1016/j.cell.2019.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.
| | - Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Yongliang Shang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|