51
|
Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod. Proc Natl Acad Sci U S A 2022; 119:e2201521119. [PMID: 36095205 PMCID: PMC9499500 DOI: 10.1073/pnas.2201521119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.
Collapse
|
52
|
Busch JW, Bodbyl‐Roels S, Tusuubira S, Kelly JK. Pollinator loss causes rapid adaptive evolution of selfing and dramatically reduces genome-wide genetic variability. Evolution 2022; 76:2130-2144. [PMID: 35852008 PMCID: PMC9543508 DOI: 10.1111/evo.14572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 01/22/2023]
Abstract
Although selfing populations harbor little genetic variation limiting evolutionary potential, the causes are unclear. We experimentally evolved large, replicate populations of Mimulus guttatus for nine generations in greenhouses with or without pollinating bees and studied DNA polymorphism in descendants. Populations without bees adapted to produce more selfed seed yet exhibited striking reductions in DNA polymorphism despite large population sizes. Importantly, the genome-wide pattern of variation cannot be explained by a simple reduction in effective population size, but instead reflects the complicated interaction between selection, linkage, and inbreeding. Simulations demonstrate that the spread of favored alleles at few loci depresses neutral variation genome wide in large populations containing fully selfing lineages. It also generates greater heterogeneity among chromosomes than expected with neutral evolution in small populations. Genome-wide deviations from neutrality were documented in populations with bees, suggesting widespread influences of background selection. After applying outlier tests to detect loci under selection, two genome regions were found in populations with bees, yet no adaptive loci were otherwise mapped. Large amounts of stochastic change in selfing populations compromise evolutionary potential and undermine outlier tests for selection. This occurs because genetic draft in highly selfing populations makes even the largest changes in allele frequency unremarkable.
Collapse
Affiliation(s)
- Jeremiah W. Busch
- School of Biological SciencesWashington State UniversityPullmanWashington99164
| | - Sarah Bodbyl‐Roels
- Trefny Innovative Instruction CenterColorado School of MinesGoldenColorado80401
| | - Sharif Tusuubira
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - John K. Kelly
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| |
Collapse
|
53
|
Abstract
Abstract
Few doubt that effective population size (Ne) is one of the most important parameters in evolutionary biology, but how many can say they really understand the concept? Ne is the evolutionary analogue of the number of individuals (or adults) in the population, N. Whereas ecological consequences of population size depend on N, evolutionary consequences (rates of loss of genetic diversity and increase in inbreeding; relative effectiveness of selection) depend on Ne. Formal definitions typically relate effective size to a key population genetic parameter, such as loss of heterozygosity or variance in allele frequency. However, for practical application to real populations, it is more useful to define Ne in terms of three demographic parameters: number of potential parents (adult N), and mean and variance in offspring number. Defined this way, Ne determines the rate of random genetic drift across the entire genome in the offspring generation. Other evolutionary forces (mutation, migration, selection)—together with factors such as variation in recombination rate—can also affect genetic variation, and this leads to heterogeneity across the genome in observed rates of genetic change. For some, it has been convenient to interpret this heterogeneity in terms of heterogeneity in Ne, but unfortunately this has muddled the concepts of genetic drift and effective population size. A commonly-repeated misconception is that Ne is the number of parents that actually contribute genes to the next generation (NP). In reality, NP can be smaller or larger than Ne, and the NP/Ne ratio depends on the sex ratio, the mean and variance in offspring number, and whether inbreeding or variance Ne is of interest.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112 USA
| |
Collapse
|
54
|
Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr Biol 2022; 32:878-888.e8. [PMID: 34919808 PMCID: PMC8891084 DOI: 10.1016/j.cub.2021.11.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Endosymbioses influence host physiology, reproduction, and fitness, but these relationships require efficient microbe transmission between host generations to persist. Maternally transmitted Wolbachia are the most common known endosymbionts,1 but their frequencies vary widely within and among host populations for unknown reasons.2,3 Here, we integrate genomic, cellular, and phenotypic analyses with mathematical models to provide an unexpectedly simple explanation for global wMel Wolbachia prevalence in Drosophila melanogaster. Cooling temperatures decrease wMel cellular abundance at a key stage of host oogenesis, producing temperature-dependent variation in maternal transmission that plausibly explains latitudinal clines of wMel frequencies on multiple continents. wMel sampled from a temperate climate targets the germline more efficiently in the cold than a recently differentiated tropical variant (∼2,200 years ago), indicative of rapid wMel adaptation to climate. Genomic analyses identify a very narrow list of wMel alleles-most notably, a derived stop codon in the major Wolbachia surface protein WspB-that underlie thermal sensitivity of cellular Wolbachia abundance and covary with temperature globally. Decoupling temperate wMel and host genomes further reduces transmission in the cold, a pattern that is characteristic of host-microbe co-adaptation to a temperate climate. Complex interactions among Wolbachia, hosts, and the environment (GxGxE) mediate wMel cellular abundance and maternal transmission, implicating temperature as a key determinant of Wolbachia spread and equilibrium frequencies, in conjunction with Wolbachia effects on host fitness and reproduction.4,5 Our results motivate the strategic use of locally selected wMel variants for Wolbachia-based biocontrol efforts, which protect millions of individuals from arboviruses that cause human disease.6.
Collapse
|
55
|
Saleh D, Chen J, Leplé J, Leroy T, Truffaut L, Dencausse B, Lalanne C, Labadie K, Lesur I, Bert D, Lagane F, Morneau F, Aury J, Plomion C, Lascoux M, Kremer A. Genome-wide evolutionary response of European oaks during the Anthropocene. Evol Lett 2022; 6:4-20. [PMID: 35127134 PMCID: PMC8802238 DOI: 10.1002/evl3.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of parallel linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods of the Anthropocene. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last 300 years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. They provide support for adaptive evolution of long-lived species during recent climatic changes. Although we acknowledge that other sources (e.g., gene flow, generation overlap) may have contributed to temporal covariances of allelic frequency changes, the consistent and correlated response across the three forests lends support to the existence of a systematic driving force such as natural selection.
Collapse
Affiliation(s)
- Dounia Saleh
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Jun Chen
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | | | - Thibault Leroy
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1010Austria
| | - Laura Truffaut
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | | | - Céline Lalanne
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Karine Labadie
- Genoscope, Institut de Biologie François Jacob, Commissariat à l’énergie atomique (CEA)Université de Paris‐SaclayEvry91057France
| | | | - Didier Bert
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | | | - François Morneau
- Département Recherche Développement InnovationOffice National des ForêtsBoigny‐Sur‐Bionne45760France,Current Address: Service de l'Information Statistique Forestière et EnvironnementaleInstitut National de l'Information géographique et ForestièreNogent‐sur‐Vernisson45290France
| | - Jean‐Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRSUniv Evry, Université Paris‐SaclayEvry91057France
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSE‐75236Sweden
| | - Antoine Kremer
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| |
Collapse
|
56
|
Gene Flow and Genetic Structure Reveal Reduced Diversity between Generations of a Tropical Tree, Manilkara multifida Penn., in Atlantic Forest Fragments. Genes (Basel) 2021; 12:genes12122025. [PMID: 34946973 PMCID: PMC8701937 DOI: 10.3390/genes12122025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
The Atlantic Forest remnants in southern Bahia, Brazil, contain large tree species that have suffered disturbances in recent decades. Anthropogenic activities have led to a decrease in the population of many tree species and a loss of alleles that can maintain the evolutionary fitness of their populations. This study assessed patterns of genetic diversity, spatial genetic structure, and genetic structure among Manilkara multifida Penn. populations, comparing the genetic parameters of adult and juvenile trees. In particular, we collected leaves from adults and juveniles of M. multifida in two protected areas, the Veracel Station (EVC) and the Una Biological Reserve (UBR), located in threatened Atlantic Forest fragments. We observed a substantial decay in genetic variability between generations in both areas i.e., adults’ HO values were higher (EVC = 0.720, UBR = 0.736) than juveniles’ (EVC = 0.463 and UBR = 0.560). Both juveniles and adults showed genetic structure between the two areas (θ = 0.017 for adults and θ = 0.109 for juveniles). Additionally, forest fragments indicated an unexpectedly short gene flow. Our results, therefore, highlight the pervasive effects of historical deforestation and other human disturbances on the genetic diversity of M. multifida populations within a key conservation region of the Atlantic Forest biodiversity hotspot.
Collapse
|
57
|
Gompert Z, Feder JL, Nosil P. Natural selection drives genome-wide evolution via chance genetic associations. Mol Ecol 2021; 31:467-481. [PMID: 34704650 DOI: 10.1111/mec.16247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Understanding selection's impact on the genome is a major theme in biology. Functionally neutral genetic regions can be affected indirectly by natural selection, via their statistical association with genes under direct selection. The genomic extent of such indirect selection, particularly across loci not physically linked to those under direct selection, remains poorly understood, as does the time scale at which indirect selection occurs. Here, we use field experiments and genomic data in stick insects, deer mice and stickleback fish to show that widespread statistical associations with genes known to affect fitness cause many genetic loci across the genome to be impacted indirectly by selection. This includes regions physically distant from those directly under selection. Then, focusing on the stick insect system, we show that statistical associations between SNPs and other unknown, causal variants result in additional indirect selection in general and specifically within genomic regions of physically linked loci. This widespread indirect selection necessarily makes aspects of evolution more predictable. Thus, natural selection combines with chance genetic associations to affect genome-wide evolution across linked and unlinked loci and even in modest-sized populations. This process has implications for the application of evolutionary principles in basic and applied science.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah, USA.,Ecology Center, Utah State University, Logan, Utah, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
58
|
Bertram J. Allele frequency divergence reveals ubiquitous influence of positive selection in Drosophila. PLoS Genet 2021; 17:e1009833. [PMID: 34591854 PMCID: PMC8509871 DOI: 10.1371/journal.pgen.1009833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/12/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
Resolving the role of natural selection is a basic objective of evolutionary biology. It is generally difficult to detect the influence of selection because ubiquitous non-selective stochastic change in allele frequencies (genetic drift) degrades evidence of selection. As a result, selection scans typically only identify genomic regions that have undergone episodes of intense selection. Yet it seems likely such episodes are the exception; the norm is more likely to involve subtle, concurrent selective changes at a large number of loci. We develop a new theoretical approach that uncovers a previously undocumented genome-wide signature of selection in the collective divergence of allele frequencies over time. Applying our approach to temporally resolved allele frequency measurements from laboratory and wild Drosophila populations, we quantify the selective contribution to allele frequency divergence and find that selection has substantial effects on much of the genome. We further quantify the magnitude of the total selection coefficient (a measure of the combined effects of direct and linked selection) at a typical polymorphic locus, and find this to be large (of order 1%) even though most mutations are not directly under selection. We find that selective allele frequency divergence is substantially elevated at intermediate allele frequencies, which we argue is most parsimoniously explained by positive-not negative-selection. Thus, in these populations most mutations are far from evolving neutrally in the short term (tens of generations), including mutations with neutral fitness effects, and the result cannot be explained simply as an ongoing purging of deleterious mutations.
Collapse
Affiliation(s)
- Jason Bertram
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
59
|
Johnsson M, Henriksen R, Wright D. The neural crest cell hypothesis: no unified explanation for domestication. Genetics 2021; 219:iyab097. [PMID: 34849908 PMCID: PMC8633120 DOI: 10.1093/genetics/iyab097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Rie Henriksen
- IFM Biology, Linköping University, Linköping 58183, Sweden
| | - Dominic Wright
- IFM Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
60
|
Buffalo V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's Paradox. eLife 2021; 10:e67509. [PMID: 34409937 PMCID: PMC8486380 DOI: 10.7554/elife.67509] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Neutral theory predicts that genetic diversity increases with population size, yet observed levels of diversity across metazoans vary only two orders of magnitude while population sizes vary over several. This unexpectedly narrow range of diversity is known as Lewontin's Paradox of Variation (1974). While some have suggested selection constrains diversity, tests of this hypothesis seem to fall short. Here, I revisit Lewontin's Paradox to assess whether current models of linked selection are capable of reducing diversity to this extent. To quantify the discrepancy between pairwise diversity and census population sizes across species, I combine previously-published estimates of pairwise diversity from 172 metazoan taxa with newly derived estimates of census sizes. Using phylogenetic comparative methods, I show this relationship is significant accounting for phylogeny, but with high phylogenetic signal and evidence that some lineages experience shifts in the evolutionary rate of diversity deep in the past. Additionally, I find a negative relationship between recombination map length and census size, suggesting abundant species have less recombination and experience greater reductions in diversity due to linked selection. However, I show that even assuming strong and abundant selection, models of linked selection are unlikely to explain the observed relationship between diversity and census sizes across species.
Collapse
Affiliation(s)
- Vince Buffalo
- Institute for Ecology and Evolution, University of OregonEugeneUnited States
| |
Collapse
|
61
|
Gompert Z, Springer A, Brady M, Chaturvedi S, Lucas LK. Genomic time-series data show that gene flow maintains high genetic diversity despite substantial genetic drift in a butterfly species. Mol Ecol 2021; 30:4991-5008. [PMID: 34379852 DOI: 10.1111/mec.16111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Effective population size affects the efficacy of selection, rate of evolution by drift, and neutral diversity levels. When species are subdivided into multiple populations connected by gene flow, evolutionary processes can depend on global or local effective population sizes. Theory predicts that high levels of diversity might be maintained by gene flow, even very low levels of gene flow, consistent with species long-term effective population size, but tests of this idea are mostly lacking. Here, we show that Lycaeides buttery populations maintain low contemporary (variance) effective population sizes (e.g., ~200 individuals) and thus evolve rapidly by genetic drift. In contrast, populations harbored high levels of genetic diversity consistent with an effective population size several orders of magnitude larger. We hypothesized that the differences in the magnitude and variability of contemporary versus long-term effective population sizes were caused by gene flow of sufficient magnitude to maintain diversity but only subtly affect evolution on generational time scales. Consistent with this hypothesis, we detected low but non-trivial gene flow among populations. Furthermore, using short-term population-genomic time-series data, we documented patterns consistent with predictions from this hypothesis, including a weak but detectable excess of evolutionary change in the direction of the mean (migrant gene pool) allele frequencies across populations, and consistency in the direction of allele frequency change over time. The documented decoupling of diversity levels and short-term change by drift in Lycaeides has implications for our understanding of contemporary evolution and the maintenance of genetic variation in the wild.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Amy Springer
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Megan Brady
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Samridhi Chaturvedi
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
62
|
Glaser-Schmitt A, Wittmann MJ, Ramnarine TJS, Parsch J. Sexual antagonism, temporally fluctuating selection, and variable dominance affect a regulatory polymorphism in Drosophila melanogaster. Mol Biol Evol 2021; 38:4891-4907. [PMID: 34289067 PMCID: PMC8557461 DOI: 10.1093/molbev/msab215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzik. The derived variant at this site is at intermediate frequency in many worldwide populations but absent in populations from the ancestral species range in sub-Saharan Africa. We collected and genotyped wild-caught individuals from a single European population biannually over a period of 5 years, which revealed an overall difference in allele frequency between the sexes and a consistent change in allele frequency across seasons in females but not in males. Modeling based on the observed allele and genotype frequencies suggested that both sexually antagonistic and temporally fluctuating selection may help maintain variation at this site. The derived variant is predicted to be female-beneficial and mostly recessive; however, there was uncertainty surrounding our dominance estimates and long-term modeling projections suggest that it is more likely to be dominant. By examining gene expression phenotypes, we found that phenotypic dominance was variable and dependent upon developmental stage and genetic background, suggesting that dominance may be variable at this locus. We further determined that fezzik expression and genotype are associated with starvation resistance in a sex-dependent manner, suggesting a potential phenotypic target of selection. By characterizing the mechanisms of selection acting on this SNP, our results improve our understanding of how selection maintains genetic and phenotypic variation in natural populations.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | - Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
63
|
Martin-Roy R, Nygård E, Nouhaud P, Kulmuni J. Differences in Thermal Tolerance between Parental Species Could Fuel Thermal Adaptation in Hybrid Wood Ants. Am Nat 2021; 198:278-294. [PMID: 34260873 DOI: 10.1086/715012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractGenetic variability is essential for adaptation and could be acquired via hybridization with a closely related lineage. We use ants to investigate thermal adaptation and the link between temperature and genetic variation arising from hybridization. We test for differences in cold and heat tolerance between Finnish Formica polyctena and Formica aquilonia wood ants and their naturally occurring hybrids. Using workers, we find that the parental individuals differ in both cold and heat tolerances and express thermal limits that reflect their global distributions. Hybrids, however, cannot combine thermal tolerance of parental species as they have the same heat tolerance as F. polyctena but not the same cold tolerance as F. aquilonia. We then focus on a single hybrid population to investigate the relationship between temperature variation and genetic variation across 16 years using reproductive individuals. On the basis of the thermal tolerance results, we expected the frequency of putative F. polyctena alleles to increase in warm years and F. aquilonia alleles to increase in cold years. We find support for this in hybrid males but not in hybrid females. These results contribute to understanding the outcomes of hybridization, which may be sex specific or depend on the environment. Furthermore, genetic variability resulting from hybridization could help hybrid wood ants cope with changing thermal conditions.
Collapse
|
64
|
Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat Commun 2021; 12:4306. [PMID: 34262034 PMCID: PMC8280168 DOI: 10.1038/s41467-021-24581-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
We lack a thorough understanding of the origin and maintenance of standing genetic variation that enables rapid evolutionary responses of natural populations. Whole genome sequencing of a resurrected Daphnia population shows that standing genetic variation in over 500 genes follows an evolutionary trajectory that parallels the pronounced and rapid adaptive evolution of multiple traits in response to predator-driven natural selection and its subsequent relaxation. Genetic variation carried by only five founding individuals from the regional genotype pool is shown to suffice at enabling the observed evolution. Our results provide insight on how natural populations can acquire the genomic variation, through colonization by a few regional genotypes, that fuels rapid evolution in response to strong selection pressures. While these evolutionary responses in our study population involved hundreds of genes, we observed no evidence of genetic erosion.
Collapse
|
65
|
Rodrigues MF, Vibranovski MD, Cogni R. Clinal and seasonal changes are correlated in Drosophila melanogaster natural populations. Evolution 2021; 75:2042-2054. [PMID: 34184262 DOI: 10.1111/evo.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil.,Current Address: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
66
|
Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, Fabian DK, Flatt T, González J, Karasov TL, Kim B, Kozeretska I, Lazzaro BP, Merritt TJS, Pool JE, O'Brien K, Rajpurohit S, Roy PR, Schaeffer SW, Serga S, Schmidt P, Petrov DA. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 2021; 10:e67577. [PMID: 34155971 PMCID: PMC8248982 DOI: 10.7554/elife.67577] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford UniversityStanfordUnited States
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Alan O Bergland
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Ryan Taylor
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Emily Behrman
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Kelly Dyer
- Department of Genetics, University of GeorgiaAthensUnited States
| | - Daniel K Fabian
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Centre for Pathogen Evolution, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Flatt
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Josefa González
- Institute of Evolutionary Biology, CSIC- Universitat Pompeu FabraBarcelonaSpain
| | - Talia L Karasov
- Department of Biology, University of UtahSalt Lake CityUnited States
| | - Bernard Kim
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Iryna Kozeretska
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Brian P Lazzaro
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Thomas JS Merritt
- Department of Chemistry & Biochemistry, Laurentian UniversitySudburyCanada
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Katherine O'Brien
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhash Rajpurohit
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula R Roy
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Svitlana Serga
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Paul Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
67
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
68
|
Gompert Z. A population-genomic approach for estimating selection on polygenic traits in heterogeneous environments. Mol Ecol Resour 2021; 21:1529-1546. [PMID: 33682340 DOI: 10.1111/1755-0998.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form, direction and intensity of selection can limit net evolutionary change over longer time periods. Fluctuating selection could affect molecular diversity levels and the evolution of plasticity and ecological specialization. Nonetheless, this phenomenon remains understudied, in part because of analytical limitations and the general difficulty of detecting selection that does not occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate Bayesian computation (ABC) method to detect and quantify fluctuating selection on polygenic traits from population genomic time-series data. I propose a model for environment-dependent phenotypic selection. The evolutionary genetic consequences of selection are then modelled based on a genotype-phenotype map. Using simulations, I show that the proposed method generates accurate and precise estimates of selection when the generative model for the data is similar to the model assumed by the method. The performance of the method when applied to an evolve-and-resequence study of host adaptation in the cowpea seed beetle (Callosobruchus maculatus) was more idiosyncratic and depended on specific analytical choices. Despite some limitations, these results suggest the proposed method provides a powerful approach to connect the causes of (variable) selection to traits and genome-wide patterns of evolution. Documentation and open-source computer software (fsabc) implementing this method are available from github (https://github.com/zgompert/fsabc.git).
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, USA.,Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
69
|
Buffalo V, Coop G. Estimating the genome-wide contribution of selection to temporal allele frequency change. Proc Natl Acad Sci U S A 2020; 117:20672-20680. [PMID: 32817464 PMCID: PMC7456072 DOI: 10.1073/pnas.1919039117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid phenotypic adaptation is often observed in natural populations and selection experiments. However, detecting the genome-wide impact of this selection is difficult since adaptation often proceeds from standing variation and selection on polygenic traits, both of which may leave faint genomic signals indistinguishable from a noisy background of genetic drift. One promising signal comes from the genome-wide covariance between allele frequency changes observable from temporal genomic data (e.g., evolve-and-resequence studies). These temporal covariances reflect how heritable fitness variation in the population leads changes in allele frequencies at one time point to be predictive of the changes at later time points, as alleles are indirectly selected due to remaining associations with selected alleles. Since genetic drift does not lead to temporal covariance, we can use these covariances to estimate what fraction of the variation in allele frequency change through time is driven by linked selection. Here, we reanalyze three selection experiments to quantify the effects of linked selection over short timescales using covariance among time points and across replicates. We estimate that at least 17 to 37% of allele frequency change is driven by selection in these experiments. Against this background of positive genome-wide temporal covariances, we also identify signals of negative temporal covariance corresponding to reversals in the direction of selection for a reasonable proportion of loci over the time course of a selection experiment. Overall, we find that in the three studies we analyzed, linked selection has a large impact on short-term allele frequency dynamics that is readily distinguishable from genetic drift.
Collapse
Affiliation(s)
- Vince Buffalo
- Population Biology Graduate Group, University of California, Davis, CA 95616;
- Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Graham Coop
- Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|