51
|
Rossetti G, Dans PD, Gomez-Pinto I, Ivani I, Gonzalez C, Orozco M. The structural impact of DNA mismatches. Nucleic Acids Res 2015; 43:4309-21. [PMID: 25820425 PMCID: PMC4417165 DOI: 10.1093/nar/gkv254] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 12/17/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins.
Collapse
Affiliation(s)
- Giulia Rossetti
- Joint BSC-CRG-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain Computational Biophysics, German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany), D-52425 Jülich, Germany and Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich, D-52425 Jülich, Germany Juelich Supercomputing Center (JSC), Forschungszentrum Jülich, Jülich, Germany
| | - Pablo D Dans
- Joint BSC-CRG-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Irene Gomez-Pinto
- Joint BSC-CRG-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, Madrid 28006, Spain
| | - Ivan Ivani
- Joint BSC-CRG-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Carlos Gonzalez
- Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, Madrid 28006, Spain
| | - Modesto Orozco
- Joint BSC-CRG-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
52
|
Buechner CN, Maiti A, Drohat AC, Tessmer I. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res 2015; 43:2716-29. [PMID: 25712093 PMCID: PMC4357730 DOI: 10.1093/nar/gkv139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.
Collapse
Affiliation(s)
- Claudia N Buechner
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Atanu Maiti
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
53
|
Monakhova M, Ryazanova A, Hentschel A, Viryasov M, Oretskaya T, Friedhoff P, Kubareva E. Chromatographic isolation of the functionally active MutS protein covalently linked to deoxyribonucleic acid. J Chromatogr A 2015; 1389:19-27. [PMID: 25746757 DOI: 10.1016/j.chroma.2015.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
DNA metabolism is based on formation of different DNA-protein complexes which can adopt various conformations. To characterize functioning of such complexes, one needs a solution-based technique which allows fixing a complex in a certain transient conformation. The crosslinking approach is a popular tool for such studies. However, it is under debate if the protein components retain their natural activities in the resulting crosslinked complexes. In the present work we demonstrate the possibility of obtaining pure DNA conjugate with functionally active protein using as example MutS protein from Escherichia coli mismatch repair system. A conjugate of a chemically modified mismatch-containing DNA duplex with MutS is fixed by thiol-disulfide exchange reaction. To perform a reliable test of the protein activity in the conjugate, such conjugate must be thoroughly separated from the uncrosslinked protein and DNA prior to the test. In the present work, we employ anion exchange chromatography for this purpose for the first time and demonstrate this technique to be optimal for the conjugate purification. The activity test is a FRET-based detection of DNA unbending. We show experimentally that MutS in the conjugate retains its ability to unbend DNA in response to ATP addition and find out for the first time that the DNA unbending rate increases with increasing ATP concentration. Since the crosslinked complexes contain active MutS protein, they can be used in further experiments to investigate MutS interactions with other proteins of the mismatch repair system.
Collapse
Affiliation(s)
- Mayya Monakhova
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Alexandra Ryazanova
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Andreas Hentschel
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Mikhail Viryasov
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.
| | - Tatiana Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Elena Kubareva
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
54
|
Abstract
Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709;
| | - Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-3290;
| |
Collapse
|
55
|
Hall JP, Sanchez-Weatherby J, Alberti C, Quimper CH, O'Sullivan K, Brazier JA, Winter G, Sorensen T, Kelly JM, Cardin DJ, Cardin CJ. Controlled dehydration of a ruthenium complex-DNA crystal induces reversible DNA kinking. J Am Chem Soc 2014; 136:17505-12. [PMID: 25393319 DOI: 10.1021/ja508745x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydration-dependent DNA deformation has been known since Rosalind Franklin recognized that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fiber diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)](2+) (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven data sets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.
Collapse
Affiliation(s)
- James P Hall
- Chemistry Department, University of Reading , Whiteknights, Reading, Berkshire RG6 6AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Thomson NH, Santos S, Mitchenall LA, Stuchinskaya T, Taylor JA, Maxwell A. DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Sci Rep 2014; 4:6158. [PMID: 25142513 PMCID: PMC4139952 DOI: 10.1038/srep06158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate' may be an important determinant of this process.
Collapse
Affiliation(s)
- Neil H Thomson
- Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sergio Santos
- 1] Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom [2]
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tanya Stuchinskaya
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - James A Taylor
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
57
|
Perevozchikova SA, Trikin RM, Heinze RJ, Romanova EA, Oretskaya TS, Friedhoff P, Kubareva EA. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system? PLoS One 2014; 9:e104963. [PMID: 25133614 PMCID: PMC4136841 DOI: 10.1371/journal.pone.0104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active “sliding clamp” conformation on Tg-DNA is problematic.
Collapse
Affiliation(s)
- Svetlana A. Perevozchikova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman M. Trikin
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Roger J. Heinze
- Institute for Biochemistry, Justus Liebig University, Giessen, Germany
| | - Elena A. Romanova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana S. Oretskaya
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Friedhoff
- Institute for Biochemistry, Justus Liebig University, Giessen, Germany
| | - Elena A. Kubareva
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
58
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
59
|
Mukherjee S, Wright WD, Ehmsen KT, Heyer WD. The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage. Nucleic Acids Res 2014; 42:6511-22. [PMID: 24744239 PMCID: PMC4041439 DOI: 10.1093/nar/gku265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mus81-Mms4/EME1 is a DNA structure-selective endonuclease that cleaves joint DNA molecules that form during homologous recombination in mitotic and meiotic cells. Here, we demonstrate by kinetic analysis using physically tethered DNA substrates that budding yeast Mus81-Mms4 requires inherent rotational flexibility in DNA junctions for optimal catalysis. Förster Resonance Energy Transfer experiments further reveal that recognition of 3′-flap and nicked Holliday junction substrates by Mus81-Mms4 involves induction of a sharp bend with a 100° angle between two duplex DNA arms. In addition, thiol crosslinking of Mus81-Mms4 bound to DNA junctions demonstrates that the heterodimer undergoes a conformational change induced by joint DNA molecules with preferred structural properties. The results from all three approaches suggest a model for catalysis by Mus81-Mms4 in which initial DNA binding is based on minimal structural requirements followed by a rate-limiting conformational transition of the substrate and protein. This leads to a sharply kinked DNA molecule that may fray the DNA four base pairs away from the junction point to position the nuclease for cleavage between the fourth and fifth nucleotide. These data suggest that mutually compatible conformational changes of Mus81-Mms4 and its substrates tailor its incision activity to nicked junction molecules.
Collapse
Affiliation(s)
- Sucheta Mukherjee
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - William Douglass Wright
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - Kirk Tevebaugh Ehmsen
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA Department of Molecular & Cellular Biology, University of California, One Shields Ave., Davis, Davis CA 95616-8665, USA
| |
Collapse
|
60
|
DeRocco VC, Sass LE, Qiu R, Weninger KR, Erie DA. Dynamics of MutS-mismatched DNA complexes are predictive of their repair phenotypes. Biochemistry 2014; 53:2043-52. [PMID: 24588663 PMCID: PMC3985873 DOI: 10.1021/bi401429b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
MutS
recognizes base–base mismatches and base insertions/deletions
(IDLs) in newly replicated DNA. Specific interactions between MutS
and these errors trigger a cascade of protein–protein interactions
that ultimately lead to their repair. The inability to explain why
different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge
of this process. Here, we present single-molecule Förster resonance
energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which
is known to have error specific deficiencies in signaling repair.
We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair
efficiencies ranging from high to low. We identify three dominant
DNA bending states [slightly bent/unbent (U), intermediately
bent (I), and significantly bent (B)] and
find that the kinetics of interconverting among states varies widely
for different complexes. The increased stability of MutS–mismatch/IDL
complexes is associated with stabilization of U and lowering
of the B to U transition barrier. Destabilization
of U is always accompanied by a destabilization of B, supporting the suggestion that B is a “required”
precursor to U. Comparison of MutS and MutS-E41A dynamics
on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates
the changes in base–base hydrogen bonding that are required
to achieve the U state, which has been implicated in
repair signaling. Taken together with repair propensities, our data
suggest that the bending kinetics of MutS–mismatched DNA complexes
may control the entry into functional pathways for downstream signaling
of repair.
Collapse
Affiliation(s)
- Vanessa C DeRocco
- Department of Chemistry and ‡Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
61
|
Pallarés MC, Marcuello C, Botello-Morte L, González A, Fillat MF, Lostao A. Sequential binding of FurA from Anabaena sp. PCC 7120 to iron boxes: exploring regulation at the nanoscale. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:623-31. [PMID: 24440406 DOI: 10.1016/j.bbapap.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
Abstract
Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp. PCC 7120. To assess the molecular mechanism by which FurA specifically binds to "iron boxes" in PfurA, we examined the topology arrangement of FurA-DNA complexes by atomic force microscopy. Interestingly, FurA-PfurA complexes exhibit several populations, in which one is the predominant and depends clearly on the regulator/promoter ratio on the environment. Those results together with EMSA and other techniques suggest that FurA binds PfurA using a sequential mechanism: (i) a monomer specifically binds to an "iron box" and bends PfurA; (ii) two situations may occur, that a second FurA monomer covers the free "iron box" or that joins to the previously used forming a dimer which would maintain the DNA kinked; (iii) trimerization in which the DNA is unbent; and (iv) finally undergoes a tetramerization; the next coming molecules cover the DNA strands unspecifically. In summary, the bending appears when an "iron box" is bound to one or two molecules and decreases when both "iron boxes" are covered. These results suggest that DNA bending contributes at the first steps of FurA repression promoting the recruitment of new molecules resulting in a fine regulation in the Fur-dependent cluster associated genes.
Collapse
Affiliation(s)
- María Carmen Pallarés
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Laura Botello-Morte
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Andrés González
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Francisca Fillat
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Spain.
| |
Collapse
|
62
|
Granzhan A, Kotera N, Teulade-Fichou MP. Finding needles in a basestack: recognition of mismatched base pairs in DNA by small molecules. Chem Soc Rev 2014; 43:3630-65. [DOI: 10.1039/c3cs60455a] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
63
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
64
|
Buechner CN, Tessmer I. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions. J Mol Recognit 2013; 26:605-17. [DOI: 10.1002/jmr.2311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia N. Buechner
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
65
|
DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc Natl Acad Sci U S A 2013; 110:17308-13. [PMID: 24101514 DOI: 10.1073/pnas.1308595110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging.
Collapse
|
66
|
Slow conformational changes in MutS and DNA direct ordered transitions between mismatch search, recognition and signaling of DNA repair. J Mol Biol 2013; 425:4192-205. [PMID: 23973435 DOI: 10.1016/j.jmb.2013.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/04/2023]
Abstract
MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.
Collapse
|
67
|
Fields AP, Meyer EA, Cohen AE. Euler buckling and nonlinear kinking of double-stranded DNA. Nucleic Acids Res 2013; 41:9881-90. [PMID: 23956222 PMCID: PMC3834817 DOI: 10.1093/nar/gkt739] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called 'Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.
Collapse
Affiliation(s)
- Alexander P Fields
- Biophysics Program, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
68
|
Abstract
Normal cell function requires strict control over the repair of DNA damage, which prevents excessive mutagenesis. An enhanced accumulation of mutations results in the multistep process generally known as carcinogenesis. Defects in repair pathways fuel such mutagenesis by allowing reiterative cycles of mutation, selection, and clonal expansion that drive cancer progression. The repair of mismatches is an important mechanism in the prevention of such genetic instability. In addition, proteins of this pathway have the unique ability to function in DNA damage response by inducing apoptosis when irreparable damage is encountered. Though originally identified primarily in association with a predisposition to hereditary colon cancer, mismatch repair defects have been identified in many other cancer types, including prostate cancer. From the first discovery of microsatellite instability in prostate cancer cell lines and tumor samples, variations in protein levels and a possible association with recurrence and aggression of disease have been described. Current results suggest that the involvement of mismatch repair proteins in prostate cancer may differ from that found in colorectal cancer, in the type of proteins and protein defects involved and the type of causative mutations. Additional work is clearly needed to investigate this involvement and the possibility that such defects may affect treatment response and androgen independence.
Collapse
Affiliation(s)
- John Jarzen
- Department of Biology, College of Science and Technology, Georgia Southern University, Statesboro, Georgia, USA
| | | | | |
Collapse
|
69
|
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HHK, Marinus MG, Lebbink JHG, Svergun DI, Friedhoff P, Sixma TK. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 2013; 41:8166-81. [PMID: 23821665 PMCID: PMC3783165 DOI: 10.1093/nar/gkt582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CancerGenomiCs.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands, European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany, Institute for Biochemistry, Justus Liebig University, Heinrich-Buff Ring 58, D-35392, Giessen, Germany, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands and Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Perevoztchikova SA, Romanova EA, Oretskaya TS, Friedhoff P, Kubareva EA. Modern aspects of the structural and functional organization of the DNA mismatch repair system. Acta Naturae 2013; 5:17-34. [PMID: 24303200 PMCID: PMC3848065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review is focused on the general aspects of the DNA mismatch repair (MMR) process. The key proteins of the DNA mismatch repair system are MutS and MutL. To date, their main structural and functional characteristics have been thoroughly studied. However, different opinions exist about the initial stages of the mismatch repair process with the participation of these proteins. This review aims to summarize the data on the relationship between the two MutS functions, ATPase and DNA-binding, and to systematize various models of coordination between the mismatch site and the strand discrimination site in DNA. To test these models, novel techniques for the trapping of short-living complexes that appear at different MMR stages are to be developed.
Collapse
Affiliation(s)
- S. A. Perevoztchikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| | - E. A. Romanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| | - T. S. Oretskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 3, Moscow, Russia, 119991
| | - P. Friedhoff
- Institute of Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - E. A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 40, Moscow, Russia, 119991
| |
Collapse
|
71
|
Negureanu L, Salsbury FR. Non-specificity and synergy at the binding site of the carboplatin-induced DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. J Biomol Struct Dyn 2013; 32:969-92. [PMID: 23799640 DOI: 10.1080/07391102.2013.799437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MutSα is the most abundant mismatch-binding factor of human DNA mismatch repair (MMR) proteins. MMR maintains genetic stability by recognizing and repairing DNA defects. Failure to accomplish their function may lead to cancer. In addition, MutSα recognizes at least some types of DNA damage making it a target for anticancer agents. Here, complementing scarce experimental data, we report unique hydrogen-bonding motifs associated with the recognition of the carboplatin induced DNA damage by MutSα. These data predict that carboplatin and cisplatin induced damaging DNA adducts are recognized by MutSα in a similar manner. Our simulations also indicate that loss of base pairing at the damage site results in (1) non-specific binding and (2) changes in the atomic flexibility at the lesion site and beyond. To further quantify alterations at MutSα-DNA interface in response to damage recognition, non-bonding interactions and salt bridges were investigated. These data indicate (1) possible different packing and (2) disruption of the salt bridges at the MutSα-DNA interface in the damaged complex. These findings (1) underscore the general observation of disruptions at the MutSα-DNA interface and (2) highlight the nature of the anticancer effect of the carboplatin agent. The analysis was carried out from atomistic simulations.
Collapse
|
72
|
Sedletska Y, Culard F, Midoux P, Malinge JM. Interaction studies of muts and mutl with DNA containing the major cisplatin lesion and its mismatched counterpart under equilibrium and nonequilibrium conditions. Biopolymers 2013; 99:636-47. [DOI: 10.1002/bip.22232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/04/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Affiliation(s)
| | - Françoise Culard
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire; CNRS UPR 4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron, 45071 Orléans Cedex 02; France
| |
Collapse
|
73
|
Sharma M, Predeus AV, Mukherjee S, Feig M. DNA bending propensity in the presence of base mismatches: implications for DNA repair. J Phys Chem B 2013; 117:6194-205. [PMID: 23621762 DOI: 10.1021/jp403127a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA bending is believed to facilitate the initial recognition of the mismatched base for repair. The repair efficiencies are dependent on both the mismatch type and neighboring nucleotide sequence. We have studied bending of several DNA duplexes containing canonical matches: A:T and G:C; various mismatches: A:A, A:C, G:A, G:G, G:T, C:C, C:T, and T:T; and a bis-abasic site: X:X. Free-energy profiles were generated for DNA bending using umbrella sampling. The highest energetic cost associated with DNA bending is observed for canonical matches while bending free energies are lower in the presence of mismatches, with the lowest value for the abasic site. In all of the sequences, DNA duplexes bend toward the major groove with widening of the minor groove. For homoduplexes, DNA bending is observed to occur via smooth deformations, whereas for heteroduplexes, kinks are observed at the mismatch site during strong bending. In general, pyrimidine:pyrimidine mismatches are the most destabilizing, while purine:purine mismatches lead to intermediate destabilization, and purine:pyrimidine mismatches are the least destabilizing. The ease of bending is partially correlated with the binding affinity of MutS to the mismatch pairs and subsequent repair efficiencies, indicating that intrinsic DNA bending propensities are a key factor of mismatch recognition.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
74
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
75
|
Dutta S, Snyder MJ, Rosile D, Binz KL, Roll EH, Suryadi J, Bierbach U, Guthold M. PT-ACRAMTU, a platinum-acridine anticancer agent, lengthens and aggregates, but does not stiffen or soften DNA. Cell Biochem Biophys 2013; 67:1103-13. [PMID: 23636685 PMCID: PMC3767762 DOI: 10.1007/s12013-013-9614-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used atomic force microscopy (AFM) to study the dose-dependent change in conformational and mechanical properties of DNA treated with PT-ACRAMTU ([PtCl(en)(ACRAMTU-S)](NO3)2, (en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea. PT-ACRAMTU is the parent drug of a family of non-classical platinum-based agents that show potent activity in non-small cell lung cancer in vitro and in vivo. Its acridine moiety intercalates between DNA bases, while the platinum group forms mono-adducts with DNA bases. AFM images show that PT-ACRAMTU causes some DNA looping and aggregation at drug-to-base pair ratio (r b) of 0.1 and higher. Very significant lengthening of the DNA was observed with increasing doses of PT-ACRAMTU, and reached saturation at an r b of 0.15. At r b of 0.1, lengthening was 0.6 nm per drug molecule, which is more than one fully stretched base pair stack can accommodate, indicating that ACRAMTU also disturbs the stacking of neighboring base pair stacks. Analysis of the AFM images based on the worm-like chain (WLC) model showed that PT-ACRAMTU did not change the flexibility of (non-aggregated) DNA, despite the extreme lengthening. The persistence length of untreated DNA and DNA treated with PT-ACRAMTU was in the range of 49-65 nm. Potential consequences of the perturbations caused by this agent for the recognition and processing of the DNA adducts it forms are discussed.
Collapse
Affiliation(s)
- Samrat Dutta
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Matthew J. Snyder
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - David Rosile
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Kristen L. Binz
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Eric H. Roll
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
76
|
Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, Nick McElhinny SA, Kunkel TA. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet 2012; 8:e1003016. [PMID: 23071460 PMCID: PMC3469411 DOI: 10.1371/journal.pgen.1003016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome. The stability of complex and highly organized nuclear genomes partly depends on the ability of mismatch repair (MMR) to correct a variety of different mismatches generated as the leading and lagging strand templates are copied by three polymerases, each with different fidelity. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first confirm that Pol ε is the primary leading strand replicase, complementing earlier assignment of Pols α and δ as the primary lagging strand replicases. We then show that MMR efficiency in vivo strongly depends on the polymerase that generates the mismatch and on the composition and location of mismatches. In one extreme case, a flanking triplet repeat sequence eliminates MMR altogether. Overall, MMR is most efficient for mismatches generated at the highest rates and having the most deleterious potential, thereby ultimately achieving high-fidelity replication of both DNA strands.
Collapse
Affiliation(s)
- Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Jessica S. Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Zachary F. Pursell
- Department of Biochemistry, Tulane University, New Orleans, Louisiana, United States of America
| | - Amy A. Abdulovic-Cui
- Department of Biology, Augusta State University, Augusta, Georgia, United States of America
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | | | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
77
|
Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc Natl Acad Sci U S A 2012; 109:E3074-83. [PMID: 23012240 DOI: 10.1073/pnas.1211364109] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of proteins to locate specific targets among a vast excess of nonspecific DNA is a fundamental theme in biology. Basic principles governing these search mechanisms remain poorly understood, and no study has provided direct visualization of single proteins searching for and engaging target sites. Here we use the postreplicative mismatch repair proteins MutSα and MutLα as model systems for understanding diffusion-based target searches. Using single-molecule microscopy, we directly visualize MutSα as it searches for DNA lesions, MutLα as it searches for lesion-bound MutSα, and the MutSα/MutLα complex as it scans the flanking DNA. We also show that MutLα undergoes intersite transfer between juxtaposed DNA segments while searching for lesion-bound MutSα, but this activity is suppressed upon association with MutSα, ensuring that MutS/MutL remains associated with the damage-bearing strand while scanning the flanking DNA. Our findings highlight a hierarchy of lesion- and ATP-dependent transitions involving both MutSα and MutLα, and help establish how different modes of diffusion can be used during recognition and repair of damaged DNA.
Collapse
|
78
|
Wolfe KC, Hastings WA, Dutta S, Long A, Shapiro BA, Woolf TB, Guthold M, Chirikjian GS. Multiscale modeling of double-helical DNA and RNA: a unification through Lie groups. J Phys Chem B 2012; 116:8556-72. [PMID: 22676719 PMCID: PMC4833121 DOI: 10.1021/jp2126015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several different mechanical models of double-helical nucleic-acid structures that have been presented in the literature are reviewed here together with a new analysis method that provides a reconciliation between these disparate models. In all cases, terminology and basic results from the theory of Lie groups are used to describe rigid-body motions in a coordinate-free way, and when necessary, coordinates are introduced in a way in which simple equations result. We consider double-helical DNAs and RNAs which, in their unstressed referential state, have backbones that are either straight, slightly precurved, or bent by the action of a protein or other bound molecule. At the coarsest level, we consider worm-like chains with anisotropic bending stiffness. Then, we show how bi-rod models converge to this for sufficiently long filament lengths. At a finer level, we examine elastic networks of rigid bases and show how these relate to the coarser models. Finally, we show how results from molecular dynamics simulation at full atomic resolution (which is the finest scale considered here) and AFM experimental measurements (which is at the coarsest scale) relate to these models.
Collapse
Affiliation(s)
- Kevin C. Wolfe
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | | | - Samrat Dutta
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Andrew Long
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States
| | - Thomas B. Woolf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Gregory S. Chirikjian
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
79
|
Kalle W, Strappe P. Atomic force microscopy on chromosomes, chromatin and DNA: a review. Micron 2012; 43:1224-31. [PMID: 22633852 DOI: 10.1016/j.micron.2012.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 01/19/2023]
Abstract
The purpose of this review is to discuss the achievements and progress that has been made in the use of atomic force microscopy in DNA related research in the last 25 years. For this review DNA related research is split up in chromosomal-, chromatin- and DNA focused research to achieve a logical flow from large- to smaller structures. The focus of this review is not only on the AFM as imaging tool but also on the AFM as measuring tool using force spectroscopy, as therein lays its greatest advantage and future. The amazing technological and experimental progress that has been made during the last 25 years is too extensive to fully cover in this review but some key developments and experiments have been described to give an overview of the evolution of AFM use from 'imaging tool' to 'measurement tool' on chromosomes, chromatin and DNA.
Collapse
Affiliation(s)
- Wouter Kalle
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia.
| | | |
Collapse
|
80
|
Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. EMBO J 2012; 31:2528-40. [PMID: 22505031 DOI: 10.1038/emboj.2012.95] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/21/2012] [Indexed: 12/18/2022] Open
Abstract
MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.
Collapse
|
81
|
Cristóvão M, Sisamakis E, Hingorani MM, Marx AD, Jung CP, Rothwell PJ, Seidel CAM, Friedhoff P. Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA. Nucleic Acids Res 2012; 40:5448-64. [PMID: 22367846 PMCID: PMC3384296 DOI: 10.1093/nar/gks138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.
Collapse
Affiliation(s)
- Michele Cristóvão
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Evangelos Sisamakis
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Manju M. Hingorani
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Andreas D. Marx
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Caroline P. Jung
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Paul J. Rothwell
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- *To whom correspondence should be addressed. Tel: +49 641 9935407; Fax: +49 641 9935409;
| | - Claus A. M. Seidel
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- *To whom correspondence should be addressed. Tel: +49 641 9935407; Fax: +49 641 9935409;
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff Ring 58, D-35392 Giessen, Germany, Department of Cell Biology and Genetics, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands, Molecular Physical Chemistry, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany, Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden and Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- *To whom correspondence should be addressed. Tel: +49 641 9935407; Fax: +49 641 9935409;
| |
Collapse
|
82
|
Heinze RJ, Sekerina S, Winkler I, Biertümpfel C, Oretskaya TS, Kubareva E, Friedhoff P. Covalently trapping MutS on DNA to study DNA mismatch recognition and signaling. MOLECULAR BIOSYSTEMS 2012; 8:1861-4. [DOI: 10.1039/c2mb25086a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
Law S, Feig M. Base-flipping mechanism in postmismatch recognition by MutS. Biophys J 2011; 101:2223-31. [PMID: 22067162 PMCID: PMC3207177 DOI: 10.1016/j.bpj.2011.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/15/2022] Open
Abstract
DNA mismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokaryotes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molecular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the DNA surrounding a G·T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further examined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of ~2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely leading to sliding-clamp formation.
Collapse
Affiliation(s)
- Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| |
Collapse
|
84
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
85
|
Tang GQ, Deshpande AP, Patel SS. Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. J Biol Chem 2011; 286:38805-38813. [PMID: 21911502 DOI: 10.1074/jbc.m111.261966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter recognition is the first and the most important step during gene expression. Our studies of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) transcription machinery provide mechanistic understandings on the basic problem of how the mt RNA polymerase (RNAP) with the help of the initiation factor discriminates between promoter and non-promoter sequences. We have used fluorescence-based approaches to quantify DNA binding, bending, and opening steps by the core mtRNAP subunit (Rpo41) and the transcription factor (Mtf1). Our results show that promoter recognition is not achieved by tight and selective binding to the promoter sequence. Instead, promoter recognition is achieved by an induced-fit mechanism of transcription factor-dependent differential conformational changes in the promoter and non-promoter DNAs. While Rpo41 induces a slight bend upon binding both the DNAs, addition of the Mtf1 results in severe bending of the promoter and unbending of the non-promoter DNA. Only the sharply bent DNA results in the catalytically active open complex. Such an induced-fit mechanism serves three purposes: 1) assures catalysis at promoter sites, 2) prevents RNA synthesis at non-promoter sites, and 3) provides a conformational state at the non-promoter sites that would aid in facile translocation to scan for specific sites.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Aishwarya P Deshpande
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Smita S Patel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854.
| |
Collapse
|
86
|
Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I. J Mol Biol 2011; 411:765-80. [PMID: 21726567 DOI: 10.1016/j.jmb.2011.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 01/16/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.
Collapse
|
87
|
Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J 2011; 30:2881-93. [PMID: 21666597 DOI: 10.1038/emboj.2011.180] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/10/2011] [Indexed: 11/09/2022] Open
Abstract
In spite of extensive research, the mechanism by which MutS initiates DNA mismatch repair (MMR) remains controversial. We use atomic force microscopy (AFM) to capture how MutS orchestrates the first step of E. coli MMR. AFM images captured two types of MutS/DNA complexes: single-site binding and loop binding. In most of the DNA loops imaged, two closely associated MutS dimers formed a tetrameric complex in which one of the MutS dimers was located at or near the mismatch. Surprisingly, in the presence of ATP, one MutS dimer remained at or near the mismatch site and the other, while maintaining contact with the first dimer, relocated on the DNA by reeling in DNA, thereby producing expanding DNA loops. Our results indicate that MutS tetramers composed of two non-equivalent MutS dimers drive E. coli MMR, and these new observations now reconcile the apparent contradictions of previous 'sliding' and 'bending/looping' models of interaction between mismatch and strand signal.
Collapse
|
88
|
Wang HH, Xu G, Vonner AJ, Church G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res 2011; 39:7336-47. [PMID: 21609953 PMCID: PMC3167615 DOI: 10.1093/nar/gkr183] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2′-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5′ and 3′ termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes.
Collapse
Affiliation(s)
- Harris H Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Department of Genetics, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
89
|
Hardin AH, Sarkar SK, Seol Y, Liou GF, Osheroff N, Neuman KC. Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification. Nucleic Acids Res 2011; 39:5729-43. [PMID: 21421557 PMCID: PMC3141238 DOI: 10.1093/nar/gkr109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T-segment) through a transient double-strand break in a second segment of DNA (gate or G-segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G-segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.
Collapse
Affiliation(s)
- Ashley H Hardin
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
90
|
Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 2011; 286:17326-37. [PMID: 21454657 DOI: 10.1074/jbc.m110.187641] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.
Collapse
Affiliation(s)
- Ines Winkler
- Institute for Biochemistry, FB 08, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
DeRocco V, Anderson T, Piehler J, Erie DA, Weninger K. Four-color single-molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. Biotechniques 2011; 49:807-16. [PMID: 21091445 DOI: 10.2144/000113551] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To enable studies of conformational changes within multimolecular complexes, we present a simultaneous, four-color single molecule fluorescence methodology implemented with total internal reflection illumination and camera-based, wide-field detection. We further demonstrate labeling histidine-tagged proteins noncovalently with Tris-nitrilotriacetic acid (Tris-NTA)-conjugated dyes to achieve single molecule detection. We combine these methods to colocalize the mismatch repair protein MutSα on DNA while monitoring MutSα-induced DNA bending using Förster resonance energy transfer (FRET) and to monitor assembly of membrane-tethered SNARE protein complexes.
Collapse
Affiliation(s)
- Vanessa DeRocco
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
92
|
Jiang Y, Rabbi M, Mieczkowski PA, Marszalek PE. Separating DNA with different topologies by atomic force microscopy in comparison with gel electrophoresis. J Phys Chem B 2010; 114:12162-5. [PMID: 20799746 DOI: 10.1021/jp105603k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis.
Collapse
Affiliation(s)
- Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu 211189, People's Republic of China.
| | | | | | | |
Collapse
|
93
|
Gupta S, Sathishkumar S, Ahmed MM. Influence of cell cycle checkpoints and p53 function on the toxicity of temozolomide in human pancreatic cancer cells. Pancreatology 2010; 10:565-79. [PMID: 20980775 PMCID: PMC2992636 DOI: 10.1159/000317254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Though an increased efficacy of carmustine and temozolomide (TMZ) has been demonstrated by inactivation of O(6)-methylguanine-DNA methyltransferase (MGMT) with O(6)-benzyl-guanine (BG) in human pancreatic tumors refractive to alkylating agents, the regulatory mechanisms have not been explored. METHODS The effects of TMZ and BG on apoptosis, cell growth, the mitotic index, cell cycle distribution, and protein expression were studied by TUNEL, cell counting, flow cytometry, and Western blot analysis, respectively. RESULTS The wt-p53 human pancreatic tumor cell line Capan-2 and p53-efficient mouse embryonic fibroblasts (MEFs) were more responsive to treatment with TMZ + BG than mutant p53 Capan-1 and p53-null MEFs. S phase delay with a subsequent G2/M arrest was observed in Capans in response to BG + TMZ. The G1-to-S transition delay in Capan-2 was associated with p53-dependent apoptosis and was distinctly different from the presumed mismatch repair (MMR) killing operative during the G2/M arrest. The effect of p53 on BG + TMZ toxicity was supported by a marked change in apoptosis when p53 function was restored/inactivated. There was an early induction of MMR proteins in p53-efficient lines. CONCLUSION p53 provokes a classic proapoptotic response by delaying G1-to-S progression, but it may also facilitate cell killing by enhancing MMR-related cell cycle arrest and cell death.
Collapse
Affiliation(s)
- Seema Gupta
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Fla., USA,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Fla., USA
| | | | - Mansoor M. Ahmed
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Fla., USA,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Fla., USA,*Mansoor M. Ahmed, PhD, Department of Radiation Oncology, 1475 NW 12th Ave (D-31) Miami, FL 33136 (USA), Tel. +1 305 243 5454, Fax +1 305 243 1854, E-Mail
| |
Collapse
|
94
|
Tsai HH, Huang CH, Tessmer I, Erie DA, Chen CW. Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins. Nucleic Acids Res 2010; 39:2165-74. [PMID: 21109537 PMCID: PMC3064793 DOI: 10.1093/nar/gkq1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
95
|
Nakken S, Rødland EA, Hovig E. Impact of DNA physical properties on local sequence bias of human mutation. Hum Mutat 2010; 31:1316-25. [PMID: 20886615 DOI: 10.1002/humu.21371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/31/2010] [Indexed: 01/07/2023]
Abstract
In selectively neutral regions of the human genome, nucleotide substitutions do not occur at random with respect to the local DNA sequence neighborhood. However, apart from the hypermutability of methylated CpG dinucleotides, which can explain the overrepresentation of nucleotide transitions in this context, the sequence-specific factors underlying point mutation bias remain largely to be determined, both in nature and in quantitative impact. One hypothesis suggests that the physical characteristics of a DNA context could have a modulating effect on its mutability, adjusting the impact of damage or the efficiency of repair. Here, we report a genome-wide computational test of this hypothesis, in which we utilize a constrained set of human non-CpG SNPs as the source of selectively neutral germline mutations. Interestingly, we observe that the quantitative context-dependencies of some substitution types display significant associations to measures of local structural topography and helix stability in DNA. Most prominently, we find that the local sequence bias of transition mutations is significantly associated with the sequence-dependent level of helix instability imposed by the potentially underlying DNA mismatches. The results of our work indicate the extent to which DNA physical properties could have shaped the recent point mutational spectrum in the human genome.
Collapse
Affiliation(s)
- Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Norway
| | | | | |
Collapse
|
96
|
Differential correction of lagging-strand replication errors made by DNA polymerases {alpha} and {delta}. Proc Natl Acad Sci U S A 2010; 107:21070-5. [PMID: 21041657 DOI: 10.1073/pnas.1013048107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mismatch repair (MMR) of replication errors requires DNA ends that can direct repair to the newly synthesized strand containing the error. For all but those organisms that use adenine methylation to generate nicks, the source of these ends in vivo is unknown. One possibility is that MMR may have a "special relation to the replication complex" [Wagner R, Jr., Meselson M (1976) Proc Natl Acad Sci USA 73:4135-4139], perhaps one that allows 5' or 3' DNA ends associated with replication to act as strand discrimination signals. Here we examine this hypothesis, based on the logic that errors made by yeast DNA polymerase α (Pol α), which initiates Okazaki fragments during lagging-strand replication, will always be closer to a 5' end than will be more internal errors generated by DNA polymerase δ (Pol δ), which takes over for Pol α to complete lagging-strand replication. When we compared MMR efficiency for errors made by variant forms of these two polymerases, Msh2-dependent repair efficiencies for mismatches made by Pol α were consistently higher than for those same mismatches when made by Pol δ. Thus, one special relationship between MMR and replication is that MMR is more efficient for the least accurate of the major replicative polymerases, exonuclease-deficient Pol α. This observation is consistent with the close proximity and possible use of 5' ends of Okazaki fragments for strand discrimination, which could increase the probability of Msh2-dependent MMR by 5' excision, by a Msh2-dependent strand displacement mechanism, or both.
Collapse
|
97
|
Vasilyeva A, Clodfelter JE, Gorczynski MJ, Gerardi AR, King SB, Salsbury F, Scarpinato KD. Parameters of Reserpine Analogs That Induce MSH2/MSH6-Dependent Cytotoxic Response. J Nucleic Acids 2010; 2010. [PMID: 20936178 PMCID: PMC2946608 DOI: 10.4061/2010/162018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/02/2010] [Accepted: 06/18/2010] [Indexed: 11/20/2022] Open
Abstract
Mismatch repair proteins modulate the cytotoxicity of several chemotherapeutic agents. We have recently proposed a "death conformation" of the MutS homologous proteins that is distinguishable from their "repair conformation." This conformation can be induced by a small molecule, reserpine, leading to DNA-independent cell death. We investigated the parameters for a small reserpine-like molecule that are required to interact with MSH2/MSH6 to induce MSH2/MSH6-dependent cytotoxic response. A multidisciplinary approach involving structural modeling, chemical synthesis, and cell biology analyzed reserpine analogs and modifications. We demonstrate that the parameters controlling the induction of MSH2/MSH6-dependent cytotoxicity for reserpine-analogous molecules reside in the specific requirements for methoxy groups, the size of the molecule, and the orientation of molecules within the protein-binding pocket. Reserpine analog rescinnamine showed improved MSH2-dependent cytotoxicity. These results have important implications for the identification of compounds that require functional MMR proteins to exhibit their full cytotoxicity, which will avoid resistance in MMR-deficient cells.
Collapse
Affiliation(s)
- Aksana Vasilyeva
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Polosina YY, Cupples CG. Wot the 'L-Does MutL do? Mutat Res 2010; 705:228-38. [PMID: 20667509 DOI: 10.1016/j.mrrev.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
In model DNA, A pairs with T, and C with G. However, in vivo, the complementarity of the DNA strands may be disrupted by errors in DNA replication, biochemical modification of bases and recombination. In prokaryotic organisms, mispaired bases are recognized by MutS homologs which, together with MutL homologs, initiate mismatch repair. These same proteins also participate in base excision repair and nucleotide excision repair. In eukaryotes they regulate not just DNA repair but also meiotic recombination, cell-cycle delay and/or apoptosis in response to DNA damage, and hypermutation in immunoglobulin genes. Significantly, the same DNA mismatches that trigger repair in some circumstances trigger non-repair pathways in others. In this review, we argue that mismatch recognition by the MutS proteins is linked to these disparate biological outcomes through regulated interaction of MutL proteins with a wide variety of effector proteins.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
99
|
A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae. Genetics 2010; 186:515-36. [PMID: 20679514 DOI: 10.1534/genetics.110.121194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several apparently paradoxical observations regarding meiotic crossing over and gene conversion are readily resolved in a framework that recognizes the existence of two recombination pathways that differ in mismatch repair, structures of intermediates, crossover interference, and the generation of noncrossovers. One manifestation of these differences is that simultaneous gene conversion on both sides of a recombination-initiating DNA double-strand break ("two-sidedness") characterizes only one of the two pathways and is promoted by mismatch repair. Data from previous work are analyzed quantitatively within this framework, and a molecular model for meiotic double-strand break repair based on the concept of sliding D-loops is offered as an efficient scheme for visualizing the salient results from studies of crossing over and gene conversion, the molecular structures of recombination intermediates, and the biochemical competencies of the proteins involved.
Collapse
|
100
|
Zahran M, Daidone I, Smith JC, Imhof P. Mechanism of DNA Recognition by the Restriction Enzyme EcoRV. J Mol Biol 2010; 401:415-32. [DOI: 10.1016/j.jmb.2010.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/13/2010] [Indexed: 11/29/2022]
|