51
|
Naigamwalla DZ, Coros CJ, Wu Z, Chaconas G. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. J Mol Biol 1998; 282:265-74. [PMID: 9735286 DOI: 10.1006/jmbi.1998.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of point mutations was constructed in domain IIIalpha of the Mu A protein. The mutant transposases were purified and assayed for their ability to promote various aspects of the in vitro Mu DNA strand transfer reaction. All mutants with discernable phenotypes were inhibited in stable synapsis (Type 0 or Type 1 complex formation). In contrast, these mutant proteins were capable of LER formation (a transient early reaction intermediate in which the Mu left and right ends have been synapsed with the enhancer), at levels comparable to wild-type transposase. These proteins therefore comprise a novel class of transposase mutants, which are specifically inhibited in stable transpososome assembly. The defect in these proteins was also uniformly suppressed by either Mn2+, or the Mu B protein in the presence of ATP and target DNA. Striking phenotypic similarities were recognized between the domain IIIalpha transposase mutant characteristics noted above, and those for substrate mutants carrying a terminal base-pair substitution at the point of cleavage on the donor molecule. This phenotypic congruence suggests that the alterations in either protein or DNA are exerting an effect on the same step of the reaction i.e., engagement of the terminal nucleotide by the active site. We suggest that domain IIIalpha of the transposase comprises the substrate binding pocket of the active site which interacts with the Mu-host junction.
Collapse
Affiliation(s)
- D Z Naigamwalla
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | |
Collapse
|
52
|
Abstract
MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase's catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, important for transposition. We found that both MuB-ADP and MuB-ATP stimulate transposase, whereas only MuB-ATP binds with high affinity to DNA. Four different ATPase-defective MuB mutants fail to activate the normal transposition pathway, further indicating that ATP plays critical regulatory roles during transposition. These mutant proteins fall into two classes: class I mutants are defective in target DNA binding, whereas class II mutants bind target DNA, deliver it to transposase, but fail to promote recombination with this DNA. Based on these studies, we propose that the switch from the ATP- to ADP-bound form allows MuB to release the target DNA while maintaining its stimulatory interaction with transposase. Thus, ATP-hydrolysis by MuB appears to function as a molecular switch controlling how target DNA is delivered to the core transposition machinery.
Collapse
Affiliation(s)
- M Yamauchi
- Department of Biology, Massachusetts Institute of Technology, 68-523, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
53
|
Namgoong SY, Kim K, Saxena P, Yang JY, Jayaram M, Giedroc DP, Harshey RM. Mutational analysis of domain II beta of bacteriophage Mu transposase: domains II alpha and II beta belong to different catalytic complementation groups. J Mol Biol 1998; 275:221-32. [PMID: 9466905 DOI: 10.1006/jmbi.1997.1466] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examines the contribution of domain II beta of bacteriophage Mu transposase (A protein), a subdomain of the central catalytic domain II, to the transposition reaction. The properties of several point mutations implicate a role for this domain in facilitating metal-assisted assembly of the synaptic complex, as well as in intramolecular DNA strand transfer. Point mutations as well as deletions in domain II beta can be complemented by those in domain II alpha but not those in domain III alpha. Thus, residues within subdomains II alpha and II beta belong to different catalytic complementation groups.
Collapse
Affiliation(s)
- S Y Namgoong
- Department of Microbiology, University of Texas at Austin 78712, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Millner A, Chaconas G. Disruption of target DNA binding in Mu DNA transposition by alteration of position 99 in the Mu B protein. J Mol Biol 1998; 275:233-43. [PMID: 9466906 DOI: 10.1006/jmbi.1997.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Target DNA binding by the Mu B protein is an important step in phage Mu transposition; however, the region of Mu B involved in target binding and the mechanism of the interaction are unknown. Previous studies have demonstrated that modification of Mu B with the sulfhydryl-specific reagent N-ethylmaleimide can selectively inhibit target DNA binding. We now show that individual mutation of the three cysteines in Mu B to serine results in proteins which are active in intermolecular strand transfer, but demonstrate variable levels of N-ethylmaleimide resistance. The data indicate that cysteine 99 is the primary site of modification affecting target DNA binding, with a minor contribution resulting from the derivatization of cysteine 129. These findings are confirmed by the construction of Mu B mutants containing a bulky side-chain at the individual cysteine to mimic the N-ethylmaleimide modified protein. The C99Y protein shows a complete loss in target-dependent strand transfer activity under standard reaction conditions and C129Y displays partial activity. The effect of the tyrosine substitutions is specific for target interaction as both mutants show wild-type activity in their ability to stimulate the Mu transposase to perform donor cleavage and intramolecular strand transfer. Finally, a target dissociation assay has shown that the C99Y-DNA complex generated in the presence of ATP-gamma-S has a drastically reduced half-life as previously found for N-ethylmaleimide treated wild-type Mu B. Modification of cysteine 99 is proposed to block target DNA binding by causing steric interference near the DNA binding pocket.
Collapse
Affiliation(s)
- A Millner
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
55
|
Stellwagen AE, Craig NL. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J 1997; 16:6823-34. [PMID: 9362496 PMCID: PMC1170286 DOI: 10.1093/emboj/16.22.6823] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The bacterial transposon Tn7 exhibits target immunity, a process that prevents Tn7 from transposing into target DNAs that already contain a copy of the transposon. This work investigates the mechanism of target immunity in vitro. We demonstrate that two Tn7-encoded proteins_TnsB, which binds specifically to the ends of Tn7, and TnsC, the ATP-dependent DNA binding protein_act as a molecular switch to impose immunity on target DNAs containing Tn7 (or just Tn7 ends). TnsC binds to target DNA molecules and communicates with the Tn7 transposition machinery; here we show that target DNAs containing Tn7 ends are also bound and subsequently inactivated by TnsB. Protein-protein interactions between TnsB and TnsC appear to be responsible for this inactivation; the target DNA promotes these interactions by tethering TnsB and TnsC in high local concentration. An attractive model that emerges from this work is that TnsB triggers the dissociation of TnsC from the Tn7 end-containing target DNA; that dissociation depends on TnsC's ability to hydrolyze ATP. We propose that these interactions between TnsB and TnsC not only prevent Tn7 from inserting into itself, but also facilitate the selection of preferred target sites that is the hallmark of Tn7 transposition.
Collapse
Affiliation(s)
- A E Stellwagen
- Department of Molecular Biology and Genetics and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
56
|
Naigamwalla DZ, Chaconas G. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J 1997; 16:5227-34. [PMID: 9311983 PMCID: PMC1170155 DOI: 10.1093/emboj/16.17.5227] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mu DNA transposition occurs within the context of higher order nucleoprotein structures or transpososomes. We describe a new set of transpososomes in which Mu B-bound target DNA interacts non-covalently with previously characterized intermediates prior to the actual strand transfer. This interaction can occur at several points along the reaction pathway: with the LER, the Type 0 or the Type 1 complexes. The formation of these target capture complexes, which rapidly undergo the strand transfer chemistry, is the rate-limiting step in the overall reaction. These complexes provide alternate pathways to strand transfer, thereby maximizing transposition potential. This versatility is in contrast to other characterized transposons, which normally capture target DNA only at a single point in their respective reaction pathways.
Collapse
Affiliation(s)
- D Z Naigamwalla
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
57
|
Levchenko I, Yamauchi M, Baker TA. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 1997; 11:1561-72. [PMID: 9203582 DOI: 10.1101/gad.11.12.1561] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transposition of phage Mu is catalyzed by an extremely stable transposase-DNA complex. Once recombination is complete, the Escherichia coli ClpX protein, a member of the Clp/Hsp100 chaperone family, initiates disassembly of the complex for phage DNA replication to commence. To understand how the transition between recombination and replication is controlled, we investigated how transposase-DNA complexes are recognized by ClpX. We find that a 10-amino-acid peptide from the carboxy-terminal domain of transposase is required for its recognition by ClpX. This short, positively charged peptide is also sufficient to convert a heterologous protein into a ClpX substrate. The region of transposase that interacts with the transposition activator, MuB protein, is also defined further and found to overlap with that recognized by ClpX. As a consequence, MuB inhibits disassembly of several transposase-DNA complexes that are intermediates in recombination. This ability of MuB to block access to transposase suggests a mechanism for restricting ClpX-mediated remodeling to the proper stage during replicative transposition. We propose that overlap of sequences involved in subunit interactions and those that target a protein for remodeling or destruction may be a useful design for proteins that function in pathways where remodeling or degradation must be regulated.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
58
|
Wu Z, Chaconas G. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. J Mol Biol 1997; 267:132-41. [PMID: 9096212 DOI: 10.1006/jmbi.1996.0854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tetramer of the Mu transposase is the structural and functional core in all three stable higher-order nucleoprotein complexes (Type 0, Type 1 and Type 2 transpososomes) generated in a defined in vitro strand transfer reaction. Although functional in donor cleavage, we report here that contrary to previous belief, the Mu A tetramer is incapable of unassisted strand transfer. The Mu B protein is required to stimulate the tetramer for intermolecular strand transfer. In the absence of Mu B protein we show that additional Mu A molecules must be added to the core tetramer to stimulate intramolecular strand transfer. Mapping experiments indicate that domain II of the assisting Mu A mediates functional interactions with the core tetramer. The recipient site for Mu A stimulated strand transfer on the A tetramer is likely in domain II and is clearly different from the domain IIIb site used by the Mu B protein. The Mu accessory end binding sites and the Mu enhancer are not required in the Mu A assisted strand transfer, suggesting that helper A molecules in solution can interact with the core tetramer to stimulate the reaction. Finally, we argue that the strand transfer activity and protein sites for target interaction reside within the core tetramer; hence the role of the stimulatory A molecules appears to be limited to that of an auto-allosteric effector.
Collapse
Affiliation(s)
- Z Wu
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
59
|
Stellwagen AE, Craig NL. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics 1997; 145:573-85. [PMID: 9055068 PMCID: PMC1207843 DOI: 10.1093/genetics/145.3.573] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The bacterial transposon Tn7 encodes five genes whose protein products are used in different combinations to direct transposition to different types of target sites. TnsABC + D directs transposition to a specific site in the Escherichia coli chromosome called attTn7, whereas TnsABC + E directs transposition to non-attTn7 sites. These transposition reactions can also recognize and avoid "immune" targets that already contain a copy of Tn7. TnsD and TnsE are required to activate TnsABC as well as to select a target site; no transposition occurs with wild-type TnsABC alone. Here, we describe the isolation of TnsC gain-of-function mutants that activate the TnsA+B transposase in the absence of TnsD or TnsE. Some of these TnsC mutants enable the TnsABC machinery to execute transposition without sacrificing its ability to discriminate between different types of targets. Other TnsC mutants appear to constitutively activate the TnsABC machinery so that it bypasses target signals. We also present experiments that suggest that target selection occurs early in the Tn7 transposition pathway in vivo: favorable attTn7 targets appear to promote the excision of Tn7 from the chromosome, whereas immune targets do not allow transposon excision to occur. This work supports the view that TnsC plays a central role in the evaluation and utilization of target DNAs.
Collapse
Affiliation(s)
- A E Stellwagen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
60
|
Watson MA, Chaconas G. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell 1996; 85:435-45. [PMID: 8616898 DOI: 10.1016/s0092-8674(00)81121-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chemical steps of bacteriophage Mu DNA transposition take place within a higher order nucleoprotein structure. We describe a novel intermediate that precedes the previously characterized transpososomes and directly demonstrates the interaction of a distant enhancer element with recombination regions. The transpositional enhancer interacts with the Mu left and right ends to form a three-site synaptic (LER) complex. Under normal reaction conditions, the LER complex is rapidly converted into the more stable Mu transpososomes. However, mutation of the Mu terminal nucleotides results in accumulation of the LER and a failure to form the type 0 transpososome. During the transition from LER to type 0, the Mu DNA termini and the active site of the transposase engage in a catalytically competent conformation.
Collapse
Affiliation(s)
- M A Watson
- Department of Biochemistry, University of Western Ontario, Canada
| | | |
Collapse
|
61
|
Affiliation(s)
- B D Lavoie
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
62
|
Vert�s AA, Asai Y, Inui M, Kobayashi M, Yukawa H. The corynebacterial insertion sequence IS31831 promotes the formation of an excised transposon fragment. Biotechnol Lett 1995. [DOI: 10.1007/bf00128375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Yang JY, Jayaram M, Harshey RM. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase. Genes Dev 1995; 9:2545-55. [PMID: 7590234 DOI: 10.1101/gad.9.20.2545] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Assembly of the functional tetrameric form of phage Mu transposase (A protein) requires specific interactions between the Mu A monomer and its cognate sequences at the ends of the Mu genome (attL and attR) as well as those internal to it (the enhancer element). We describe here deletion variants of Mu A that show enhancer-independence in the assembly of the strand cleavage complex. These deletions remove the amino-terminal region of Mu A required for its interactions with the enhancer elements. The basal enhancer-independent activity of the variant proteins can be stimulated by a partner variant harboring an intact enhancer-binding domain. By exploiting the identical att-binding, and nonidentical enhancer-binding specificities of Mu A and D108 A (transposase of the Mu related phage D108), we show that the stimulation of activity is enhancer-specific. Taken together, these results suggest that the domain of Mu A that includes the enhancer-interacting region may exert negative as well as positive modulatory effects on the strand cleavage reaction. We discuss the implications of these results in the framework of a recent model for the assembly of shared active sites within the Mu A tetramer.
Collapse
Affiliation(s)
- J Y Yang
- Department of Microbiology, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
64
|
Abstract
Mu transposition is promoted by an extremely stable complex containing a tetramer of the transposase (MuA) bound to the recombining DNA. Here we purify the Escherichia coli ClpX protein, a member of a family of multimeric ATPases present in prokaryotes and eukaryotes (the Clp family), on the basis of its ability to remove the transposase from the DNA after recombination. Previously, ClpX has been shown to function with the ClpP peptidase in protein turnover. However, neither ClpP nor any other protease is required for disassembly of the transposase. The released MuA is not modified extensively, degraded, or irreversibly denatured, and is able to perform another round of recombination in vitro. We conclude that ClpX catalyzes the ATP-dependent release of MuA by promoting a transient conformational change in the protein and, therefore, can be considered a molecular chaperone. ClpX is important at the transition between the recombination and DNA replication steps of transposition in vitro; this function probably corresponds to the essential contribution of ClpX for Mu growth. Deletion analysis reveals that the sequence at the carboxyl terminus of MuA is important for disassembly by ClpX and can target MuA for degradation by ClpXP in vitro. These data contribute to the emerging picture that members of the Clp family are chaperones specifically suited for disaggregating proteins and are able to function with or without a collaborating protease.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
65
|
Wu Z, Chaconas G. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61981-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
66
|
Rådström P, Sköld O, Swedberg G, Flensburg J, Roy PH, Sundström L. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 1994; 176:3257-68. [PMID: 8195081 PMCID: PMC205496 DOI: 10.1128/jb.176.11.3257-3268.1994] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Integrons confer on bacterial plasmids a capability of taking up antibiotic resistance genes by integrase-mediated recombination. We show here that integrons are situated on genetic elements flanked by 25-bp inverted repeats. The element carrying the integron of R751 has three segments conserved with similar elements in Tn21 and Tn5086. Several characteristics suggest that this element is a transposon, which we call Tn5090. Tn5090 was shown to contain an operon with three open reading frames, of which two, tniA and tniB, were predicted by amino acid similarity to code for transposition proteins. The product of tniA (559 amino acids) is a probable transposase with 25% amino acid sequence identity to TnsB from Tn7. Both of these polypeptides contain the D,D(35)E motif characteristic of a protein family made up of the retroviral and retrotransposon IN proteins and some bacterial transposases, such as those of Tn552 and of a range of insertion sequences. Like the transposase genes in Tn552, Mu, and Tn7, the tniA gene was followed by a gene, tniB, for a probable ATP-binding protein. The ends of Tn5090, like those of most other elements producing D,D(35)E proteins, begin by 5'-TG and also contains a complex structure with four 19-bp repeats at the left end and three at the right end. Similarly organized repeats have been observed earlier at the termini of both Tn7 and phage Mu, where they bind their respective transposases and have a role in holoenzyme assembly. Another open reading frame observed in Tn5090, tniC, codes for a recombinase of the invertase/resolvase family, suggesting a replicative transposition mechanism. The data presented here suggest that Tn5090, Tn7, Tn552, and Mu form a subfamily of bacterial transposons which in parallel to many insertion sequences are related to the retroelements.
Collapse
Affiliation(s)
- P Rådström
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
67
|
van Drunen CM, Mientjes E, van Zuylen O, van de Putte P, Goosen N. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. Nucleic Acids Res 1994; 22:773-9. [PMID: 8139917 PMCID: PMC307881 DOI: 10.1093/nar/22.5.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this paper we determine which of the A binding sites in the attachment sites of phage Mu are required for the stimulatory activity of the transpositional enhancer (IAS). For this purpose the transposition frequencies of mini-Mu's with different truncated attachment sites to an Ftet target were measured both in the presence and the absence of the IAS. The results show that in our in vivo assay the L3 and R3 sites are dispensable for functioning of the IAS. An additional deletion of L2 or R2 however abolishes the stimulating activity of the enhancer suggesting an interaction between A molecules bound to these sites and the IAS. The residual transposition activity of a IAS-containing mini Mu in which R2 (and R3) are deleted is much lower than the activity of the comparable construct without the IAS. This means that in the absence of R2 the IAS is inhibiting transposition. Such an inhibition is not observed when L2 (and L3) are deleted. This suggests that the IAS interacts with the attachment sites in an ordered fashion, first with attL and then with attR. Furthermore we show that mini-Mu transposition is enhanced when Fpro-lac is used as a target instead of Ftet. We show that this elevated transposition is dependent on the Mu A binding sites L2,L3 and R2. These sequences could possibly mediate an interaction between the mini-Mu plasmid and sequences present on Fpro-lac.
Collapse
Affiliation(s)
- C M van Drunen
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
68
|
Ulycznyj PI, Forghani F, DuBow MS. Characterization of functionally important sites in the bacteriophage Mu transposase protein. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:272-9. [PMID: 8107674 DOI: 10.1007/bf00280416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 663 amino acid Mu transposase protein is absolutely required for Mu DNA transposition. Mutant proteins were constructed in vitro in order to locate regions of transposase that may be important for the catalysis of DNA transposition. Deletions in the A gene, which encodes the transposase, yielded two stable mutant proteins that aid in defining the end-specific DNA-binding domain. Linker insertion mutagenesis at eight sites in the Mu A gene generated two proteins, FF6 and FF14 (resulting from two and four amino acid insertions, respectively, at position 408), which were thermolabile for DNA binding in vitro at 43 degrees C. However, transposition activity in vivo was severely reduced for all mutant proteins at 37 degrees C, except those with insertions at positions 328 and 624. In addition, site-specific mutagenesis was performed to alter tyrosine 414, which is situated in a region that displays amino acid homology to the active sites of a number of nicking/closing enzymes. Tyrosine 414 may reside within an important, yet non-essential, site of transposase, as an aspartate-substituted protein had a drastically reduced frequency of transposition, while the remaining mutants yielded reduced, but substantial, frequencies of microMu transposition in vivo.
Collapse
Affiliation(s)
- P I Ulycznyj
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
69
|
|
70
|
van Drunen CM, van Zuylen C, Mientjes EJ, Goosen N, van de Putte P. Inhibition of bacteriophage Mu transposition by Mu repressor and Fis. Mol Microbiol 1993; 10:293-8. [PMID: 7934820 DOI: 10.1111/j.1365-2958.1993.tb01955.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper we show that the Escherichia coli protein Fis has a regulatory function in Mu transposition in the presence of Mu repressor. Fis can lower the transposition frequency of a mini-Mu 3-80-fold, but only if the Mu repressor is expressed simultaneously. In this novel type of regulation of transposition by the concerted action of Fis and repressor, the IAS, the internal activating sequence, is also involved as deletion of this site lead to the loss of the Fis effect. As the IAS contains strong repressor binding sites these are probably the target for the repressor in the observed negative regulation by Fis and repressor. However, the role of Fis and repressor is not only to inactivate the IAS, since a 4 bp insertion in the IAS, which changes the spacing of the repressor-binding site, abolishes the enhancing function of the IAS but leaves the repressor-Fis effect intact. A likely target for Fis in this regulation is a strong Fis-binding site, which is located adjacent to the L2 transposase-binding site. However, when this Fis-binding sequence was substituted by a random sequence and Fis no longer showed specific binding to this site, the Fis effect was still observed. Although it is still possible that Fis can function by binding to this non-specific site in a particular complex, it seems more likely that Fis is directly or indirectly involved in determining the level of the repressor.
Collapse
Affiliation(s)
- C M van Drunen
- Department of Biochemistry, Gorlaeus Laboratoria, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
71
|
Abstract
Molecular matchmakers are a class of proteins that use the energy released from the hydrolysis of adenosine triphosphate to cause a conformational change in one or both components of a DNA binding protein pair to promote formation of a metastable DNA-protein complex. After matchmaking the matchmaker dissociates from the complex, permitting the matched protein to engage in other protein-protein interactions to bring about the effector function. Matchmaking is most commonly used under circumstances that require targeted, high-avidity DNA binding without relying solely on sequence specificity. Molecular matchmaking is an extensively used mechanism in repair, replication, and transcription and most likely in recombination and transposition reactions, too.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
72
|
Abstract
A stable tetramer of the Mu transposase (MuA) bound to the ends of the Mu DNA promotes recombination. Assembly of this active protein-DNA complex from monomers of MuA requires an intricate array of MuA protein-binding sites on supercoiled DNA, divalent metal ions, and the Escherichia coli HU protein. Under altered reaction conditions, many of these factors stimulate assembly of the MuA tetramer but are not essential, allowing their role in formation of the complex to be analyzed. End-type MuA-binding sites and divalent metal ions are most critical and probably promote a conformational change in MuA that is necessary for multimerization. Multiple MuA-binding sites on the DNA contribute synergistically to tetramer formation. DNA superhelicity assists cooperativity between the sites on the two Mu DNA ends if they are properly oriented. HU specifically promotes assembly involving the left end of the Mu DNA. In addition to dissecting the assembly pathway, these data demonstrate that the tetrameric conformation is intrinsic to MuA and constitutes the form of the protein active in catalysis.
Collapse
Affiliation(s)
- T A Baker
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
73
|
|
74
|
Gamas P, Craig NL. Purification and characterization of TnsC, a Tn7 transposition protein that binds ATP and DNA. Nucleic Acids Res 1992; 20:2525-32. [PMID: 1317955 PMCID: PMC312388 DOI: 10.1093/nar/20.10.2525] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The bacterial transposon Tn7 encodes five transposition genes tnsABCDE. We report a simple and rapid procedure for the purification of TnsC protein. We show that purified TnsC is active in and required for Tn7 transposition in a cell-free recombination system. This finding demonstrates that TnsC participates directly in Tn7 transposition and explains the requirement for tnsC function in Tn7 transposition. We have found that TnsC binds adenine nucleotides and is thus a likely site of action of the essential ATP cofactor in Tn7 transposition. We also report that TnsC binds non-specifically to DNA in the presence of ATP or the generally non-hydrolyzable analogues AMP-PNP and ATP-gamma-S, and that TnsC displays little affinity for DNA in the presence of ADP. We speculate that TnsC plays a central role in the selection of target DNA during Tn7 transposition.
Collapse
Affiliation(s)
- P Gamas
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | |
Collapse
|
75
|
Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of the Mu B protein to DNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47374-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
76
|
Adzuma K, Mizuuchi K. Steady-state kinetic analysis of ATP hydrolysis by the B protein of bacteriophage mu. Involvement of protein oligomerization in the ATPase cycle. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38098-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
77
|
Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49962-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
78
|
Abstract
We have developed a cell-free system for an avian retrovirus that promotes autointegration, one-long-terminal-repeat (LTR) circle formation, and correct integration into exogenous target DNA. In this system, autointegration and one-LTR circle formation occurred far more frequently than integration into exogenous target DNA. Autointegration had the same characteristics of normal integration into target DNA except in its selection of target. Highly efficient autointegration as well as one-LTR circle formation in vitro suggest that there may be a mechanism to prevent these processes in vivo.
Collapse
Affiliation(s)
- Y M Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
79
|
Wiater LA, Grindley ND. Uncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta. J Bacteriol 1990; 172:4959-63. [PMID: 2168371 PMCID: PMC213151 DOI: 10.1128/jb.172.9.4959-4963.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transposon gamma delta, in common with other members of the Tn3 family, confers transpositional immunity, a phenomenon by which plasmids containing a single transposon end show reduced activity as targets for further insertion by the same element. We found that a copy of a mutant delta end, in which the two terminal base pairs (5' GG) were substituted with cytosines, conferred the same degree of immunity as the unaltered delta end. However, a transposon analog with the mutant delta end as its termini could not transpose. These results suggest that the binding of transposase to a site on a target replicon is sufficient to confer immunity and that immunity does not involve subsequent DNA transactions at the bound target site, analogous to the catalytic processes that occur at the transposon ends during transposition.
Collapse
Affiliation(s)
- L A Wiater
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | | |
Collapse
|
80
|
Burns CM, Chan HL, DuBow MS. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108. Proc Natl Acad Sci U S A 1990; 87:6092-6. [PMID: 2166943 PMCID: PMC54478 DOI: 10.1073/pnas.87.16.6092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mu and D108 are related, temperate, transposable coliphages with unusual modes of DNA replication (transposition) and virion DNA maturation. These double-stranded DNA genomes replicate intrachromosomally and are matured and encapsidated linked to DNA sequences flanking the dispersed, integrated phage genomes. We have developed an in vitro system that employs crude lysates prepared from cells late in the Mu lytic cycle and that is proficient for both maturation and encapsidation of D108 DNA. Different forms of phage DNA were packaged at different efficiencies, with a circular pSC101::D108cts10 plasmid being most efficient, linearized plasmid less so, and mature virion DNA a poor substrate. The addition of purified D108 Ner protein to the reaction had no effect, whereas D108 repressor (c protein) inhibited the reaction. Escherichia coli integration host factor and D108 transposase proteins exerted an inhibitory effect on circular DNA substrates but had little effect on linear DNA packaging. This in vitro system, coupled with that developed for transposition, can now be used to biochemically dissect the protein and substrate requirements of these phages' DNA maturation pathway and the nature of the molecular switch between DNA transposition and encapsidation.
Collapse
Affiliation(s)
- C M Burns
- McGill University, Department of Microbiology and Immunology, Montreal, PQ, Canada
| | | | | |
Collapse
|
81
|
Leach DR, Okely EA, Percy-Robb MI. Mini-Mu mediates deletion-inversions in vivo by intra-transposon transposition. Mol Microbiol 1990; 4:561-5. [PMID: 2161987 DOI: 10.1111/j.1365-2958.1990.tb00624.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have shown that a mini-Mu can transpose into itself in vivo to generate a circle containing only transposon sequences. This deletion-inversion product, which has previously been observed in vitro, is formed by non-replicative transposition and has directly repeated Mu ends. It therefore cannot undergo further rounds of transposition and retains the two copies of the target sequence duplicated in the event. Thus we have been able to confirm that a mini-Mu can undergo non-replicative reactions in vivo and that these generate a 5 bp target site duplication, as has been shown to occur following replicative transposition and lysogenization with Mu.
Collapse
Affiliation(s)
- D R Leach
- Department of Microbiology, University of Edinburgh, UK
| | | | | |
Collapse
|
82
|
Lavoie BD, Chaconas G. Immunoelectron microscopic analysis of the A, B, and HU protein content of bacteriophage Mu transpososomes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40062-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
83
|
Chaconas G, McCubbin WD, Kay CM. Secondary structural features of the bacteriophage Mu-encoded A and B transposition proteins. Biochem J 1989; 263:19-23. [PMID: 2557821 PMCID: PMC1133385 DOI: 10.1042/bj2630019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of the bacteriophage Mu-encoded A and B proteins is to direct the transposition of Mu DNA. These are the first active DNA transposition proteins to have been purified and their mechanism of action at the biochemical level is under intensive study. Structural studies on these proteins, however, have lagged behind their biochemical characterization. We report here near- and far-u.v. c.d. spectra for these proteins and their secondary structural features derived from these data. The Mu A protein appears to be composed of primarily beta-sheet (40%) with 24% alpha-helix, 9% beta-turn and 27% random coil. In contrast, the Mu B protein contains 55% alpha-helix with only 13% beta-sheet and 3+ beta-turn and 29% random coil. The near-u.v. c.d. spectrum of the A protein was not unusual; however, the profile of the B protein suggested either buried or restricted chromophores within the protein or short-range interactions between aromatic residues.
Collapse
Affiliation(s)
- G Chaconas
- Department of Biochemistry, University of Western Ontario, London
| | | | | |
Collapse
|
84
|
Oh EY, Claassen L, Thiagalingam S, Mazur S, Grossman L. ATPase activity of the UvrA and UvrAB protein complexes of the Escherichia coli UvrABC endonuclease. Nucleic Acids Res 1989; 17:4145-59. [PMID: 2525700 PMCID: PMC317925 DOI: 10.1093/nar/17.11.4145] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have analyzed the ATPase activity exhibited by the UvrABC DNA repair complex. The UvrA protein is an ATPase whose lack of DNA dependence may be related to the ATP induced monomer-dimer transitions. ATP induced dimerization may be responsible for the enhanced DNA binding activity observed in the presence of ATP. Although the UvrA ATPase is not stimulated by dsDNA, such DNA can modulate the UvrA ATPase activity by decreases in Km and Vm and alterations in the Ki for ADP and ATP-gamma-S. The induction of such changes upon binding to DNA may be necessary for cooperative interactions of UvrA with UvrB that result in a DNA stimulated ATPase for the UvrAB protein complex. The UvrAB ATPase displays unique kinetic profiles that are dependent on the structure of the DNA effector. These kinetic changes correlate with changes in footprinting patterns, the stabilization of protein complexes on DNA damage and with the expression of helicase activity.
Collapse
Affiliation(s)
- E Y Oh
- Johns Hopkins University, Department of Biochemistry, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
85
|
|
86
|
|
87
|
Groenen MA, Vollering M, Krijgsman P, van Drunen K, van de Putte P. Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites. Nucleic Acids Res 1987; 15:8831-44. [PMID: 2825121 PMCID: PMC306408 DOI: 10.1093/nar/15.21.8831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposition of the E. coli bacteriophage Mu requires the phage encoded A and B proteins, the host protein HU and the host replication proteins. The ends of the genome of the phage, on which some of these proteins act, both contain three transposase (A) binding sites. The organization of these binding sites on each end, however, is different. Here we show, using DNase footprinting experiments with purified A protein, that mutant A binding sites, which affect transposition, have decreased affinity for the transposase. Furthermore the transposase binds non-cooperatively to all A binding sites both in the left and right end of Mu. Electron microscopic studies show that the A protein forms specific nucleoprotein structures upon binding to the ends of Mu. The A and B proteins interact with the ends of Mu to generate larger structures than with the A protein alone.
Collapse
Affiliation(s)
- M A Groenen
- Department of Molecular Genetics, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|