51
|
Strange K. From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. Physiol Rev 2003; 83:377-415. [PMID: 12663863 DOI: 10.1152/physrev.00025.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The stunning progress in molecular biology that has occurred over the last 50 years drove a powerful reductionist approach to the study of physiology. That same progress now forms the foundation for the next revolution in physiological research. This revolution will be focused on integrative physiology, which seeks to understand multicomponent processes and the underlying pathways of information flow from an organism's "parts" to increasingly complex levels of organization. Genetically tractable and genomically defined nonmammalian model organisms such as the nematode Caenorhabditis elegans provide powerful experimental advantages for elucidating gene function and the molecular workings of complex systems. This review has two main goals. The first goal is to describe the experimental utility of C. elegans for investigating basic physiological problems. A detailed overview of C. elegans biology and the experimental tools, resources, and strategies available for its study is provided. The second goal of this review is to describe how forward and reverse genetic approaches and direct behavioral and physiological measurements in C. elegans have generated novel insights into the integrative physiology of ion channels and transporters. Where appropriate, I describe how insights from C. elegans have provided new understanding of the physiology of membrane transport processes in mammals.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
52
|
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002; 82:735-67. [PMID: 12087134 DOI: 10.1152/physrev.00007.2002] [Citation(s) in RCA: 805] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Institut de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
53
|
Bui YK, Sternberg PW. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 2002; 13:1641-51. [PMID: 12006659 PMCID: PMC111133 DOI: 10.1091/mbc.02-01-0008] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.
Collapse
Affiliation(s)
- Yen Kim Bui
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
54
|
Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 2001; 32:787-800. [PMID: 11738026 DOI: 10.1016/s0896-6273(01)00532-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.
Collapse
Affiliation(s)
- D T Byrd
- Department of MCD Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
55
|
Murray DB, Roller S, Kuriyama H, Lloyd D. Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 2001; 183:7253-9. [PMID: 11717285 PMCID: PMC95575 DOI: 10.1128/jb.183.24.7253-7259.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short-period autonomous respiratory ultradian oscillation (period approximately 40 min) occurs during aerobic Saccharomyces cerevisiae continuous culture and is most conveniently studied by monitoring dissolved O(2) concentrations. The resulting data are high quality and reveal fundamental information regarding cellular dynamics. The phase diagram and discrete fast Fourier transformation of the dissolved O(2) values revealed a square waveform with at least eight harmonic peaks. Stepwise changes in temperature revealed that the oscillation was temperature compensated at temperatures ranging from 27 to 34 degrees C when either glucose (temperature quotient [Q(10)] = 1.02) or ethanol (Q(10) = 0.82) was used as a carbon source. After alteration of the temperature beyond the temperature compensation region, phase coherence events for individual cells were quickly lost. As the cell doubling rate decreased from 15.5 to 9.2 h (a factor of 1.68), the periodicity decreased by a factor of 1.26. This indicated that there was a degree of nutrient compensation. Outside the range of dilution rates at which stable oscillation occurred, the mode of oscillation changed. The oscillation in respiratory output is therefore under clock control.
Collapse
Affiliation(s)
- D B Murray
- School of Applied Science, South Bank University, London SE1 0AA, United Kingdom.
| | | | | | | |
Collapse
|
56
|
Branicky R, Shibata Y, Feng J, Hekimi S. Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics 2001; 159:997-1006. [PMID: 11729148 PMCID: PMC1461884 DOI: 10.1093/genetics/159.3.997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the Caenorhabditis elegans maternal-effect gene clk-1 affect cellular, developmental, and behavioral timing. They result in a slowing of the cell cycle, embryonic and postembryonic development, reproduction, and aging, as well as of the defecation, swimming, and pharyngeal pumping cycles. Here, we analyze the defecation behavior in clk-1 mutants, phenotypically and genetically. When wild-type worms are grown at 20 degrees and shifted to a new temperature, the defecation cycle length is significantly affected by that new temperature. In contrast, we find that when clk-1 mutants are shifted, the defecation cycle length is unaffected by that new temperature. We carried out a screen for mutations that suppress the slow defecation phenotype at 20 degrees and identified two distinct classes of genes, which we call dsc for defecation suppressor of clk-1. Mutations in one class also restore the ability to react normally to changes in temperature, while mutations in the other class do not. Together, these results suggest that clk-1 is necessary for readjusting the defecation cycle length in response to changes in temperature. On the other hand, in the absence of clk-1 activity, we observe temperature compensation, a mechanism that maintains a constant defecation period in the face of changes in temperature.
Collapse
Affiliation(s)
- R Branicky
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | |
Collapse
|
57
|
Maruyama H, Rakow TL, Maruyama IN. Synaptic exocytosis and nervous system development impaired in Caenorhabditis elegans unc-13 mutants. Neuroscience 2001; 104:287-97. [PMID: 11377834 DOI: 10.1016/s0306-4522(01)00097-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
C. elegans mutants defective in unc-13 exhibited severe behavioral abnormalities including paralyzed locomotion and slow pharyngeal pumping and irregular defecation cycle. Consistent with the phenotypes, the mutants accumulated abnormally high levels of the neurotransmitter acetylcholine and were resistant to acetylcholinesterase inhibitors. The unc-13 gene was expressed in most, if not all, neurons when analyzed by using chimeric constructs consisting of the unc-13 promoter and green fluorescence protein or beta-galactosidase reporter gene. While Ca(2+)-regulated acetylcholine release is lacking, the mutants were still able to release acetylcholine in vivo and in vitro at similar levels to that mediated by the regulated mechanism. Double mutants defective in both unc-13 and other genes involved in synaptic transmission showed the Unc-13 phenotype, rather than other mutant phenotypes, in terms of locomotion as well as of acetylcholine accumulation. Furthermore, electron microscopic reconstruction of the mutant nervous system uncovered that a majority of neurons developed and connected as those in the wild type except for subtle abnormalities including inappropriate connections through gap junctions and morphological alterations of neurons. These results demonstrate that the unc-13 gene product plays an essential role at a late stage in Ca(2+)-regulated synaptic exocytosis. Neurotransmitters released through the Ca(2+)-regulated mechanism are required for, but do not play major roles in the nervous system development. The large amount of Ca(2+)-independent neurotransmitter release observed in the unc-13 mutants suggests that there may be a distinct mechanism from evoked or spontaneous release in neurotransmission.
Collapse
MESH Headings
- Acetylcholine/genetics
- Acetylcholine/metabolism
- Acetylcholinesterase/biosynthesis
- Acetylcholinesterase/genetics
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Carrier Proteins
- Cholinesterase Inhibitors/pharmacology
- Exocytosis/drug effects
- Exocytosis/genetics
- Gait Disorders, Neurologic/genetics
- Gait Disorders, Neurologic/metabolism
- Gait Disorders, Neurologic/physiopathology
- Ganglia, Invertebrate/drug effects
- Ganglia, Invertebrate/pathology
- Ganglia, Invertebrate/ultrastructure
- Gap Junctions/drug effects
- Gap Junctions/pathology
- Gap Junctions/ultrastructure
- Gene Expression Regulation, Developmental/physiology
- Genes, Reporter/genetics
- Genotype
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Microscopy, Electron
- Motor Neurons/drug effects
- Motor Neurons/pathology
- Motor Neurons/ultrastructure
- Mutation/physiology
- Nervous System Malformations/genetics
- Nervous System Malformations/metabolism
- Nervous System Malformations/physiopathology
- Neurons/metabolism
- Neurons/pathology
- Neurons/ultrastructure
- Synapses/drug effects
- Synapses/pathology
- Synapses/ultrastructure
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
Collapse
Affiliation(s)
- H Maruyama
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
58
|
Abstract
Mutations in the C. elegans maternal-effect gene clk-1 are highly pleiotropic, affecting the duration of diverse developmental and behavioral processes. They result in an average slowing of embryonic and post-embryonic development, adult rhythmic behaviors, reproduction, and aging.(1) CLK-1 is a highly conserved mitochondrial protein,(2,3) but even severe clk-1 mutations affect mitochondrial respiration only slightly.(3) Here, we review the evidence supporting the regulatory role of clk-1 in physiological timing. We also discuss possible models for the action of CLK-1, in particular, one proposing that CLK-1 is involved in the coordination of mitochondrial and nuclear function. BioEssays 22:48-56, 2000.
Collapse
Affiliation(s)
- R Branicky
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
59
|
Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 1999; 286:1141-6. [PMID: 10550049 DOI: 10.1126/science.286.5442.1141] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Caenorhabditis elegans heterochronic genes control the relative timing and sequence of many events during postembryonic development, including the terminal differentiation of the lateral hypodermis, which occurs during the final (fourth) molt. Inactivation of the heterochronic gene lin-42 causes hypodermal terminal differentiation to occur precociously, during the third molt. LIN-42 most closely resembles the Period family of proteins from Drosophila and other organisms, proteins that function in another type of biological timing mechanism: the timing of circadian rhythms. Per mRNA levels oscillate with an approximately 24-hour periodicity. lin-42 mRNA levels also oscillate, but with a faster rhythm; the oscillation occurs relative to the approximately 6-hour molting cycles of postembryonic development.
Collapse
Affiliation(s)
- M Jeon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
60
|
Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 1999; 98:757-67. [PMID: 10499793 DOI: 10.1016/s0092-8674(00)81510-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The C. elegans defecation cycle is characterized by the contraction of three distinct sets of muscles every 50 s. Our data indicate that this cycle is regulated by periodic calcium release mediated by the inositol trisphosphate receptor (IP3 receptor). Mutations in the IP3 receptor slow down or eliminate the cycle, while overexpression speeds up the cycle. The IP3 receptor controls these periodic muscle contractions nonautonomously from the intestine. In the intestinal cells, calcium levels oscillate with the same period as the defecation cycle and peak calcium levels immediately precede the first muscle contraction. Mutations in the IP3 receptor slow or eliminate these calcium oscillations. Thus, the IP3 receptor is an essential component of the timekeeper for this cycle and represents a novel mechanism for the control of behavioral rhythms.
Collapse
Affiliation(s)
- P Dal Santo
- Department of Biology, University of Utah, Salt Lake City 84112-0840, USA
| | | | | | | |
Collapse
|
61
|
|
62
|
Abstract
To the surprise of many, studies of molecular mechanisms of touch transduction and analyses of epithelial Na+ transport have converged to define a new class of ion channel subunits. Based on the names of the first two identified subfamilies, the Caenorhabditis elegans degenerins and the vertebrate epithelial amiloride-sensitive Na+ channel, this ion channel class is called the DEG/ENaC superfamily. Members of the DEG/ENaC superfamily have been found in nematodes, flies, snails, and vertebrates. Family members share common topology, such that they span the membrane twice and have intracellular N- and C-termini; a large extracellular loop includes a conserved cysteine-rich region. DEG/ENaC channels have been implicated a broad spectrum of cellular functions, including mechanosensation, proprioception, pain sensation, gametogenesis, and epithelial Na+ transport. These channels exhibit diverse gating properties, ranging from near constitutive opening to rapid inactivation. We discuss working understanding of DEG/ENaC functions, channel properties, structure/activity correlations and possible evolutionary relationship to other channel classes.
Collapse
Affiliation(s)
- I Mano
- Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway 08854, USA
| | | |
Collapse
|
63
|
Chapter 17 C. elegans Members of the DEG/ENaC Channel Superfamily: Form and Function. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
64
|
Take-Uchi M, Kawakami M, Ishihara T, Amano T, Kondo K, Katsura I. An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998; 95:11775-80. [PMID: 9751741 PMCID: PMC21716 DOI: 10.1073/pnas.95.20.11775] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultradian rhythms are widespread phenomena found in various biological organisms. A typical example is the defecation behavior of the nematode Caenorhabditis elegans, which repeats at about 45-sec intervals. To elucidate the mechanism, we studied flr-1 mutants, which show very short defecation cycle periods. The mutations also affect some food-related functions, including growth rate, the expulsion step of defecation behavior, and the regulation of the dauer larva (a nonfeeding, special third-stage larva) formation in the unc-3 (Olf-1/EBF homolog) background. The flr-1 gene encodes a novel ion channel belonging to the DEG/ENaC (C. elegans degenerin and mammalian epithelial sodium channel) superfamily. A flr-1::GFP (green fluorescent protein) fusion gene that can rescue the flr-1 mutant phenotypes is expressed only in the intestine from embryos to adults. These results suggest that FLR-1 may be a component of an intestinal regulatory system that controls the defecation rhythm as well as other functions.
Collapse
Affiliation(s)
- M Take-Uchi
- Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales Cardiff, UK
| |
Collapse
|
66
|
Abstract
The unconventional myosins are a superfamily of actin-based motor proteins that are expressed in a wide range of cell types and organisms. Thirteen classes of unconventional myosin have been defined, and current efforts are focused on elucidating their individual functions in vivo. Here, we report the identification of a family of unconventional myosin genes in Caenorhabditis elegans. The hum-1, hum-2, hum-3 and hum-6 (heavy chain of an unconventional myosin) genes encode members of myosin classes I, V, VI and VII, respectively. The hum-4 gene encodes a high molecular mass myosin (ca 307 kDa) that is one of the most highly divergent myosins, and is the founding and only known member of class XII. The physical position of each hum gene has been determined. The hum-1, hum-2 and hum-3 genes have been mapped by extrapolation near previously uncharacterized mutations, several of which are lethal, identifying potentially essential unconventional myosin genes in C. elegans.
Collapse
Affiliation(s)
- J P Baker
- University Program in Genetics and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
67
|
Kippert F. The ultradian clocks of eukaryotic microbes: timekeeping devices displaying a homeostasis of the period. Chronobiol Int 1997; 14:469-79. [PMID: 9298283 DOI: 10.3109/07420529709001469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temperature compensation of their period is one of the canonical characteristics of circadian rhythms, yet it is not restricted to circadian rhythms. This short review summarizes the evidence for ultradian rhythms, with periods from 1 minute to several hours, that likewise display a strict temperature compensation. They have been observed mostly in unicellular organisms in which their constancy of period at different temperatures, as well as under different growth conditions (e.g., medium type, carbon source), indicates a general homeostasis of the period. Up to eight different parameters, including cell division, cell motility, and energy metabolism, were observed to oscillate with the same periodicity and therefore appear to be under the control of the same central pacemaker. This suggests that these ultradian clocks should be considered as cellular timekeeping devices that in fast-growing cells take over temporal control of cellular functions controlled by the circadian clock in slow-growing or nongrowing cells. Being potential relatives of circadian clocks, these ultradian rhythms may serve as model systems in chronobiological research. Indeed, mutations have been found that affect both circadian and ultradian periods, indicating that the respective oscillators share some mechanistic features. In the haploid yeast Schizosaccharomyces pombe, a number of genes have been identified where mutation, deletion, or overexpression affect the ultradian clock. Since most of these genes play roles in cellular metabolism and signaling, and mutations have pleiotropic effects, it has to be assumed that the clock is deeply embedded in cellular physiology. It is therefore suggested that mechanisms ensuring temperature compensation and general homeostasis of period are to be sought in a wider context.
Collapse
Affiliation(s)
- F Kippert
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Scotland, UK.
| |
Collapse
|
68
|
Malone EA, Inoue T, Thomas JH. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 1996; 143:1193-205. [PMID: 8807293 PMCID: PMC1207390 DOI: 10.1093/genetics/143.3.1193] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Based on environmental cues, the nervous system of Caenorhabditis elegans regulates formation of the dauer larva, an alternative larval form specialized for long-term survival under harsh conditions. Mutations that cause constitutive or defective dauer formation (Daf-c or Daf-d) have been identified and the genes ordered in a branched pathway. Most Daf-c mutations also affect recovery from the dauer stage. The semi-dominant mutation daf-28(sa191) is Daf-c but has no apparent effect on dauer recovery. We use this unique aspect of daf-28(sa191) to characterize the effects of several Daf-d and synthetic Daf-c mutations on dauer recovery. We present double mutant analysis that indicates that daf-28(sa191) acts at a novel point downstream in the genetic pathway for dauer formation. We also show that daf-28(sa191) causes a modest increase (12-13%) in life span. The phenotypes and genetic interactions of daf-28(sa191) are most similar to those of daf-2 and daf-23 mutations, which also cause a dramatic increase in life span. We present mapping and complementation data that suggest that daf-23 is the same gene as age-1, identified previously by mutations that extend life span. We find that age-1 alleles are also Daf-c at 27 degrees.
Collapse
Affiliation(s)
- E A Malone
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|