51
|
Chen Z, Tran M, Tang M, Wang W, Gong Z, Chen J. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Mol Cell Proteomics 2016; 15:1299-308. [PMID: 27037360 DOI: 10.1074/mcp.m115.056093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 01/08/2023] Open
Abstract
The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.
Collapse
Affiliation(s)
- Zhen Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mykim Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mengfan Tang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Wenqi Wang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Zihua Gong
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| |
Collapse
|
52
|
Chen Z, Tran M, Tang M, Wang W, Gong Z, Chen J. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Mol Cell Proteomics 2016. [PMID: 27037360 DOI: 10.1074/mcp.m115.056093+] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.
Collapse
Affiliation(s)
- Zhen Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mykim Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Mengfan Tang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Wenqi Wang
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Zihua Gong
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX 77030
| |
Collapse
|
53
|
Kadyrova LY, Dahal BK, Kadyrov FA. The Major Replicative Histone Chaperone CAF-1 Suppresses the Activity of the DNA Mismatch Repair System in the Cytotoxic Response to a DNA-methylating Agent. J Biol Chem 2016; 291:27298-27312. [PMID: 27872185 DOI: 10.1074/jbc.m116.760561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
The DNA mismatch repair (MMR) system corrects DNA mismatches in the genome. It is also required for the cytotoxic response of O6-methylguanine-DNA methyltransferase (MGMT)-deficient mammalian cells and yeast mgt1Δ rad52Δ cells to treatment with Sn1-type methylating agents, which produce cytotoxic O6-methylguanine (O6-mG) DNA lesions. Specifically, an activity of the MMR system causes degradation of irreparable O6-mG-T mispair-containing DNA, triggering cell death; this process forms the basis of treatments of MGMT-deficient cancers with Sn1-type methylating drugs. Recent research supports the view that degradation of irreparable O6-mG-T mispair-containing DNA by the MMR system and CAF-1-dependent packaging of the newly replicated DNA into nucleosomes are two concomitant processes that interact with each other. Here, we studied whether CAF-1 modulates the activity of the MMR system in the cytotoxic response to Sn1-type methylating agents. We found that CAF-1 suppresses the activity of the MMR system in the cytotoxic response of yeast mgt1Δ rad52Δ cells to the prototypic Sn1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. We also report evidence that in human MGMT-deficient cell-free extracts, CAF-1-dependent packaging of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system. Taken together, these findings suggest that CAF-1-dependent incorporation of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system, thereby defending the cell against killing by the Sn1-type methylating agent.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Basanta K Dahal
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
54
|
Affiliation(s)
- Guo-Min Li
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.
| |
Collapse
|
55
|
Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, Yang L, Wu X, Xu H, Hua Y, Xu J, Zheng L, Shen B. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J 2016; 31:132-147. [PMID: 27694478 DOI: 10.1096/fj.201600631r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Flap endonuclease 1 (FEN1) phosphorylation is proposed to regulate the action of FEN1 in DNA repair as well as Okazaki fragment maturation. However, the biologic significance of FEN1 phosphorylation in response to DNA damage remains unknown. Here, we report an in vivo role for FEN1 phosphorylation, using a mouse line carrying S187A FEN1, which abolishes FEN1 phosphorylation. Although S187A mouse embryonic fibroblast cells showed normal proliferation under low oxygen levels (2%), the mutant cells accumulated oxidative DNA damage, activated DNA damage checkpoints, and showed G1-phase arrest at atmospheric oxygen levels (21%). This suggests an essential role for FEN1 phosphorylation in repairing oxygen-induced DNA damage and maintaining proper cell cycle progression. Consistently, the mutant cardiomyocytes showed G1-phase arrest due to activation of the p53-mediated DNA damage response at the neonatal stage, which reduces the proliferation potential of the cardiomyocytes and impairs heart development. Nearly 50% of newborns with the S187A mutant died in the first week due to failure to undergo the peroxisome proliferator-activated receptor signaling-dependent switch from glycolysis to fatty acid oxidation. The adult mutant mice developed dilated hearts and showed significantly shorter life spans. Altogether, our results reveal an important role of FEN1 phosphorylation to counteract oxygen-induced stress in the heart during the fetal-to-neonatal transition.-Zhou, L., Dai, H., Wu, J., Zhou, M., Yuan, H., Du, J., Yang, L., Wu, X., Xu, H., Hua, Y., Xu, J., Zheng, L., Shen, B. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development.
Collapse
Affiliation(s)
- Lina Zhou
- College of Life Sciences and Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China.,Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Huifang Dai
- Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Hua Yuan
- Department of Diagnostic Ultrasound, Shaoxing Women and Children's Hospital, Shaoxing, China
| | - Juan Du
- Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA; and
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA; and
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA;
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics and Beckman Research Institute of City of Hope, Duarte, California, USA;
| |
Collapse
|
56
|
Keijzers G, Liu D, Rasmussen LJ. Exonuclease 1 and its versatile roles in DNA repair. Crit Rev Biochem Mol Biol 2016; 51:440-451. [PMID: 27494243 DOI: 10.1080/10409238.2016.1215407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.
Collapse
Affiliation(s)
- Guido Keijzers
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Dekang Liu
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Lene Juel Rasmussen
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
57
|
Modrich P. Mechanismen der Fehlpaarungsreparatur in E. coliund im Menschen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry; Duke University, Medical Center; Durham NC 27710 USA
| |
Collapse
|
58
|
Modrich P. Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8490-501. [PMID: 27198632 PMCID: PMC5193110 DOI: 10.1002/anie.201601412] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/11/2022]
Abstract
DNA molecules are not completely stable, they are subject to chemical or photochemical damage and errors that occur during DNA replication resulting in mismatched base pairs. Through mechanistic studies Paul Modrich showed how replication errors are corrected by strand-directed mismatch repair in Escherichia coli and human cells.
Collapse
Affiliation(s)
- Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University, Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
59
|
Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci U S A 2016; 113:3281-6. [PMID: 26951673 DOI: 10.1073/pnas.1523748113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.
Collapse
|
60
|
Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA Mismatch Repair Interacts with CAF-1- and ASF1A-H3-H4-dependent Histone (H3-H4)2 Tetramer Deposition. J Biol Chem 2016; 291:9203-17. [PMID: 26945061 DOI: 10.1074/jbc.m115.713271] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 01/07/2023] Open
Abstract
DNA mismatch repair (MMR) is required for the maintenance of genome stability and protection of humans from several types of cancer. Human MMR occurs in the chromatin environment, but little is known about the interactions between MMR and the chromatin environment. Previous research has suggested that MMR coincides with replication-coupled assembly of the newly synthesized DNA into nucleosomes. The first step in replication-coupled nucleosome assembly is CAF-1-dependent histone (H3-H4)2 tetramer deposition, a process that involves ASF1A-H3-H4 complex. In this work we used reconstituted human systems to investigate interactions between MMR and CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. We have found that MutSα inhibits CAF-1- and ASF1A-H3-H4-dependent packaging of a DNA mismatch into a tetrasome. This finding supports the idea that MMR occurs before the DNA mismatch is packaged into the tetrasome. Our experiments have also revealed that CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers does not interfere with MMR reactions. In addition, we have established that unnecessary degradation of the discontinuous strand that takes place in both DNA polymerase δ (Pol δ)- and DNA polymerase ϵ (Pol ϵ)-dependent MMR reactions is suppressed by CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers. These data suggest that CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers is compatible with MMR and protects the discontinuous daughter strand from unnecessary degradation by MMR machinery.
Collapse
Affiliation(s)
- Elena Rodriges Blanko
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
61
|
Chen ZY, Zheng SR, Zhong JH, Zhuang XD, Zhou JY. Association between three exonuclease 1 polymorphisms and cancer risks: a meta-analysis. Onco Targets Ther 2016; 9:899-910. [PMID: 26966378 PMCID: PMC4770079 DOI: 10.2147/ott.s95258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To date, the results of studies exploring the relation between exonuclease 1 (Exo1) polymorphisms and cancer risks have differed. In this study, we performed a meta-analysis to investigate the effect of the three most extensively studied Exo1 polymorphisms (Pro757Leu, Glu589Lys, and Glu670Gly) on cancer susceptibility. The related studies published before August 5, 2015, were collected by searching the PubMed and EMBASE databases. We found 16 publications containing studies that were eligible for our study, including 10 studies for Pro757Leu polymorphism (4,093 cases and 3,834 controls), 12 studies for Glu589Lys polymorphism (6,479 cases and 6,550 controls), and 7 studies for Glu670Gly polymorphism (3,700 cases and 3,496 controls). Pooled odds ratios and 95% confidence intervals were used to assess the strength of the associations, and all the statistical analyses were calculated using the software program STATA version 12.0. Our results revealed that the Pro757Leu polymorphism was significantly associated with a reduced cancer risk, whereas an inverse association was found for the Glu589Lys polymorphism. Furthermore, subgroup analysis of smoking status indicated that the Glu589Lys polymorphism was significantly associated with an increased cancer risk in smokers, but not in nonsmokers. However, no evidence was found for an association between the Glu670Gly polymorphism and cancer risk. In conclusion, this meta-analysis suggests that the Pro757Leu polymorphism may provide protective effects against cancer, while the Glu589Lys polymorphism may be a risk factor for cancer. Moreover, the Glu670Gly polymorphism may have no influence on cancer susceptibility. In the future, large-scaled and well-designed studies are needed to achieve a more precise and comprehensive result.
Collapse
Affiliation(s)
- Zi-Yu Chen
- Department of Clinical Medicine, The First Clinical Medical College, Southern Medical University, Guangzhou, People's Republic of China; Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Si-Rong Zheng
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie-Hui Zhong
- Department of Clinical Medicine, The First Clinical Medical College, Southern Medical University, Guangzhou, People's Republic of China; Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiao-Duan Zhuang
- Department of Clinical Medicine, The First Clinical Medical College, Southern Medical University, Guangzhou, People's Republic of China; Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
62
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
63
|
Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair (Amst) 2016; 38:3-13. [PMID: 26698650 PMCID: PMC4740188 DOI: 10.1016/j.dnarep.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute for Molecular Medicine, University of CA, San Diego School of Medicine, La Jolla, CA 92093-0669, United States.
| |
Collapse
|
64
|
Kadyrova LY, Kadyrov FA. Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair (Amst) 2016; 38:42-49. [PMID: 26719141 PMCID: PMC4820397 DOI: 10.1016/j.dnarep.2015.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
65
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
66
|
Talseth-Palmer BA, Bauer DC, Sjursen W, Evans TJ, McPhillips M, Proietto A, Otton G, Spigelman AD, Scott RJ. Targeted next-generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families. Cancer Med 2016; 5:929-41. [PMID: 26811195 PMCID: PMC4864822 DOI: 10.1002/cam4.628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023] Open
Abstract
Causative germline mutations in mismatch repair (MMR) genes can only be identified in ~50% of families with a clinical diagnosis of the inherited colorectal cancer (CRC) syndrome hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome (LS). Identification of these patients are critical as they are at substantially increased risk of developing multiple primary tumors, mainly colorectal and endometrial cancer (EC), occurring at a young age. This demonstrates the need to develop new and/or more thorough mutation detection approaches. Next‐generation sequencing (NGS) was used to screen 22 genes involved in the DNA MMR pathway in constitutional DNA from 14 HNPCC and 12 sporadic EC patients, plus 2 positive controls. Several softwares were used for analysis and functional annotation. We identified 5 exonic indel variants, 42 exonic nonsynonymous single‐nucleotide variants (SNVs) and 1 intronic variant of significance. Three of these variants were class 5 (pathogenic) or class 4 (likely pathogenic), 5 were class 3 (uncertain clinical relevance) and 40 were classified as variants of unknown clinical significance. In conclusion, we have identified two LS families from the sporadic EC patients, one without a family history of cancer, supporting the notion for universal MMR screening of EC patients. In addition, we have detected three novel class 3 variants in EC cases. We have, in addition discovered a polygenic interaction which is the most likely cause of cancer development in a HNPCC patient that could explain previous inconsistent results reported on an intronic EXO1 variant.
Collapse
Affiliation(s)
- Bente A Talseth-Palmer
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Denis C Bauer
- CSIRO Digital Productivity, Sydney, New South Wales, Australia
| | - Wenche Sjursen
- Department of Laboratory Medicine Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology and Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Tiffany J Evans
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Mary McPhillips
- Hunter Area Pathology Service, Pathology North, Hunter New England Area Health, Newcastle, New South Wales, Australia
| | - Anthony Proietto
- Hunter Centre for Gynaecological Cancer, Hunter New England Area Health, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Geoffrey Otton
- Hunter Centre for Gynaecological Cancer, Hunter New England Area Health, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Allan D Spigelman
- Hunter Family Cancer Service, Hunter New England Area Health, Newcastle, New South Wales, Australia.,St Vincent's Hospital Clinical School, University of NSW and Hospital Cancer Genetics Clinic, The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Hunter Area Pathology Service, Pathology North, Hunter New England Area Health, Newcastle, New South Wales, Australia
| |
Collapse
|
67
|
Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2015; 38:50-57. [PMID: 26725162 DOI: 10.1016/j.dnarep.2015.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| | - Pingping Li
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Julia Gotthardt
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
68
|
Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, Sanges R, Vyverman W, Montresor M, Ferrante MI. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics 2015; 16:930. [PMID: 26572248 PMCID: PMC4647503 DOI: 10.1186/s12864-015-1983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. RESULTS The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. CONCLUSIONS Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.
Collapse
Affiliation(s)
- Shrikant Patil
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Sara Moeys
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Peter von Dassow
- Facultad de Ciencias Biológicas, Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Chile, Santiago, Chile. .,UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France.
| | - Marie J J Huysman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Daniel Mapleson
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | | |
Collapse
|
69
|
Becker JR, Pons C, Nguyen HD, Costanzo M, Boone C, Myers CL, Bielinsky AK. Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genet 2015; 11:e1005659. [PMID: 26545110 PMCID: PMC4636136 DOI: 10.1371/journal.pgen.1005659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023] Open
Abstract
Ubiquitination of the replication clamp proliferating cell nuclear antigen (PCNA) at the conserved residue lysine (K)164 triggers postreplicative repair (PRR) to fill single-stranded gaps that result from stalled DNA polymerases. However, it has remained elusive as to whether cells engage PRR in response to replication defects that do not directly impair DNA synthesis. To experimentally address this question, we performed synthetic genetic array (SGA) analysis with a ubiquitination-deficient K164 to arginine (K164R) mutant of PCNA against a library of S. cerevisiae temperature-sensitive alleles. The SGA signature of the K164R allele showed a striking correlation with profiles of mutants deficient in various aspects of lagging strand replication, including rad27Δ and elg1Δ. Rad27 is the primary flap endonuclease that processes 5' flaps generated during lagging strand replication, whereas Elg1 has been implicated in unloading PCNA from chromatin. We observed chronic ubiquitination of PCNA at K164 in both rad27Δ and elg1Δ mutants. Notably, only rad27Δ cells exhibited a decline in cell viability upon elimination of PRR pathways, whereas elg1Δ mutants were not affected. We further provide evidence that K164 ubiquitination suppresses replication stress resulting from defective flap processing during Okazaki fragment maturation. Accordingly, ablation of PCNA ubiquitination increased S phase checkpoint activation, indicated by hyperphosphorylation of the Rad53 kinase. Furthermore, we demonstrate that alternative flap processing by overexpression of catalytically active exonuclease 1 eliminates PCNA ubiquitination. This suggests a model in which unprocessed flaps may directly participate in PRR signaling. Our findings demonstrate that PCNA ubiquitination at K164 in response to replication stress is not limited to DNA synthesis defects but extends to DNA processing during lagging strand replication.
Collapse
Affiliation(s)
- Jordan R. Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
70
|
Abstract
Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism.
Collapse
Affiliation(s)
- Richard Fishel
- From the Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and the Department of Physics and the Biophysics Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
71
|
Doerfler L, Schmidt KH. Exo1 phosphorylation status controls the hydroxyurea sensitivity of cells lacking the Pol32 subunit of DNA polymerases delta and zeta. DNA Repair (Amst) 2015; 24:26-36. [PMID: 25457771 DOI: 10.1016/j.dnarep.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 11/16/2022]
Abstract
Exo1 belongs to the Rad2 family of structure-specific nucleases and possesses 5'-3' exonuclease activity on double-stranded DNA substrates. Exo1 interacts physically with the DNA mismatch repair (MMR) proteins Msh2 and Mlh1 and is involved in the excision of the mispaired nucleotide. Independent of its role in MMR, Exo1 contributes to long-range resection of DNA double-strand break (DSB) ends to facilitate their repair by homologous recombination (HR), and was recently identified as a component of error-free DNA damage tolerance pathways. Here, we show that Exo1 activity increases the hydroxyurea sensitivity of cells lacking Pol32, a subunit of DNA polymerases δ and ζ. Both, phospho-mimicking and dephospho-mimicking exo1 mutants act as hypermorphs, as evidenced by an increase in HU sensitivity of pol32Δ cells, suggesting that they are trapped in an active form and that phosphorylation of Exo1 at residues S372, S567, S587, S692 is necessary, but insufficient, for the accurate regulation of Exo1 activity at stalled replication forks. In contrast, neither phosphorylation status is important for Exo1's role in MMR or in the suppression of genome instability in cells lacking Sgs1 helicase. This ability of an EXO1 deletion to suppress the HU hypersensitivity of pol32Δ cells is in contrast to the negative genetic interaction between deletions of EXO1 and POL32 in MMS-treated cells as well as the role of EXO1 in DNA-damage treated rad53 and mec1 mutants.
Collapse
Affiliation(s)
- Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Graduate Program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
72
|
Zhang F, Shi J, Bian C, Yu X. Poly(ADP-Ribose) Mediates the BRCA2-Dependent Early DNA Damage Response. Cell Rep 2015; 13:678-689. [PMID: 26489468 DOI: 10.1016/j.celrep.2015.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/26/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Breast cancer susceptibility gene 2 (BRCA2) plays a key role in DNA damage repair for maintaining genomic stability. Previous studies have shown that BRCA2 contains three tandem oligonucleotide/oligosaccharide binding folds (OB-folds) that are involved in DNA binding during DNA double-strand break repair. However, the molecular mechanism of BRCA2 in DNA damage repair remains elusive. Unexpectedly, we found that the OB-folds of BRCA2 recognize poly(ADP-ribose) (PAR) and mediate the fast recruitment of BRCA2 to DNA lesions, which is suppressed by PARP inhibitor treatment. Cancer-associated mutations in the OB-folds of BRCA2 disrupt the interaction with PAR and abolish the fast relocation of BRCA2 to DNA lesions. The quickly recruited BRCA2 is important for the early recruitment of exonuclease 1(EXO1) and is involved in DNA end resection, the first step of homologous recombination (HR). Thus, these findings uncover a molecular mechanism by which BRCA2 participates in DNA damage repair.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | - Jiazhong Shi
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Cell Biology, the Third Military Medical University, Chongqing 400038, China
| | - Chunjing Bian
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA; Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA.
| |
Collapse
|
73
|
Rossi SE, Ajazi A, Carotenuto W, Foiani M, Giannattasio M. Rad53-Mediated Regulation of Rrm3 and Pif1 DNA Helicases Contributes to Prevention of Aberrant Fork Transitions under Replication Stress. Cell Rep 2015; 13:80-92. [PMID: 26411679 PMCID: PMC4597105 DOI: 10.1016/j.celrep.2015.08.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/07/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022] Open
Abstract
Replication stress activates the Mec1ATR and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1. Rrm3 and Pif1 promote fork reversal and ssDNA gaps at stalled forks in rad53 cells Rrm3 and Pif1 associate with stalled DNA replication forks Rad53 phosphorylates Rrm3 and Pif1 at stalled forks Rrm3 and Pif1 promote chromosome fragility in hydroxyurea-treated rad53 cells
Collapse
Affiliation(s)
- Silvia Emma Rossi
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Arta Ajazi
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Walter Carotenuto
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | - Michele Giannattasio
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Via Adamello 16, 20139 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
74
|
Zhang F, Shi J, Chen SH, Bian C, Yu X. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res 2015; 43:10782-94. [PMID: 26400172 PMCID: PMC4678857 DOI: 10.1093/nar/gkv939] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/08/2015] [Indexed: 11/14/2022] Open
Abstract
Following DNA double-strand breaks, poly(ADP-ribose) (PAR) is quickly and heavily synthesized to mediate fast and early recruitment of a number of DNA damage response factors to the sites of DNA lesions and facilitates DNA damage repair. Here, we found that EXO1, an exonuclease for DNA damage repair, is quickly recruited to the sites of DNA damage via PAR-binding. With further dissection of the functional domains of EXO1, we report that the PIN domain of EXO1 recognizes PAR both in vitro and in vivo and the interaction between the PIN domain and PAR is sufficient for the recruitment. We also found that the R93G variant of EXO1, generated by a single nucleotide polymorphism, abolishes the interaction and the early recruitment. Moreover, our study suggests that the PAR-mediated fast recruitment of EXO1 facilities early DNA end resection, the first step of homologous recombination repair. We observed that other PIN domains could also recognize DNA damage-induced PAR. Taken together, our study demonstrates a novel class of PAR-binding module that plays an important role in DNA damage response.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | - Jiazhong Shi
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, China
| | - Shih-Hsun Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Chunjing Bian
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91773, USA
| |
Collapse
|
75
|
Kadyrova LY, Dahal BK, Kadyrov FA. Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps. J Biol Chem 2015. [PMID: 26224637 DOI: 10.1074/jbc.m115.660357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Basanta K Dahal
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
76
|
Levikova M, Cejka P. The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucleic Acids Res 2015; 43:7888-97. [PMID: 26175049 PMCID: PMC4652754 DOI: 10.1093/nar/gkv710] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/01/2015] [Indexed: 01/30/2023] Open
Abstract
During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5' DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway.
Collapse
Affiliation(s)
- Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
77
|
Smith CE, Bowen N, Graham WJ, Goellner EM, Srivatsan A, Kolodner RD. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System. J Biol Chem 2015; 290:21580-90. [PMID: 26170454 PMCID: PMC4571882 DOI: 10.1074/jbc.m115.662189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/07/2022] Open
Abstract
Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR.
Collapse
Affiliation(s)
| | - Nikki Bowen
- From the Ludwig Institute for Cancer Research
| | | | | | | | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research, the Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center, and the Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
78
|
Johnson RE, Klassen R, Prakash L, Prakash S. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 2015; 59:163-175. [PMID: 26145172 DOI: 10.1016/j.molcel.2015.05.038] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/20/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M-generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis.
Collapse
Affiliation(s)
- Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Roland Klassen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1061, USA
| |
Collapse
|
79
|
Abstract
DNA mismatch repair (MMR) acts to repair mispaired bases resulting from misincorporation errors during DNA replication and also recognizes mispaired bases in recombination (HR) intermediates. Exonuclease 1 (Exo1) is a 5' → 3' exonuclease that participates in a number of DNA repair pathways. Exo1 was identified as an exonuclease that participates in Saccharomyces cerevisiae and human MMR where it functions to excise the daughter strand after mispair recognition, and additionally Exo1 functions in end resection during HR. However, Exo1 is not absolutely required for end resection during HR in vivo. Similarly, while Exo1 is required in MMR reactions that have been reconstituted in vitro, genetics studies have shown that it is not absolutely required for MMR in vivo suggesting the existence of Exo1-independent and Exo1-dependent MMR subpathways. Here, we review what is known about the Exo1-independent and Exo1-dependent subpathways, including studies of mutations in MMR genes that specifically disrupt either subpathway.
Collapse
Affiliation(s)
- Eva M Goellner
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA; Departments of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA; Departments of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA; Moores - UCSD Cancer Center, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA; Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA.
| |
Collapse
|
80
|
Liu S, Lu G, Ali S, Liu W, Zheng L, Dai H, Li H, Xu H, Hua Y, Zhou Y, Ortega J, Li GM, Kunkel TA, Shen B. Okazaki fragment maturation involves α-segment error editing by the mammalian FEN1/MutSα functional complex. EMBO J 2015; 34:1829-43. [PMID: 25921062 DOI: 10.15252/embj.201489865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 04/14/2015] [Indexed: 11/09/2022] Open
Abstract
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5' ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.
Collapse
Affiliation(s)
- Songbai Liu
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou Zhejiang, China Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Guojun Lu
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Shafat Ali
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Wenpeng Liu
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou Zhejiang, China Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Li Zheng
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Huifang Dai
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Hongzhi Li
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Hong Xu
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou Zhejiang, China
| | - Yuejin Hua
- Colleges of Life Sciences and Agriculture and Biotechnology, Zhejiang University, Hangzhou Zhejiang, China
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhen Jiang Jiangsu, China
| | - Janice Ortega
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Guo-Min Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | - Binghui Shen
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
81
|
Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep 2015; 35:BSR20150058. [PMID: 26182368 PMCID: PMC4613700 DOI: 10.1042/bsr20150058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 11/26/2022] Open
Abstract
We report biochemical characterization of human full-length EXO1 including thermodynamic stability and flap activity on DNA flap structures. Our results reveal novel mechanistic insights into the processing of flap structures and a possible role of EXO1 in strand displacement. Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading double stranded DNA and has a modest endonuclease or 5′ flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates, suggesting a possible role of EXO1 in strand displacement.
Collapse
|
82
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
83
|
Abstract
Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709;
| | - Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-3290;
| |
Collapse
|
84
|
Van C, Williams JS, Kunkel TA, Peterson CL. Deposition of histone H2A.Z by the SWR-C remodeling enzyme prevents genome instability. DNA Repair (Amst) 2014; 25:9-14. [PMID: 25463393 DOI: 10.1016/j.dnarep.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
The yeast SWR-C chromatin remodeling enzyme catalyzes chromatin incorporation of the histone variant H2A.Z which plays roles in transcription, DNA repair, and chromosome segregation. Dynamic incorporation of H2A.Z by SWR-C also enhances the ability of exonuclease I (Exo1) to process DNA ends during repair of double strand breaks. Given that Exo1 also participates in DNA replication and mismatch repair, here we test whether SWR-C influences DNA replication fidelity. We find that inactivation of SWR-C elevates the spontaneous mutation rate of a strain encoding a L612M variant of DNA polymerase (Pol) δ, with a single base mutation signature characteristic of lagging strand replication errors. However, this genomic instability does not solely result from reduced Exo1 function, because single base mutator effects are seen in both Exo1-proficient and Exo1-deficient pol3-L612M swr1Δ strains. The data are consistent with the possibility that incorporation of the H2A.Z variant by SWR-C may stimulate Exo1 activity, as well as enhance the fidelity of replication by Pol δ, the repair of mismatches generated by Pol δ, or both.
Collapse
Affiliation(s)
- Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Jessica S Williams
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A Kunkel
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
85
|
Freeman MD, Mazu T, Miles JS, Darling-Reed S, Flores-Rozas H. Inactivation of chromatin remodeling factors sensitizes cells to selective cytotoxic stress. Biologics 2014; 8:269-80. [PMID: 25484574 PMCID: PMC4238754 DOI: 10.2147/btt.s67046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SWI/SNF chromatin-remodeling complex plays an essential role in several cellular processes including cell proliferation, differentiation, and DNA repair. Loss of normal function of the SWI/SNF complex because of mutations in its subunits correlates with tumorigenesis in humans. For many of these cancers, cytotoxic chemotherapy is the primary, and sometimes the only, therapeutic alternative. Among the antineoplastic agents, anthracyclines are a common treatment option. Although effective, resistance to these agents usually develops and serious dose-related toxicity, namely, chronic cardiotoxicity, limits its use. Previous work from our laboratory showed that a deletion of the SWI/SNF factor SNF2 resulted in hypersensitivity to doxorubicin. We further investigated the contribution of other chromatin remodeling complex components in the response to cytotoxic chemotherapy. Our results indicate that, of the eight SWI/SNF strains tested, snf2, taf14, and swi3 were the most sensitive and displayed distinct sensitivity to different cytotoxic agents, while snf5 displayed resistance. Our experimental results indicate that the SWI/SNF complex plays a critical role in protecting cells from exposure to cytotoxic chemotherapy and other cytotoxic agents. Our findings may prove useful in the development of a strategy aimed at targeting these genes to provide an alternative by hypersensitizing cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Miles D Freeman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Tryphon Mazu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Jana S Miles
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Selina Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
86
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
87
|
Lee JB, Cho WK, Park J, Jeon Y, Kim D, Lee SH, Fishel R. Single-molecule views of MutS on mismatched DNA. DNA Repair (Amst) 2014; 20:82-93. [PMID: 24629484 PMCID: PMC4245035 DOI: 10.1016/j.dnarep.2014.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Base-pair mismatches that occur during DNA replication or recombination can reduce genetic stability or conversely increase genetic diversity. The genetics and biophysical mechanism of mismatch repair (MMR) has been extensively studied since its discovery nearly 50 years ago. MMR is a strand-specific excision-resynthesis reaction that is initiated by MutS homolog (MSH) binding to the mismatched nucleotides. The MSH mismatch-binding signal is then transmitted to the immediate downstream MutL homolog (MLH/PMS) MMR components and ultimately to a distant strand scission site where excision begins. The mechanism of signal transmission has been controversial for decades. We have utilized single molecule Forster Resonance Energy Transfer (smFRET), Fluorescence Tracking (smFT) and Polarization Total Internal Reflection Fluorescence (smP-TIRF) to examine the interactions and dynamic behaviors of single Thermus aquaticus MutS (TaqMutS) particles on mismatched DNA. We determined that TaqMutS forms an incipient clamp to search for a mismatch in ~1 s intervals by 1-dimensional (1D) thermal fluctuation-driven rotational diffusion while in continuous contact with the helical duplex DNA. When MutS encounters a mismatch it lingers for ~3 s to exchange bound ADP for ATP (ADP→ATP exchange). ATP binding by TaqMutS induces an extremely stable clamp conformation (~10 min) that slides off the mismatch and moves along the adjacent duplex DNA driven simply by 1D thermal diffusion. The ATP-bound sliding clamps rotate freely while in discontinuous contact with the DNA. The visualization of a train of MSH proteins suggests that dissociation of ATP-bound sliding clamps from the mismatch permits multiple mismatch-dependent loading events. These direct observations have provided critical clues into understanding the molecular mechanism of MSH proteins during MMR.
Collapse
Affiliation(s)
- Jong-Bong Lee
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea; School of Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 790-784, Republic of Korea.
| | - Won-Ki Cho
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Jonghyun Park
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Yongmoon Jeon
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Daehyung Kim
- Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Seung Hwan Lee
- School of Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang 790-784, Republic of Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, United States; Physics Department, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
88
|
Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb Perspect Biol 2014; 6:a017962. [PMID: 25081516 DOI: 10.1101/cshperspect.a017962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA double-strand breaks are repaired by two major pathways, homologous recombination or nonhomologous end joining. The commitment to one or the other pathway proceeds via different steps of resection of the DNA ends, which is controlled and executed by a set of DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage response factors. The molecular choreography of the underlying protein machinery is beginning to emerge. In this review, we discuss the early steps of genetic recombination and double-strand break sensing with an emphasis on structural and molecular studies.
Collapse
|
89
|
Goellner EM, Smith CE, Campbell CS, Hombauer H, Desai A, Putnam CD, Kolodner RD. PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair. Mol Cell 2014; 55:291-304. [PMID: 24981171 DOI: 10.1016/j.molcel.2014.04.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/09/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
Abstract
Genetic evidence has implicated multiple pathways in eukaryotic DNA mismatch repair (MMR) downstream of mispair recognition and Mlh1-Pms1 recruitment, including Exonuclease 1 (Exo1)-dependent and -independent pathways. We identified 14 mutations in POL30, which encodes PCNA in Saccharomyces cerevisiae, specific to Exo1-independent MMR. The mutations identified affected amino acids at three distinct sites on the PCNA structure. Multiple mutant PCNA proteins had defects either in trimerization and Msh2-Msh6 binding or in activation of the Mlh1-Pms1 endonuclease that initiates excision during MMR. The latter class of mutations led to hyperaccumulation of repair intermediate Mlh1-Pms1 foci and were enhanced by an msh6 mutation that disrupted the Msh2-Msh6 interaction with PCNA. These results reveal a central role for PCNA in the Exo1-independent MMR pathway and suggest that Msh2-Msh6 localizes PCNA to repair sites after mispair recognition to activate the Mlh1-Pms1 endonuclease for initiating Exo1-dependent repair or for driving progressive excision in Exo1-independent repair.
Collapse
Affiliation(s)
- Eva M Goellner
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA
| | - Catherine E Smith
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA
| | - Christopher S Campbell
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA
| | - Hans Hombauer
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Arshad Desai
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Moores-UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA; Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0669, USA.
| |
Collapse
|
90
|
Nucleases in homologous recombination as targets for cancer therapy. FEBS Lett 2014; 588:2446-56. [PMID: 24928444 DOI: 10.1016/j.febslet.2014.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/21/2022]
|
91
|
Pache RA, Aloy P. Increasing the precision of orthology-based complex prediction through network alignment. PeerJ 2014; 2:e413. [PMID: 24918034 PMCID: PMC4045337 DOI: 10.7717/peerj.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein–protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host.
Collapse
Affiliation(s)
- Roland A Pache
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain
| | - Patrick Aloy
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
92
|
Shao H, Baitinger C, Soderblom EJ, Burdett V, Modrich P. Hydrolytic function of Exo1 in mammalian mismatch repair. Nucleic Acids Res 2014; 42:7104-12. [PMID: 24829455 PMCID: PMC4066806 DOI: 10.1093/nar/gku420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function.
Collapse
Affiliation(s)
- Hongbing Shao
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Celia Baitinger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Vickers Burdett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul Modrich
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
93
|
Bregenhorn S, Jiricny J. Biochemical characterization of a cancer-associated E109K missense variant of human exonuclease 1. Nucleic Acids Res 2014; 42:7096-103. [PMID: 24829445 PMCID: PMC4066805 DOI: 10.1093/nar/gku419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1 and PMS2 are associated with Lynch Syndrome (LS), a familial predisposition to early-onset cancer of the colon and other organs. Because not all LS families carry mutations in these four genes, the search for cancer-associated mutations was extended to genes encoding other members of the mismatch repairosome. This effort identified mutations in EXO1, which encodes the sole exonuclease implicated in MMR. One of these mutations, E109K, was reported to abrogate the catalytic activity of the enzyme, yet, in the crystal structure of the EXO1/DNA complex, this glutamate is far away from both DNA and the catalytic site of the enzyme. In an attempt to elucidate the reason underlying the putative loss of function of this variant, we expressed it in Escherichia coli, and tested its activity in a series of biochemical assays. We now report that, contrary to earlier reports, and unlike the catalytic site mutant D173A, the EXO1 E109K variant resembled the wild-type (wt) enzyme on all tested substrates. In the light of our findings, we attempt here to reinterpret the results of the phenotypic characterization of a knock-in mouse carrying the E109K mutation and cells derived from it.
Collapse
Affiliation(s)
- Stephanie Bregenhorn
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
94
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
95
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
96
|
Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins. Proc Natl Acad Sci U S A 2013; 110:18472-7. [PMID: 24187148 DOI: 10.1073/pnas.1318971110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)-MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5' or 3' strand interruption with different efficiencies. The Msh2-MutS homolog 3 mispair recognition protein could substitute for the Msh2-Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1-postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5' or 3' strand interruption occurred by mispair binding-dependent 5' excision and subsequent resynthesis with excision tracts of up to ~2.9 kb occurring during the repair of the substrate with a 3' strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.
Collapse
|
97
|
Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 2013; 9:e1003869. [PMID: 24204293 PMCID: PMC3814310 DOI: 10.1371/journal.pgen.1003869] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/25/2013] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. Although EXO1 is considered to be the major repair nuclease functioning in mismatch repair, the relatively low mutation rates caused by an exo1 deletion suggest otherwise. Here we used genetics, microscopy and protein biochemistry to analyze the model organism Saccharomyces cerevisiae to further characterize a poorly understood mismatch repair pathway that functions in the absence of EXO1 that is highly dependent on the Mlh1-Pms1 complex. Surprisingly, we found that the highly conserved metal binding site that is critical for the endonuclease activity of the Mlh1-Pms1 heterodimer is required for MMR in the absence of Exo1 to a much greater extent than in the presence of Exo1. Thus, this work establishes that there are at least two different polynucleotide excision pathways that function in MMR.
Collapse
Affiliation(s)
- Catherine E Smith
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Liddell LC, Manthey GM, Owens SN, Fu BXH, Bailis AM. Alleles of the homologous recombination gene, RAD59, identify multiple responses to disrupted DNA replication in Saccharomyces cerevisiae. BMC Microbiol 2013; 13:229. [PMID: 24125552 PMCID: PMC3852934 DOI: 10.1186/1471-2180-13-229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/04/2013] [Indexed: 11/26/2022] Open
Abstract
Background In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved α-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. Results In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. Conclusions The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association of Rad52 with double-strand breaks, suggesting that this may be essential for rescuing replication lesions in rad27 mutant cells. The rad59-K174A and rad59-F180A alleles may fractionally reduce this same function, which proportionally reduced repair of replication lesions by homologous recombination and growth rate. In contrast, rad59-Y92A stimulates homologous recombination, perhaps by affecting association of replication lesions with the Rad51 recombinase. This suggests that Rad59 influences the rescue of replication lesions by multiple recombination factors.
Collapse
Affiliation(s)
- Lauren C Liddell
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 91010 Duarte, CA, USA.
| | | | | | | | | |
Collapse
|
99
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
100
|
Dieckman LM, Boehm EM, Hingorani MM, Washington MT. Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair. Biochemistry 2013; 52:5611-9. [PMID: 23869605 DOI: 10.1021/bi400378e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During DNA replication, mismatches and small loops in the DNA resulting from insertions or deletions are repaired by the mismatch repair (MMR) machinery. Proliferating cell nuclear antigen (PCNA) plays an important role in both mismatch-recognition and resynthesis stages of MMR. Previously, two mutant forms of PCNA were identified that cause defects in MMR with little, if any, other defects. The C22Y mutant PCNA protein completely blocks MutSα-dependent MMR, and the C81R mutant PCNA protein partially blocks both MutSα-dependent and MutSβ-dependent MMR. In order to understand the structural and mechanistic basis by which these two amino acid substitutions in PCNA proteins block MMR, we solved the X-ray crystal structures of both mutant proteins and carried out further biochemical studies. We found that these amino acid substitutions lead to subtle, distinct structural changes in PCNA. The C22Y substitution alters the positions of the α-helices lining the central hole of the PCNA ring, whereas the C81R substitution creates a distortion in an extended loop near the PCNA subunit interface. We conclude that the structural integrity of the α-helices lining the central hole and this loop are both necessary to form productive complexes with MutSα and mismatch-containing DNA.
Collapse
Affiliation(s)
- Lynne M Dieckman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|