51
|
Abstract
Integrins not only mediate cell-cell and cell-extracellular matrix adhesion, but also affect the multitude of signal transduction cascades in control of cell survival, proliferation, differentiation and organ development. Mutations in integrins or the major effectors of integrin signalling pathways cause defective organ development, immunodeficiency, cancer or autoimmune disease. Understanding of the signalling events that drive integrin activation and signalling is therefore crucial to uncover the molecular mechanisms of these diseases. This review discusses the key signalling complexes regulating integrin activation and function in both 'inside-out' and 'outside-in' pathways in T lymphocytes, including kinases, SLP-76, VAV1, ADAP, SKAP-55, RapL, RIAM, Rap1, Talin and Kindlin.
Collapse
Affiliation(s)
- Yanbo Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
52
|
Block H, Herter JM, Rossaint J, Stadtmann A, Kliche S, Lowell CA, Zarbock A. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. ACTA ACUST UNITED AC 2012; 209:407-21. [PMID: 22291096 PMCID: PMC3280874 DOI: 10.1084/jem.20111493] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte recruitment to the kidney during acute injury is mediated by E-selectin–mediated rolling and requires SLP-76 and the adaptor protein ADAP. Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain–containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin–mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion–induced AKI in mice. By using genetically engineered mice and transduced Slp76−/− primary leukocytes, we demonstrate that ADAP as well as two N-terminal–located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase–γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin–mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion–induced AKI in humans.
Collapse
Affiliation(s)
- Helena Block
- Department of Anesthesiology and Critical Care Medicine, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Helicobacter bilis colonization enhances susceptibility to Typhlocolitis following an inflammatory trigger. Dig Dis Sci 2011; 56:2838-48. [PMID: 21503679 DOI: 10.1007/s10620-011-1701-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant mucosal immune responses to antigens of the resident microbiota are a significant cause of inflammatory bowel diseases (IBD), as are genetic and environmental factors. Previous work from our laboratory demonstrated that Helicobacter bilis colonization of immunocompetent, defined microbiota mice induced antigen-specific immune responses to the resident microbiota, yet these mice failed to develop colitis, suggesting that the immunological provocation induced by H. bilis alone was insufficient to induce disease. AIM The purpose of this study was to test the hypothesis that the introduction of a bacterial provocateur such as H. bilis enhances the host's susceptibility to IBD following an inflammatory event. METHODS Defined microbiota (DM) mice colonized with H. bilis were administered low dose (1.5%) dextran sodium sulfate (DSS) in drinking water for 5 days followed by a 4-day restitution period. Severity of lesions was assessed grossly and microscopically. Differential expression of select mucosal genes and histopathologic lesions was characterized. RESULTS Helicobacter bilis colonization increased the severity of intestinal inflammation induced by an inflammatory trigger in the form of low-dose DSS. An analysis of the molecular and cellular mechanisms associated with H. bilis colonization revealed significant increases in expression of mucosal genes associated with lymphocyte activation and inflammatory cell chemotaxis as well as increased infiltration of mucosal macrophages and T cells in mice colonized with H. bilis prior to DSS treatment versus DSS treatment alone. CONCLUSIONS These results indicate that prior colonization with H. bilis heightens the host's sensitivity to enteric inflammation by altering mucosal homeostasis and initiating immune cell activation and migration.
Collapse
|
54
|
Burns JC, Corbo E, Degen J, Gohil M, Anterasian C, Schraven B, Koretzky GA, Kliche S, Jordan MS. The SLP-76 Src homology 2 domain is required for T cell development and activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4459-66. [PMID: 21949020 DOI: 10.4049/jimmunol.0903379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adapter protein Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for multiple aspects of T cell development and function. Through its protein-binding domains, SLP-76 serves as a platform for the assembly of multiple enzymes and adapter proteins that function together to activate second messengers required for TCR signal propagation. The N terminus of SLP-76, which contains three tyrosines that serve as docking sites for SH2 domain-containing proteins, and the central proline-rich region of SLP-76 have been well studied and are known to be important for both thymocyte selection and activation of peripheral T cells. Less is known about the function of the C-terminal SH2 domain of SLP-76. This region inducibly associates with ADAP and HPK1. Combining regulated deletion of endogenous SLP-76 with transgenic expression of a SLP-76 SH2 domain mutant, we demonstrate that the SLP-76 SH2 domain is required for peripheral T cell activation and positive selection of thymocytes, a function not previously attributed to this region. This domain is also important for T cell proliferation, IL-2 production, and phosphorylation of protein kinase D and IκB. ADAP-deficient T cells display similar, but in some cases less severe, defects despite phosphorylation of a negative regulatory site on SLP-76 by HPK1, a function that is lost in SLP-76 SH2 domain mutant T cells.
Collapse
Affiliation(s)
- Jeremy C Burns
- Department of Cancer Biology, Signal Transduction Program, Abramson Family Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Liang Y. SHARPIN negatively associates with TRAF2-mediated NFκB activation. PLoS One 2011; 6:e21696. [PMID: 21829440 PMCID: PMC3146465 DOI: 10.1371/journal.pone.0021696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022] Open
Abstract
NFκB is an inducible transcriptional factor controlled by two principal signaling cascades and plays pivotal roles in diverse physiological processes including inflammation, apoptosis, oncogenesis, immunity, and development. Activation of NFκB signaling was detected in skin of SHAPRIN-deficient mice and can be diminished by an NFκB inhibitor. However, in vitro studies demonstrated that SHARPIN activates NFκB signaling by forming a linear ubiquitin chain assembly complex with RNF31 (HOIP) and RBCK1 (HOIL1). The inconsistency between in vivo and in vitro findings about SHARPIN's function on NFκB activation could be partially due to SHARPIN's potential interactions with downstream molecules of NFκB pathway. In this study, 17 anti-flag immunoprecipitated proteins, including TRAF2, were identified by mass spectrum analysis among Sharpin-Flag transfected mouse fibroblasts, B lymphocytes, and BALB/c LN stroma 12 cells suggesting their interaction with SHARPIN. Interaction between SHARPIN and TRAF2 confirmed previous yeast two hybridization reports that SHARPIN was one TRAF2's partners. Furthermore, luciferase-based NFκB reporter assays demonstrated that SHARPIN negatively associates with NFκB activation, which can be partly compensated by over-expression of TRAF2. These data suggested that other than activating NFκB signaling by forming ubiquitin ligase complex with RNF31 and RBCK1, SHARPIN may also negatively associate with NFκB activation via interactions with other NFκB members, such as TRAF2.
Collapse
Affiliation(s)
- Yanhua Liang
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| |
Collapse
|
56
|
Raab M, Smith X, Matthess Y, Strebhardt K, Rudd CE. SKAP1 protein PH domain determines RapL membrane localization and Rap1 protein complex formation for T cell receptor (TCR) activation of LFA-1. J Biol Chem 2011; 286:29663-70. [PMID: 21669874 PMCID: PMC3191007 DOI: 10.1074/jbc.m111.222661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although essential for T cell function, the identity of the T cell receptor (TCR) "inside-out" pathway for the activation of lymphocyte function-associated antigen 1 (LFA-1) is unclear. SKAP1 (SKAP-55) is the upstream regulator needed for TCR-induced RapL-Rap1 complex formation and LFA-1 activation. In this paper, we show that SKAP1 is needed for RapL binding to membranes in a manner dependent on the PH domain of SKAP1 and the PI3K pathway. A SKAP1 PH domain-inactivating mutation (i.e. R131M) markedly impaired RapL translocation to membranes for Rap1 and LFA-1 binding and the up-regulation of LFA-1-intercellular adhesion molecule 1 (ICAM-1) binding. Further, N-terminal myr-tagged SKAP1 for membrane binding facilitated constitutive RapL membrane and Rap1 binding and effectively substituted for PI3K and TCR ligation in the activation of LFA-1 in T cells.
Collapse
Affiliation(s)
- Monika Raab
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
57
|
Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol Cell Biol 2011; 31:2653-66. [PMID: 21536650 DOI: 10.1128/mcb.01358-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.
Collapse
|
58
|
T-cell receptor ligation induces distinct signaling pathways in naive vs. antigen-experienced T cells. Proc Natl Acad Sci U S A 2011; 108:1549-54. [PMID: 21205892 DOI: 10.1073/pnas.1017340108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Naïve T lymphocytes display weaker and slower responses than antigen-experienced cells for reasons that are not well understood. Here we show that T-cell receptor (TCR) stimulation induces distinct ERK and p38 phosphorylation patterns in naïve and antigen-experienced human T cells, and that these contribute to the differential responses shown by these cells. Specifically, TCR ligation triggers the activation of the ERK pathway in naïve cells. This phosphorylation of ERK attenuates subsequent calcium influx and accelerates the degradation of the signalsome. In contrast, anti-CD3 stimulation of experienced cells results in the phosphorylation of p38 via an association with Discs large (Dlg). Thus, there are distinct signaling pathways triggered by TCR ligation that impair signaling in naïve cells and facilitate it in antigen-experienced cells.
Collapse
|
59
|
Matsumura T, Oyama M, Kozuka-Hata H, Ishikawa K, Inoue T, Muta T, Semba K, Inoue JI. Identification of BCAP-(L) as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics. Biochem Biophys Res Commun 2010; 400:265-70. [PMID: 20728433 DOI: 10.1016/j.bbrc.2010.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023]
Abstract
Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-(L)) and an alternatively initiated or spliced (Bcap-(S)) mRNA, and little is known about the differential functions of the BCAP-(L) and BCAP-(S) proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-(L) enhanced IL-6 and IL-10 production but not TNF-α production in TLR ligand-stimulated macrophages. We propose that BCAP-(L) (but not BCAP-(S)) is a negative regulator of the TLR-mediated host defense system in macrophages.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, Schlosser A, Großmann A, Stelzl U, Schraven B, Krause E, Freund C. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One 2010; 5:e11708. [PMID: 20661443 PMCID: PMC2908683 DOI: 10.1371/journal.pone.0011708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/08/2010] [Indexed: 01/13/2023] Open
Abstract
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.
Collapse
Affiliation(s)
- Marc Sylvester
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Sabine Lange
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Sabine Geithner
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Clementine Klemm
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas Schlosser
- Institut für Medizinische Immunologie CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Großmann
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Burkhart Schraven
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Eberhard Krause
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
61
|
Balagopalan L, Coussens NP, Sherman E, Samelson LE, Sommers CL. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol 2010; 2:a005512. [PMID: 20610546 DOI: 10.1101/cshperspect.a005512] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adapter molecule LAT is a nucleating site for multiprotein signaling complexes that are vital for the function and differentiation of T cells. Extensive investigation of LAT in multiple experimental systems has led to an integrated understanding of the formation, composition, regulation, dynamic movement, and function of LAT-nucleated signaling complexes. This review discusses interactions of signaling molecules that bind directly or indirectly to LAT and the role of cooperativity in stabilizing LAT-nucleated signaling complexes. In addition, it focuses on how imaging studies visualize signaling assemblies as signaling clusters and demonstrate their dynamic nature and cellular fate. Finally, this review explores the function of LAT based on the interpretation of mouse models using various LAT mutants.
Collapse
|
62
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
63
|
SH2 domain containing leukocyte phosphoprotein of 76-kDa (SLP-76) feedback regulation of ZAP-70 microclustering. Proc Natl Acad Sci U S A 2010; 107:10166-71. [PMID: 20534575 DOI: 10.1073/pnas.0909112107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell receptor (TCR) signaling involves CD4/CD8-p56lck recruitment of ZAP-70 to the TCR receptor, ZAP-70 phosphorylation of LAT that is followed by LAT recruitment of the GADS-SLP-76 complex. Back regulation of ZAP-70 by SLP-76 has not been documented. In this paper, we show that anti-CD3 induced ZAP-70 cluster formation is significantly reduced in the absence of SLP-76 (i.e., J14 cells) and in the presence of a mutant of SLP-76 (4KE) in Jurkat and primary T cells. Both the number of cells with clusters and the number of clusters per cell were reduced. This effect was not mediated by SLP-76 SH2 domain binding to ZAP-70 because SLP-76 failed to precipitate ZAP-70 and an inactivating SH2 domain mutation (i.e., R448L) on SLP-76 4KE did not reverse the inhibition of ZAP-70 clustering. Mutation of R448 on WT SLP-76 still supported ZAP-70 clustering. Intriguingly, by contrast, LAT clustering occurred normally in the absence of SLP-76, or the presence of 4KE SLP-76 indicating that this transmembrane adaptor can operate independently of ZAP-70-GADS-SLP-76. Our findings reconfigure the TCR signaling pathway by showing SLP-76 back-regulation of ZAP-70, an event that could ensure that signaling components are in balance for optimal T cell activation.
Collapse
|
64
|
Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, Ladbury JE, Rudd CE. T cell receptor "inside-out" pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 2010; 32:541-56. [PMID: 20346707 DOI: 10.1016/j.immuni.2010.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 11/05/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Although essential for T cell function, the identity of the T cell receptor "inside-out" pathway for lymphocyte function-associated antigen 1 (LFA-1) adhesion has proved elusive. Here, we define the "inside-out" pathway mediated by N-terminal SKAP1 (SKAP-55) domain binding to the C-terminal SARAH domain of RapL. TcR induced Rap1-RapL complex formation and LFA-1 binding failed to occur in Skap1(-/-) primary T cells. SKAP1 generated a SKAP1-RapL-Rap1 complex that bound to LFA-1, whereas a RapL mutation (L224A) that abrogated SKAP1 binding without affecting MST1 disrupted component colocalization in vesicles as well as T cell-dendritic cell (DC) conjugation. RapL expression also "slowed" T cell motility in D011.10 transgenic T cells in lymph nodes (LNs), an effect reversed by the L224A mutation with reduced dwell times between T cells and DCs. Overall, our findings define a TCR "inside-out" pathway via N-SKAP1-C-RapL that regulates T cell adhesion, motility, and arrest times with DCs in LNs.
Collapse
Affiliation(s)
- Monika Raab
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge UK, CB2 1Q
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Immunopathologies linked to integrin signalling. Semin Immunopathol 2010; 32:173-82. [DOI: 10.1007/s00281-010-0202-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/08/2010] [Indexed: 02/07/2023]
|
66
|
Bruland O, Fluge Ø, Akslen LA, Eiken HG, Lillehaug JR, Varhaug JE, Knappskog PM. Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas. BMC Cancer 2009; 9:425. [PMID: 19968886 PMCID: PMC2797817 DOI: 10.1186/1471-2407-9-425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/08/2009] [Indexed: 11/10/2022] Open
Abstract
Background Members of the PDGF family have been suggested as potential biomarkers for papillary thyroid carcinomas (PTC). However, it is known that both expression and stimulatory effect of PDGF ligands can be affected by inflammatory cytokines. We have performed a microarray study in a collection of PTCs, of which about half the biopsies contained tumour-infiltrating lymphocytes or thyroiditis. To investigate the expression level of PDGF ligands and receptors in PTC we measured the relative mRNA expression of all members of the PDGF family by qRT-PCR in 10 classical PTC, eight clinically aggressive PTC, and five non-neoplastic thyroid specimens, and integrated qRT-PCR data with microarray data to enable us to link PDGF-associated gene expression profiles into networks based on recognized interactions. Finally, we investigated potential influence on PDGF mRNA levels by the presence of tumour-infiltrating lymphocytes. Methods qRT-PCR was performed on PDGFA, PDGFB, PDGFC, PDGFD, PDGFRA PDGFRB and a selection of lymphocyte specific mRNA transcripts. Semiquantitative assessment of tumour-infiltrating lymphocytes was performed on the adjacent part of the biopsy used for RNA extraction for all biopsies, while direct quantitation by qRT-PCR of lymphocyte-specific mRNA transcripts were performed on RNA also subjected to expression analysis. Relative expression values of PDGF family members were combined with a cDNA microarray dataset and analyzed based on clinical findings and PDGF expression patterns. Ingenuity Pathway Analysis (IPA) was used to elucidate potential molecular interactions and networks. Results PDGF family members were differentially regulated at the mRNA level in PTC as compared to normal thyroid specimens. Expression of PDGFA (p = 0.003), PDGFB (p = 0.01) and PDGFC (p = 0.006) were significantly up-regulated in PTCs compared to non-neoplastic thyroid tissue. In addition, expression of PDGFC was significantly up-regulated in classical PTCs as compared to clinically aggressive PTCs (p = 0.006), and PDGFRB were significantly up-regulated in clinically aggressive PTCs (p = 0.01) as compared to non-neoplastic tissue. Semiquantitative assessment of lymphocytes correlated well with quantitation of lymphocyte-specific gene expression. Further more, by combining TaqMan and microarray data we found a strong inverse correlation between PDGFC expression and the expression of lymphocyte specific mRNAs. Conclusion At the mRNA level, several members of the PDGF family are differentially expressed in PTCs as compared to normal thyroid tissue. Of these, only the PDGFC mRNA expression level initially seemed to distinguish classical PTCs from the more aggressive PTCs. However, further investigation showed that PDGFC expression level correlated inversely to the expression of several lymphocyte specific genes, and to the presence of lymphocytes in the biopsies. Thus, we find that PDGFC mRNA expression were down-regulated in biopsies containing infiltrated lymphocytes or thyroiditis. No other PDGF family member could be linked to lymphocyte specific gene expression in our collection of PTCs biopsies.
Collapse
Affiliation(s)
- Ove Bruland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
67
|
SLP-76-ADAP adaptor module regulates LFA-1 mediated costimulation and T cell motility. Proc Natl Acad Sci U S A 2009; 106:12436-41. [PMID: 19617540 DOI: 10.1073/pnas.0900510106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although adaptor ADAP (FYB) and its binding to SLP-76 has been implicated in TcR-induced "inside-out" signaling for LFA-1 activation in T cells, little is known regarding its role in LFA-1-mediated "outside-in" signaling. In this study, we demonstrate that ADAP and SLP-76-ADAP binding are coupled to LFA-1 costimulation of IL-2 production, F-actin clustering, cell polarization, and T cell motility. LFA-1 enhancement of anti-CD3-induced IL-2 production was completely dependent on SLP-76-ADAP binding. Further, anti-CD3 was found to require CD11a ligation by antibody or ICAM1 to cause T cell polarization. ADAP augmented this polarization induced by anti-CD3/CD11a, but not by anti-CD3 alone. ADAP expression with LFA-1 ligation alone was sufficient to polarize T cells directly and to increase T cell motility whereas the loss of ADAP in ADAP-/- primary T cells reduced motility. A mutant lacking SLP-76-binding sites (M12) blocked LFA-1 costimulation of IL-2 production, polarization, and motility. LFA-1-ADAP polarization was also dependent on src kinases, Rho GTPases, phospholipase C, and phosphoinositol 3-kinase. Our findings provide evidence of an obligatory role for the SLP-76-ADAP module in LFA-1-mediated costimulation in T cells.
Collapse
|
68
|
Koretzky GA. The Role of SH2 Domain-containing Leukocyte Phosphoprotein of 76 kDa in the Regulation of Immune Cell Development and Function. Immune Netw 2009; 9:75-83. [PMID: 20107536 PMCID: PMC2803302 DOI: 10.4110/in.2009.9.3.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 01/14/2023] Open
Abstract
Recent years have seen an explosion of new knowledge defining the molecular events that are critical for development and activation of immune cells. Much of this new information has come from a careful molecular dissection of key signal transduction pathways that are initiated when immune cell receptors are engaged. In addition to the receptors themselves and critical effector molecules, these signaling pathways depend on adapters, proteins that have no intrinsic effector function but serve instead as scaffolds to nucleate multimolecular complexes. This review summarizes some of what has been learned about one such adapter protein, SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), and how it regulates and integrates signals after engagement of immunoreceptors and integrins on various immune cell lineages.
Collapse
Affiliation(s)
- Gary A Koretzky
- Department of Pathology and Laboratory Medicine and Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
69
|
Holm D, Fink DR, Grønlund J, Hansen S, Holmskov U. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule. Mol Immunol 2009; 46:1663-72. [DOI: 10.1016/j.molimm.2009.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/13/2009] [Indexed: 12/25/2022]
|
70
|
The importance of Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons sterile-alpha motif domain in thymic selection and T-cell activation. Blood 2009; 114:74-84. [PMID: 19401562 DOI: 10.1182/blood-2008-09-177832] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76) is a cytosolic adaptor protein essential for thymocyte development and T-cell activation. It contains a sterile-alpha motif (SAM) domain, 3 phosphotyrosine motifs, a proline-rich region, and a Src homology 2 domain. Whereas the other domains have been extensively studied, the role of the SAM domain in SLP-76 function is not known. To understand the function of this domain, we generated SLP-76 knockin mice with the SAM domain deleted. Analysis of these mice showed that thymocyte development was partially blocked at the double-positive to single-positive transition. Positive and negative thymic selection was also impaired. In addition, we analyzed T-cell receptor (TCR)-mediated signaling in T cells from these mutant mice. TCR-mediated inositol 1,4,5-triphosphate production, calcium flux, and extracellular signal-regulated kinase activation were decreased, leading to defective interleukin-2 production and proliferation. Moreover, despite normal association between Gads and SLP-76, TCR-mediated formation of SLP-76 microclusters was impaired by the deletion of the SAM domain. Altogether, our data demonstrated that the SAM domain is indispensable for optimal SLP-76 signaling.
Collapse
|
71
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
72
|
Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, Eck MJ. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Mol Cell 2009; 32:564-75. [PMID: 19026786 DOI: 10.1016/j.molcel.2008.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 08/12/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
PH domains, by binding to phosphoinositides, often serve as membrane-targeting modules. Using crystallographic, biochemical, and cell biological approaches, we have uncovered a mechanism that the integrin-signaling adaptor Skap-hom uses to mediate cytoskeletal interactions. Skap-hom is a homodimer containing an N-terminal four-helix bundle dimerization domain, against which its two PH domains pack in a conformation incompatible with phosphoinositide binding. The isolated PH domains bind PI[3,4,5]P(3), and mutations targeting the dimerization domain or the PH domain's PI[3,4,5]P(3)-binding pocket prevent Skap-hom localization to ruffles. Targeting is retained when the PH domain is deleted or by combined mutation of the PI[3,4,5]P(3)-binding pocket and the PH/dimerization domain interface. Thus, the dimerization and PH domain form a PI[3,4,5]P(3)-responsive molecular switch that controls Skap-hom function.
Collapse
Affiliation(s)
- Kenneth D Swanson
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Burbach BJ, Srivastava R, Medeiros RB, O'Gorman WE, Peterson EJ, Shimizu Y. Distinct regulation of integrin-dependent T cell conjugate formation and NF-kappa B activation by the adapter protein ADAP. THE JOURNAL OF IMMUNOLOGY 2008; 181:4840-51. [PMID: 18802088 DOI: 10.4049/jimmunol.181.7.4840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following TCR stimulation, T cells utilize the hematopoietic specific adhesion and degranulation-promoting adapter protein (ADAP) to control both integrin adhesive function and NF-kappaB transcription factor activation. We have investigated the molecular basis by which ADAP controls these events in primary murine ADAP(-/-) T cells. Naive DO11.10/ADAP(-/-) T cells show impaired adhesion to OVAp (OVA aa 323-339)-bearing APCs that is restored following reconstitution with wild-type ADAP. Mutational analysis demonstrates that the central proline-rich domain and the C-terminal domain of ADAP are required for rescue of T:APC conjugate formation. The ADAP proline-rich domain is sufficient to bind and stabilize the expression of SKAP55 (Src kinase-associated phosphoprotein of 55 kDa), which is otherwise absent from ADAP(-/-) T cells. Interestingly, forced expression of SKAP55 in the absence of ADAP is insufficient to drive T:APC conjugate formation, demonstrating that both ADAP and SKAP55 are required for optimal LFA-1 function. Additionally, the ADAP proline-rich domain is required for optimal Ag-induced activation of CD69, CD25, and Bcl-x(L), but is not required for assembly of the CARMA1/Bcl10/Malt1 (caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1/B-cell CLL-lymphoma 10/mucosa-associated lymphoid tissue lymphoma translocation protein 1) signaling complex and subsequent TCR-dependent NF-kappaB activity. Our results indicate that ADAP is used downstream of TCR engagement to delineate two distinct molecular programs in which the ADAP/SKAP55 module is required for control of T:APC conjugate formation and functions independently of ADAP/CARMA1-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
74
|
Martín-Cófreces NB, Robles-Valero J, Cabrero JR, Mittelbrunn M, Gordón-Alonso M, Sung CH, Alarcón B, Vázquez J, Sánchez-Madrid F. MTOC translocation modulates IS formation and controls sustained T cell signaling. ACTA ACUST UNITED AC 2008; 182:951-62. [PMID: 18779373 PMCID: PMC2528574 DOI: 10.1083/jcb.200801014] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The translocation of the microtubule-organizing center (MTOC) toward the nascent immune synapse (IS) is an early step in lymphocyte activation initiated by T cell receptor (TCR) signaling. The molecular mechanisms that control the physical movement of the lymphocyte MTOC remain largely unknown. We have studied the role of the dynein–dynactin complex, a microtubule-based molecular motor, in the process of T cell activation during T cell antigen–presenting cell cognate immune interactions. Impairment of dynein–dynactin complex activity, either by overexpressing the p50-dynamitin component of dynactin to disrupt the complex or by knocking down dynein heavy chain expression to prevent its formation, inhibited MTOC translocation after TCR antigen priming. This resulted in a strong reduction in the phosphorylation of molecules such as ζ chain–associated protein kinase 70 (ZAP70), linker of activated T cells (LAT), and Vav1; prevented the supply of molecules to the IS from intracellular pools, resulting in a disorganized and dysfunctional IS architecture; and impaired interleukin-2 production. Together, these data reveal MTOC translocation as an important mechanism underlying IS formation and sustained T cell signaling.
Collapse
Affiliation(s)
- Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Arana E, Harwood NE, Batista FD. Regulation of integrin activation through the B-cell receptor. J Cell Sci 2008; 121:2279-86. [PMID: 18596256 DOI: 10.1242/jcs.017905] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective immune surveillance is absolutely dependent on the migration of lymphocytes throughout the body and on their successful recognition of specific antigens. Both of these functions rely on the capacity of integrins that are expressed on the surface of lymphocytes to respond in a highly regulated manner to a variety of chemokines and antigens. This Commentary is primarily concerned with the role of the B-cell integrins LFA-1 and VLA-4 in the antigen-recognition process, and summarises what is currently known about the molecular mechanisms of ;inside-out' integrin activation in response to B-cell-receptor stimulation. Recent investigations have identified Vav, PI3K and small GTPases as crucial regulators of the inside-out activation of B-cell integrins. These observations are of particular interest as they allude to an underlying mechanism by which B-cell-receptor-mediated signalling is linked to cytoskeleton reorganisation and subsequent integrin activation.
Collapse
Affiliation(s)
- Eloisa Arana
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK
| | | | | |
Collapse
|
76
|
Zou L, Mendez F, Martin-Orozco N, Peterson EJ. Defective positive selection results in T cell lymphopenia and increased autoimmune diabetes in ADAP-deficient BDC2.5-C57BL/6 mice. Eur J Immunol 2008; 38:986-94. [PMID: 18383041 DOI: 10.1002/eji.200737881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adhesion and degranulation promoting adapter protein (ADAP), a positive regulator of T cell receptor (TCR) signaling, is required for thymocyte development and T cell homeostasis. To investigate the role of ADAP in a T cell-driven autoimmune response, we generated ADAP-deficient, BDC2.5 TCR transgenic, diabetes-prone (C57BL/6) mice (BDC/B6). We observed a striking enhancement of diabetes incidence in ADAP-deficient mice, both in animals homozygous for I-Ag7, and in mice carrying one I-Ab allele (BDC/B6g7/b). Increased disease correlates with significantly reduced numbers of pathological CD4(+) T cells in the mice. Consistent with a state of functional lymphopenia in ADAP-deficient BDC/B6g7/b mice, T cells display increased homeostatic proliferation. Transfer of syngeneic lymphocytes or T cells both blocks ADAP-dependent diabetes and relieves exaggerated homeostatic T cell proliferation observed in ADAP-deficient mice. Marked attenuation in cellularity of the CD4+ single-positive thymocyte compartment in ADAP-deficient BDC/B6g7/b animals suggests a mechanism for induction of the lymphopenia. We conclude that inefficient positive selection in ADAP deficiency results in lymphopenia that leads to enhanced autoimmune diabetes in the BDC/B6g7/b model. Our findings support the notion that ineffective thymic T cell output can be a powerful causative factor in lymphopenia-driven autoimmune diabetes.
Collapse
Affiliation(s)
- Liangxing Zou
- Department of Internal Medicine and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
77
|
Dluzniewska J, Zou L, Harmon IR, Ellingson MT, Peterson EJ. Immature hematopoietic cells display selective requirements for adhesion- and degranulation-promoting adaptor protein in development and homeostatsis. Eur J Immunol 2007; 37:3208-19. [PMID: 17948263 DOI: 10.1002/eji.200737094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adhesion- and degranulation-promoting adaptor protein (ADAP) modulates T cell development and function and promotes TCR signaling. Regulation of ADAP protein expression during thymopoiesis and in development of other hematopoietic lineages has not been explored. Using intracellular staining, we detected ADAP protein in bone marrow lymphocyte precursors. Like its binding partner SH2-containing leukocyte phosphoprotein of 76 kDa, ADAP is dynamically regulated during thymocyte positive selection. ADAP is also found in unconventional thymocytes, including NKT, CD8alphaalpha, and TCRgammadelta T cells. In peripheral T cells, ADAP is up-regulated after TCR stimulation and with acquisition of memory status. Although absent in splenic B cells, ADAP is present in pro-B cells, as well as in BM erythrocyte and myeloid progenitors. Studies with radiation chimeras show that ADAP is dispensable for NKT, CD8alphaalpha and TCRgammadelta T cell development, while confirming that ADAP is required for optimal development of conventional TCRalphabeta T cells in the thymus. Interestingly, ADAP is necessary for CD8alphaalpha homeostasis in the small intestinal epithelium, yet is dispensable for optimal reconstitution of splenic B cell populations. Our observations highlight the dynamic regulation of ADAP during T cell maturation and document expression patterns that suggest a possible role for ADAP in development of non-T hematopoietic lineages.
Collapse
Affiliation(s)
- Joanna Dluzniewska
- Department of Internal Medicine and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
78
|
Mueller KL, Thomas MS, Burbach BJ, Peterson EJ, Shimizu Y. Adhesion and degranulation-promoting adapter protein (ADAP) positively regulates T cell sensitivity to antigen and T cell survival. THE JOURNAL OF IMMUNOLOGY 2007; 179:3559-69. [PMID: 17785790 DOI: 10.4049/jimmunol.179.6.3559] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hemopoietic specific adapter protein ADAP (adhesion and degranulation-promoting adapter protein) positively regulates TCR-dependent, integrin-mediated adhesion and participates in signaling pathways downstream of the TCR that result in T cell activation. The specific role of ADAP in regulating Ag-dependent T cell interactions with APCs and T cell activation following Ag stimulation is not known. We used ADAP-/- DO11.10 T cells to demonstrate that ADAP promotes T cell conjugation to Ag-laden APCs. Complementary in vitro and in vivo approaches reveal that ADAP controls optimal T cell proliferation, cytokine production, and expression of the prosurvival protein Bcl-xL in response to limiting Ag doses. Furthermore, ADAP is critical for clonal expansion in vivo independent of Ag concentration under conditions of low clonal abundance. These results suggest that ADAP regulates T cell activation by promoting Ag-dependent T cell-APC interactions, resulting in enhanced T cell sensitivity to Ag, and by participating in prosurvival signaling pathways initiated by Ag stimulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigen Presentation/immunology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion/immunology
- Cell Degranulation/immunology
- Cell Proliferation
- Cell Survival/immunology
- Cells, Cultured
- Clone Cells
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Integrins/physiology
- Interleukin-2/biosynthesis
- Interleukin-2 Receptor alpha Subunit/biosynthesis
- Lectins, C-Type
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Kristen L Mueller
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
79
|
Jordan MS, Maltzman JS, Kliche S, Shabason J, Smith JE, Obstfeld A, Schraven B, Koretzky GA. In vivo disruption of T cell development by expression of a dominant-negative polypeptide designed to abolish the SLP-76/Gads interaction. Eur J Immunol 2007; 37:2961-72. [PMID: 17823979 DOI: 10.1002/eji.200636855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multi-molecular complexes nucleated by adaptor proteins play a central role in signal transduction. In T cells, one central axis consists of the assembly of several signaling proteins linked together by the adaptors linker of activated T cells (LAT), Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), and Grb2-related adaptor downstream of Shc (Gads). Each of these adaptors has been shown to be important for normal T cell development, and their proper sub-cellular localization is critical for optimal function in cell lines. We previously demonstrated in Jurkat T cells and a rat basophilic leukemic cell line that expression of a 50-amino acid polypeptide identical to the site on SLP-76 that binds to Gads blocks proper localization of SLP-76 and SLP-76-dependent signaling events. Here we extend these studies to investigate the ability of this polypeptide to inhibit TCR-induced integrin activity in Jurkat cells and to inhibit in vivo thymocyte development and primary T cell function. These data provide evidence for the in vivo function of a dominant-negative peptide based upon the biology of SLP-76 action and suggest the possibility of therapeutic potential of targeting the SLP-76/Gads interaction.
Collapse
Affiliation(s)
- Martha S Jordan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
81
|
Abstract
Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-gamma1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
82
|
Ménasché G, Kliche S, Bezman N, Schraven B. Regulation of T-cell antigen receptor-mediated inside-out signaling by cytosolic adapter proteins and Rap1 effector molecules. Immunol Rev 2007; 218:82-91. [PMID: 17624945 DOI: 10.1111/j.1600-065x.2007.00543.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integrins are critical for the migration of T cells to lymphoid organs and to sites of inflammation and are also necessary for productive interactions between T cells and antigen-presenting cells. Integrin activation is enhanced following T-cell receptor (TCR) engagement, as signals initiated by the TCR increase affinity and avidity of integrins for their ligands. This process, known as inside-out signaling, has been shown to require several molecular components including the cytosolic adapter proteins adhesion and degranulation-promoting adapter protein and Src homology 2 domain-containing adapter protein of 55 kDa, the low molecular weight guanosine triphosphatase Rap1, and the Rap1 effector proteins Rap1 guanosine triphosphate-interacting adapter molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues, and protein kinase D1. Herein, we review recent findings about how the TCR is linked to integrin activation through inside-out signaling.
Collapse
Affiliation(s)
- Gaël Ménasché
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
83
|
Wang H, Liu H, Lu Y, Lovatt M, Wei B, Rudd CE. Functional defects of SKAP-55-deficient T cells identify a regulatory role for the adaptor in LFA-1 adhesion. Mol Cell Biol 2007; 27:6863-75. [PMID: 17646386 PMCID: PMC2099233 DOI: 10.1128/mcb.00556-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ADAP-SKAP-55 module regulates T-cell receptor (TCR)-induced integrin clustering and adhesion in T cells. However, it has been unclear whether ADAP and/or SKAP-55 is an effector of the response. ADAP controls SKAP-55 expression such that ADAP(-/-) T cells are also deficient in SKAP-55 expression. In this study, we report the phenotype of the SKAP-55-deficient mouse. SKAP-55(-/-) T cells retain ADAP expression yet show defects in beta1 and beta2 integrin adhesion, leukocyte function-associated antigen 1 (LFA-1) clustering, production of the cytokines interleukin-2 and gamma interferon, and proliferation. This dependency was also reflected in more-transient conjugation times in response to the superantigen staphylococcal enterotoxin A on dendritic cells and a reduced number of cells with TCR/CD3 microcluster localization at the immunological synapse. SKAP-55(-/-) T cells showed the same general impairment of function as ADAP(-/-) T cells, indicating that SKAP-55 is an effector of the ADAP-SKAP-55 module. At the same time, the requirement for ADAP and SKAP-55 was not absolute, since a subset of peripheral T cells adhered with loss of expression of either adaptor. Further, dependency on SKAP-55 or ADAP differed with the strength of the TCR signal. As with the ADAP(-/-) mouse, SKAP-55-deficient mice showed no major effects on lymphoid development or the appearance of peripheral T cells, B cells, and NK cells. Our findings identify a clear effector role for SKAP-55 in LFA-1 adhesion in peripheral T cells and demonstrate that dependency on SKAP-55 and ADAP differs among T cells and differs with the strength of the TCR signal.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
84
|
Ménasché G, Kliche S, Chen EJH, Stradal TEB, Schraven B, Koretzky G. RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation. Mol Cell Biol 2007; 27:4070-81. [PMID: 17403904 PMCID: PMC1900018 DOI: 10.1128/mcb.02011-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One outcome of T-cell receptor (TCR) signaling is increased affinity and avidity of integrins for their ligands. This occurs through a process known as inside-out signaling, which has been shown to require several molecular components including the adapter proteins ADAP (adhesion and degranulation-promoting adapter protein) and SKAP-55 (55-kDa src kinase-associated phosphoprotein) and the small GTPase Rap1. Herein, we provide evidence linking ADAP and SKAP-55 to RIAM, a recently described adapter protein that binds selectively to active Rap1. We identified RIAM as a key component linking the ADAP/SKAP-55 module to the small GTPase Rap1, facilitating TCR-mediated integrin activation. We show that RIAM constitutively interacts with SKAP-55 in both a heterologous transfection system and primary T cells and map the region essential for this interaction. Additionally, we find that the SKAP-55/RIAM complex is essential both for TCR-mediated adhesion and for efficient conjugate formation between T cells and antigen-presenting cells. Mechanistic studies revealed that the ADAP/SKAP-55 module relocalized RIAM and Rap1 to the plasma membrane following TCR activation to facilitate integrin activation. These results describe for the first time a link between ADAP/SKAP-55 and the Rap1/RIAM complex and provide a potential new mechanism for TCR-mediated integrin activation.
Collapse
Affiliation(s)
- Gaël Ménasché
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 415 BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
85
|
Round JL, Humphries LA, Tomassian T, Mittelstadt P, Zhang M, Miceli MC. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-kappaB transcription factors. Nat Immunol 2006; 8:154-61. [PMID: 17187070 DOI: 10.1038/ni1422] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 11/08/2006] [Indexed: 11/09/2022]
Abstract
Tyrosine kinases couple the T cell receptor (TCR) to discrete signaling cascades, each of which is capable of inducing a distinct functional outcome. Precisely how TCR signals are channeled toward specific targets remains unclear. TCR stimulation triggers 'alternative' activation of the mitogen-activated protein kinase p38, whereby the Lck and Zap70 tyrosine kinases directly activate p38. Here we report that alternatively activated p38 associated with the Dlgh1 MAGUK scaffold protein. 'Knockdown' of Dlgh1 expression blocked TCR-induced activation of p38 and the transcription factor NFAT but not of the mitogen-activated protein kinase Jnk or transcription factor NF-kappaB. A Dlgh1 mutant incapable of binding p38 failed to activate NFAT. Along with reports that the CARMA1 MAGUK scaffold protein coordinates activation of Jnk and NF-kappaB but not of p38 or NFAT, our findings identify MAGUK scaffold proteins as 'orchestrators' of TCR signal specificity.
Collapse
Affiliation(s)
- June L Round
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90066, USA
| | | | | | | | | | | |
Collapse
|
86
|
Klemm C, Otto S, Wolf C, Haseloff RF, Beyermann M, Krause E. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1623-32. [PMID: 17089331 DOI: 10.1002/jms.1129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The affinity of titanium dioxide for phosphate groups has been successfully used for enrichment of phosphopeptides from complex mixtures. This paper reports the relationship between the occurrence of some amino acids and the phospho-specific and nonspecific binding of peptides that occurs during titanium dioxide enrichment. In order to perform a systematic study, two well-characterized peptide mixtures consisting of either 33 or 8 synthetic phosphopeptides and their nonphosphorylated analogs, which differed in charge and hydrophobicity, were synthesized and analyzed by ESI-MS and MALDI-MS. The titanium dioxide procedure was also evaluated for comprehensive detection of phosphopeptides in phosphoproteomics. In summary, our results clearly confirm the high selectivity of titanium dioxide for phosphorylated sequences. Drastically reduced recovery was observed for phosphopeptides with multiple basic amino acids. Nonspecific binding of nonphosphorylated peptides and sample loss of phosphopeptides must also be taken into account.
Collapse
Affiliation(s)
- Clementine Klemm
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Bunnell SC, Singer AL, Hong DI, Jacque BH, Jordan MS, Seminario MC, Barr VA, Koretzky GA, Samelson LE. Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol Cell Biol 2006; 26:7155-66. [PMID: 16980618 PMCID: PMC1592897 DOI: 10.1128/mcb.00507-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen recognition triggers the recruitment of the critical adaptor protein SLP-76 to small macromolecular clusters nucleated by the T-cell receptor (TCR). These structures develop rapidly, in parallel with TCR-induced increases in tyrosine phosphorylation and cytosolic calcium, and are likely to contribute to TCR-proximal signaling. Previously, we demonstrated that these SLP-76-containing clusters segregate from the TCR and move towards the center of the contact interface. Neither the function of these clusters nor the structural requirements governing their persistence have been examined extensively. Here we demonstrate that defects in cluster assembly and persistence are associated with defects in T-cell activation in the absence of Lck, ZAP-70, or LAT. Clusters persist normally in the absence of phospholipase C-gamma1, indicating that in the absence of a critical effector, these structures are insufficient to drive T-cell activation. Furthermore, we show that the critical adaptors LAT and Gads localize with SLP-76 in persistent clusters. Mutational analyses of LAT, Gads, and SLP-76 indicated that multiple domains within each of these proteins contribute to cluster persistence. These data indicate that multivalent cooperative interactions stabilize these persistent signaling clusters, which may correspond to the functional complexes predicted by kinetic proofreading models of T-cell activation.
Collapse
Affiliation(s)
- Stephen C Bunnell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kliche S, Breitling D, Togni M, Pusch R, Heuer K, Wang X, Freund C, Kasirer-Friede A, Menasche G, Koretzky GA, Schraven B. The ADAP/SKAP55 signaling module regulates T-cell receptor-mediated integrin activation through plasma membrane targeting of Rap1. Mol Cell Biol 2006; 26:7130-44. [PMID: 16980616 PMCID: PMC1592884 DOI: 10.1128/mcb.00331-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adhesion of T cells after stimulation of the T-cell receptor (TCR) is mediated via signaling processes that have collectively been termed inside-out signaling. The molecular basis for inside-out signaling is not yet completely understood. Here, we show that a signaling module comprising the cytosolic adapter proteins ADAP and SKAP55 is involved in TCR-mediated inside-out signaling and, moreover, that the interaction between ADAP and SKAP55 is mandatory for integrin activation. Disruption of the ADAP/SKAP55 module leads to displacement of the small GTPase Rap1 from the plasma membrane without influencing its GTPase activity. These findings suggest that the ADAP/SKAP55 complex serves to recruit activated Rap1 to the plasma membrane. In line with this hypothesis is the finding that membrane targeting of the ADAP/SKAP55 module induces T-cell adhesion in the absence of TCR-mediated stimuli. However, it appears as if the ADAP/SKAP55 module can exert its signaling function outside of the classical raft fraction of the cell membrane.
Collapse
Affiliation(s)
- Stefanie Kliche
- Institute of Immunology, Otto von Guericke University, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol Cell Biol 2006; 26:6936-49. [PMID: 16943434 PMCID: PMC1592869 DOI: 10.1128/mcb.01040-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syk tyrosine kinase and Src homology 2 (SH2) domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) are signaling mediators activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing immunoreceptors and integrins. While the signaling cascades descending from integrins are similar to immunoreceptors, the mechanism of Syk activation and SLP-76 recruitment remains unclear. We used an in vivo structure-function approach to study the requirements for the domains of Syk and SLP-76 in immunoreceptor and integrin signaling. We found that both SH2 domains and the kinase domain of Syk are required for immunoreceptor-dependent signaling and cellular response via integrins. While the Gads-binding domain of SLP-76 is needed for immunoreceptor signaling, it appears dispensable for integrin signaling. Syk and SLP-76 also are required for initiating and/or maintaining separation between the blood and lymphatic vasculature. Therefore, we correlated the signaling requirement of the various domains of Syk and SLP-76 to their requirement in regulating vascular separation. Our data suggest ITAMs are required in Syk-dependent integrin signaling, demonstrate the separation of the structural features of SLP-76 to selectively support immunoreceptor versus integrin signaling, and provide evidence that the essential domains of SLP-76 for ITAM signals are those which most efficiently support separation between lymphatic and blood vessels.
Collapse
Affiliation(s)
- Farhad Abtahian
- Signal Transduction Program, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Kasirer-Friede A, Moran B, Nagrampa-Orje J, Swanson K, Ruggeri ZM, Schraven B, Neel BG, Koretzky G, Shattil SJ. ADAP is required for normal alphaIIbbeta3 activation by VWF/GP Ib-IX-V and other agonists. Blood 2006; 109:1018-25. [PMID: 17003372 PMCID: PMC1785130 DOI: 10.1182/blood-2006-05-022301] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interaction between von Willebrand factor (VWF) and platelet GP Ib-IX-V is required for hemostasis, in part because intracellular signals from VWF/GP Ib-IX-V activate the ligand-binding function of integrin alphaIIbbeta3. Because they also induce tyrosine phosphorylation of the ADAP adapter, we investigated ADAP's role in GP Ib-IX-V signal transduction. Fibrinogen or ligand-mimetic POW-2 Fab binding to alphaIIbbeta3 was stimulated by adhesion of ADAP+/+ murine platelets to dimeric VWF A1A2 but was significantly reduced in ADAP-/- platelets (P<.01). alphaIIbbeta3 activation by ADP or a Par4 thrombin receptor agonist was also decreased in ADAP-/- platelets. ADAP stabilized the expression of another adapter, SKAP-HOM, via interaction with the latter's SH3 domain. However, no abnormalities in alphaIIbbeta3 activation were observed in SKAP-HOM-/- platelets, which express normal ADAP levels, further implicating ADAP as a modulator of alphaIIbbeta3 function. Under shear flow conditions over a combined surface of VWF A1A2 and fibronectin to test interactions involving GP Ib-IX-V and alphaIIbbeta3, respectively, ADAP-/- platelets displayed reduced alphaIIbbeta3-dependent stable adhesion. Furthermore, ADAP-/- mice demonstrated increased rebleeding from tail wounds. These studies establish ADAP as a component of inside-out signaling pathways that couple GP Ib-IX-V and other platelet agonist receptors to alphaIIbbeta3 activation.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla 92093-0726, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hassan NJ, Simmonds SJ, Clarkson NG, Hanrahan S, Puklavec MJ, Bomb M, Barclay AN, Brown MH. CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76. Mol Cell Biol 2006; 26:6727-38. [PMID: 16914752 PMCID: PMC1592849 DOI: 10.1128/mcb.00688-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deciphering the role of lymphocyte membrane proteins depends on dissecting the role of a protein in the steady state and on engagement with its ligand. We show that expression of CD6 in T cells limits their responsiveness but that engagement by the physiological ligand CD166 gives costimulation. This costimulatory effect of CD6 is mediated through phosphorylation-dependent binding of a specific tyrosine residue, 662Y, in its cytoplasmic region to the adaptor SLP-76. A direct interaction between SLP-76 and CD6 was shown by binding both to a phosphorylated peptide (equilibrium dissociation constant [K(D)] = 0.5 muM at 37 degrees C) and, using a novel approach, to native phosphorylated CD6. Evidence that CD6 and SLP-76 interact in cells was obtained in coprecipitation experiments with normal human T cells. Analysis of human CD6 mutants in a murine T-cell hybridoma model showed that both costimulation by CD6 and the interaction between CD6 and SLP-76 were dependent on 662Y. The results have implications for regulation by CD6 and the related T-cell surface protein, CD5.
Collapse
Affiliation(s)
- Namir J Hassan
- Sir William Dunn School of Pathology, South Parks Rd., Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, Poenie M. Recruitment of dynein to the Jurkat immunological synapse. Proc Natl Acad Sci U S A 2006; 103:14883-8. [PMID: 16990435 PMCID: PMC1595445 DOI: 10.1073/pnas.0600914103] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton.
Collapse
Affiliation(s)
- Jeffrey Combs
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Soo Jin Kim
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Sarah Tan
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
| | - Lee A. Ligon
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeffrey Kuhn
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Martin Poenie
- *Department of Molecular Cell and Developmental Biology, University of Texas, 1 University Station, MC C0930, Austin, TX 78712
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
93
|
Wu JN, Gheith S, Bezman NA, Liu QH, Fostel LV, Swanson AM, Freedman BD, Koretzky GA, Peterson EJ. Adhesion- and degranulation-promoting adapter protein is required for efficient thymocyte development and selection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6681-9. [PMID: 16709827 DOI: 10.4049/jimmunol.176.11.6681] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adhesion- and degranulation-promoting adapter protein (ADAP) is required in TCR-induced activation and proliferation of peripheral T cells. Loss of ADAP also impairs TCR-initiated inside-out activation of the integrin LFA-1 (CD11a/CD18, alphaLbeta2). In this study, we demonstrate that ADAP-deficient CD4/CD8 double-positive (DP) cells have a diminished ability to proliferate, and that these DP thymocytes up-regulate CD69 poorly in vivo. Moreover, in both MHC class I- and class II-restricted TCR transgenic models, loss of ADAP interferes with both positive and negative selection. ADAP deficiency also impairs the ability of transgene-bearing DP thymocytes to form conjugates with Ag-loaded presenting cells. These findings suggest that ADAP is critical for thymocyte development and selection.
Collapse
Affiliation(s)
- Jennifer N Wu
- Abramson Family Cancer Research Institute and Department of Laboratory Medicine and Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Niklaus AL, Pollard JW. Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology 2006; 147:3375-90. [PMID: 16627586 DOI: 10.1210/en.2005-1665] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epithelia coat most tissues where they sense and respond to the environment and participate in innate immune responses. In the adult mouse uterus, columnar epithelium lines the central lumen and the glands that penetrate the underlying stroma. A nidatory surge of estrogen causes differentiation of the luminal epithelium to the receptive state that permits blastocyst attachment and allows subsequent implantation. Here, using laser-capture microdissection to isolate the luminal and glandular epithelia separately, we have profiled gene expression 2 h before embryo attachment to determine whether there are unique roles for these two epithelial structures in this process. Although most genes were expressed in both compartments, there was greater expression of 153 and 118 genes in the lumen and glands, respectively. In the luminal epithelium, there is enrichment in lipid, metal-ion binding, and carbohydrate-metabolizing enzymes, whereas in the glands, immune response genes are emphasized. In situ hybridization to uterine sections obtained from mice during the preimplantation period validated these data and indicated an array of previously undocumented genes expressed with unique patterns in these epithelia. The data show that each epithelial compartment has a distinct molecular signature and that they act differentially and synergistically to permit blastocyst implantation.
Collapse
Affiliation(s)
- Andrea L Niklaus
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
95
|
Heuer K, Sylvester M, Kliche S, Pusch R, Thiemke K, Schraven B, Freund C. Lipid-binding hSH3 domains in immune cell adapter proteins. J Mol Biol 2006; 361:94-104. [PMID: 16831444 DOI: 10.1016/j.jmb.2006.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
SH3 domains represent versatile scaffolds within eukaryotic cells by targeting proline-rich sequences within intracellular proteins. More recently, binding of SH3 domains to unusual peptide motifs, folded proteins or lipids has been reported. Here we show that the newly defined hSH3 domains of immune cell adapter proteins bind lipid membranes with distinct affinities. The interaction of the hSH3 domains of adhesion and degranulation promoting adapter protein (ADAP) and PRAM-1 (Promyelocytic-Retinoic acid receptor alpha target gene encoding an Adaptor Molecule-1), with phosphatidylcholine-containing liposomes is observed upon incorporation of phosphatidylserine (PS) or phosphoinositides (PIs) into the membrane bilayer. Mechanistically we show that stable association of the N-terminal, amphipathic helix with the beta-sheet scaffold favours lipid binding and that the interaction with PI(4,5)P(2)-containing liposomes is consistent with a single-site, non-cooperative binding mechanism. Functional investigations indicate that deletion of both amphipathic helices of the hSH3 domains reduces the ability of ADAP to enhance adhesion and migration in stimulated T cells.
Collapse
Affiliation(s)
- Katja Heuer
- Protein Engineering Group, Leibniz Institute of Molecular Pharmacology and Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Duke-Cohan JS, Kang H, Liu H, Rudd CE. Regulation and Function of SKAP-55 Non-canonical Motif Binding to the SH3c Domain of Adhesion and Degranulation-promoting Adaptor Protein. J Biol Chem 2006; 281:13743-13750. [PMID: 16461356 DOI: 10.1074/jbc.m508774200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immune cell adaptor adhesion and degranulation promoting adaptor protein (ADAP) and its binding to T-cell adaptor Src kinase-associated protein of 55 kDa (SKAP-55) play a key role in the modulation of T-cell adhesion. While primary binding occurs via SKAP-55 SH3 domain binding to a proline-rich region in ADAP, a second interaction occurs between the ADAP C-terminal SH3 domain (ADAP-SH3c) and a non-canonical RKXXY294XXY297 motif in SKAP-55. Increasing numbers of non-canonical SH3 domain binding motifs have been identified in a number of biological systems. The presence of tyrosine residues in the SKAP-55 RKXXY294XXY297 motif suggested that phosphorylation might influence this unusual SH3 domain interaction. Here, we show that the Src kinase p59fyn can induce the in vivo phosphorylation of the motif, and this event blocks ADAP-SH3c domain binding to the peptide motif. The importance of tyrosine phosphorylation was confirmed by plasmon resonance interaction analysis showing that phosphorylation of Tyr294 residue plays a central role in mediating dissociation, whereas phosphorylation of the second Tyr297 had no effect. Although loss of this secondary interaction did not result in the disruption of the complex, the Y294F mutation blocked T-cell receptor-induced up-regulation of lymphocyte function-associated antigen-1-mediated adhesion to intercellular adhesion molecule-1 and interleukin-2 promoter activity. Our findings identify a RKXXY294 motif in SKAP-55 that mediates unique ADAP SH3c domain binding and is needed for LFA-1-mediated adhesion and cytokine production.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts 02115.
| | - Hyun Kang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hebin Liu
- Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | - Christopher E Rudd
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115; Molecular Immunology Section, Department of Immunology, Division of Investigative Sciences, Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom.
| |
Collapse
|
97
|
Silverman MA, Shoag J, Wu J, Koretzky GA. Disruption of SLP-76 interaction with Gads inhibits dynamic clustering of SLP-76 and FcepsilonRI signaling in mast cells. Mol Cell Biol 2006; 26:1826-38. [PMID: 16479002 PMCID: PMC1430252 DOI: 10.1128/mcb.26.5.1826-1838.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.
Collapse
Affiliation(s)
- Michael A Silverman
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
98
|
Jordan MS, Sadler J, Austin JE, Finkelstein LD, Singer AL, Schwartzberg PL, Koretzky GA. Functional hierarchy of the N-terminal tyrosines of SLP-76. THE JOURNAL OF IMMUNOLOGY 2006; 176:2430-8. [PMID: 16456002 DOI: 10.4049/jimmunol.176.4.2430] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Leonard and Madlyn Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Koretzky GA, Abtahian F, Silverman MA. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol 2006; 6:67-78. [PMID: 16493428 DOI: 10.1038/nri1750] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SLP76 and SLP65 are adaptor proteins that lack intrinsic enzymatic activity but contain multiple protein-binding domains. These proteins are essential for signalling downstream of integrins and receptors that contain immunoreceptor tyrosine-based activation motifs. The absence of these adaptor proteins profoundly affects various lineages in the haematopoietic compartment and severely compromises vascular development, highlighting their importance as regulators of signalling cascades. In this Review, we discuss the role of SLP76 and SLP65 in several signalling pathways in haematopoietic cells, with an emphasis on recent studies that provide insight into their mechanisms of action.
Collapse
Affiliation(s)
- Gary A Koretzky
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 415 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
100
|
Okabe S, Tauchi T, Ohyashiki K, Broxmeyer HE. Stromal-cell-derived factor-1/CXCL12-induced chemotaxis of a T cell line involves intracellular signaling through Cbl and Cbl-b and their regulation by Src kinases and CD45. Blood Cells Mol Dis 2006; 36:308-14. [PMID: 16503409 DOI: 10.1016/j.bcmd.2005.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 11/18/2022]
Abstract
Stromal-cell-derived factor-1alpha (SDF-1alpha/CXCL12) is a potent chemoattractant for T cells. We report that Cbl family members, Cbl and Cbl-b, are tyrosine-phosphorylated after SDF-1alpha/CXCL12 stimulation of Jurkat T cells. Enhanced phosphorylation of Cbl and Cbl-b was regulated by src family kinases, and perhaps Fyn. Activated Cbl and Cbl-b interacted with Crk-L, Zap-70, Nck, PLC-gamma and Fyb after SDF-1alpha/CXCL12 stimulation, implicating association of these proteins in SDF-1alpha/CXCL12 actions. SDF-1alpha/CXCL12 did not induce tyrosine phosphorylation of Cbl or Cbl-b in Lck-deficient T cell line J.CaM1.6 or CD45-deficient T cell line J45.01. Thus, Lck Src kinase and tyrosine phosphatase CD45 are likely involved in regulating activation of Cbl family members. A functional role for Cbl and Cbl-b in migration was demonstrated by the decrease in SDF-1/CXCL12-induced migration in a T cell line in which transfected small interfering RNA for Cbl and Cbl-b decreased expression of Cbl and Cbl-b, but not MAPK activity. SDF-1alpha/CXCL12-induced chemotaxis was greatly reduced in the CD45-deficient T cell line. Our results implicate CD45, Cbl, Cbl-b, src kinases and potentially other associated proteins as mediators of SDF-1alpha/CXCL12-induced cell migration of Jurkat T cells.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Microbiology/Immunology and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|