51
|
Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet 2018; 14:e1007682. [PMID: 30296255 PMCID: PMC6200258 DOI: 10.1371/journal.pgen.1007682] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. In all SOD1 ALS patients, cholinergic spinal motor neurons degenerate, but degeneration of cortical glutamatergic neurons is less common. Despite decades of work, it remains unclear why some disease alleles (e.g. A4V) primarily affect cholinergic spinal neurons, while other alleles affect both cholinergic and glutamatergic neurons. New genome editing techniques allowed us to create the first C. elegans knock-in/single-copy models for SOD1 ALS by directly editing the C. elegans sod-1 gene to recreate SOD1 amino acid changes that cause ALS in patients. These new models are complementary to previously described overexpression models, which revealed mutant SOD1 toxic gain of function properties. By contrast, in the new C. elegans knock-in models, we find that both loss and gain of sod-1 function contribute to neurodegeneration. C. elegans cholinergic motor neuron loss is primarily driven by toxic gain of function, but glutamatergic neuron loss is primarily driven by loss of function. Only cholinergic and glutamatergic neurons degenerate in C. elegans knock-in models; dopaminergic, serotoninergic and GABAergic neurons do not. This pattern of neuronal loss is reminiscent of the pattern of neuronal loss seen in SOD1 ALS patients. Strikingly, in the C. elegans A4V model, only cholinergic neurons are lost. Our results suggest that an underlying premise of the ALS field–that identical pathological mechanisms lead to degeneration of cholinergic and glutamatergic neurons–should be reconsidered. Mechanisms that predominantly drive glutamatergic and cholinergic neuron degeneration in ALS may not be identical.
Collapse
|
52
|
|
53
|
Rudich P, Lamitina T. Models and mechanisms of repeat expansion disorders: a worm's eye view. J Genet 2018; 97:665-677. [PMID: 30027902 PMCID: PMC6482835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inappropriate genetic expansion of various repetitive DNA sequences underlies over 20 distinct inherited diseases. The genetic context of these repeats in exons, introns and untranslated regions has played a major role in thinking about the mechanisms by which various repeat expansions might cause disease. Repeat expansions in exons are thought to give rise to expanded toxic protein repeats (i.e. polyQ). Repeat expansions in introns and UTRs (i.e. FXTAS) are thought to produce aberrant repeat-bearing RNAs that interact with and sequester a wide variety of essential proteins, resulting in cellular toxicity. However, a new phenomenon termed 'repeat-associated nonAUG dependent (RAN) translation' paints a new and unifying picture of how distinct repeat expansion-bearing RNAs might act as substrates for this noncanonical form of translation, leading to the production of a wide range of repeat sequence-specific-encoded toxic proteins. Here, we review how the model system Caenorhabditis elegans has been utilized to model many repeat disorders and discuss how RAN translation could be a previously unappreciated contributor to the toxicity associated with these different models.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| | | |
Collapse
|
54
|
Zhao Y, Zurawel AA, Jenkins NP, Duennwald ML, Cheng C, Kettenbach AN, Supattapone S. Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Sci Rep 2018; 8:9554. [PMID: 29934597 PMCID: PMC6015068 DOI: 10.1038/s41598-018-27900-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria.
Collapse
Affiliation(s)
- Yanding Zhao
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Ashley A Zurawel
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Nicole P Jenkins
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Martin L Duennwald
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Chao Cheng
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
- Biomedical Data Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Surachai Supattapone
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
- Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
| |
Collapse
|
55
|
Jang M, Lee SE, Cho IH. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease. Front Cell Neurosci 2018; 12:157. [PMID: 29946240 PMCID: PMC6005874 DOI: 10.3389/fncel.2018.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
56
|
Peskett TR, Rau F, O'Driscoll J, Patani R, Lowe AR, Saibil HR. A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Mol Cell 2018; 70:588-601.e6. [PMID: 29754822 PMCID: PMC5971205 DOI: 10.1016/j.molcel.2018.04.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.
Collapse
Affiliation(s)
- Thomas R Peskett
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| | - Frédérique Rau
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan O'Driscoll
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London, WC1N 3BG, UK; The Francis Crick Institute, London, NW1 1AT, UK
| | - Alan R Lowe
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK; London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
57
|
Wang X, Cao M, Dong Y. Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer's disease. Oncotarget 2018; 7:54183-54193. [PMID: 27472466 PMCID: PMC5342333 DOI: 10.18632/oncotarget.10857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that dietary intervention may promote health and help prevent Alzheimer's disease (AD). We recently reported that bee products of royal jelly (RJ) and enzyme-treated royal jelly (eRJ) were potent to promote healthy aging in C. elegans. Here, we examined whether RJ/eRJ consumption may benefit to mitigate the AD symptom in the disease model of C. elegans. Our results showed that RJ/eRJ supplementation significantly delayed the body paralysis in AD worms, suggesting the β-amyloid (Aβ) toxicity attenuation effects of RJ/eRJ. Genetic analyses suggested that RJ/eRJ-mediated alleviation of Aβ toxicity in AD worms required DAF-16, rather than HSF-1 and SKN-1, in an insulin/IGF signaling dependent manner. Moreover, RJ/eRJ modulated the transactivity of DAF-16 and dramatically improved the protein solubility in aged worms. Given protein solubility is a hallmark of healthy proteostasis, our findings demonstrated that RJ/eRJ supplementation improved proteostasis, and this promotion depended on the transactivity of DAF-16. Collectively, the present study not only elucidated the possible anti-AD mechanism of RJ/eRJ, but also provided evidence from a practical point of view to shed light on the extensive correlation of proteostasis and the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Min Cao
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| |
Collapse
|
58
|
Chongtham A, Barbaro B, Filip T, Syed A, Huang W, Smith MR, Marsh JL. Nonmammalian Models of Huntington's Disease. Methods Mol Biol 2018; 1780:75-96. [PMID: 29856015 DOI: 10.1007/978-1-4939-7825-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control. Loss of motor control is prominent in patients, but it remains unresolved whether pathogenic symptoms in patients result from overt degeneration and loss of neurons or from malfunctioning of surviving neurons as the pathogenic insult builds up. This is why a functional assay such as motor control can be uniquely powerful in revealing early as well as late neurological deficits and does not rely on assumptions such as that the level of inclusions or the degree of neuronal loss can be equated with the level of pathology. Drosophila is well suited for such assays because it contains a functioning nervous system with many parallels to the human condition. In addition, the ability to readily express mHTT transgenes in different tissues and subsets of neurons allows one the possibility of isolating a particular effect to a subset of neurons where one can correlate subcellular events in response to mHTT challenge with pathology at both the cellular and organismal levels. Here we describe methods to monitor the degree of motor function disruption in Drosophila models of HD and we include a brief summary of other nonmammalian models of HD and discussion of their unique strengths.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Brett Barbaro
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,The Scripps Research Institute, La Jolla, CA, USA
| | - Tomas Filip
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,Biology Centre Czech Acad. Sci., Ceske Budejovice, Czech Republic
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Weijian Huang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA
| | - Marianne R Smith
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.,University Advancement, UC Irvine, Irvine, CA, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, 92697, CA, USA.
| |
Collapse
|
59
|
Abstract
Numerous approaches have been taken in the hunt for human disease genes. The identification of such genes not only provides a great deal of information about the mechanism of disease development, but also provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the nonmammalian model organism C. elegans for the identification of human disease genes. Studies utilizing this relatively simple organism offer a good balance between the ability to recapitulate many aspects of human disease, while still offering an abundance of powerful cell biological, genetic, and genomic tools for disease gene discovery. C. elegans and other nonmammalian models have produced, and will continue to produce, key insights into human disease pathogenesis.
Collapse
Affiliation(s)
- Javier Apfeld
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Scott Alper
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
60
|
Abstract
Huntington's disease (HD) presents clinically with a triad of motor, cognitive, and psychiatric symptoms. Cognitive symptoms often occur early within the disease progression, prior to the onset of motor symptoms, and they are significantly burdensome to people who are affected by HD. In order to determine the suitability of mouse models of HD in recapitulating the human condition, these models must be behaviorally tested and characterized. Operant behavioral testing offers an automated and objective method of behaviorally profiling motor, cognitive, and psychiatric dysfunction in HD mice. Furthermore, operant testing can also be employed to determine any behavioral changes observed after any associated interventions or experimental therapeutics. We here present an overview of the most commonly used operant behavioral tests to dissociate motor, cognitive, and psychiatric aspects of mouse models of HD.
Collapse
|
61
|
Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K. Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 2017; 819:169-180. [PMID: 29208474 DOI: 10.1016/j.ejphar.2017.11.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Over the past decades, Caenorhabditis elegans (C. elegans) has been widely used as a model system because of its small size, transparent body, short generation time and lifespan (~3 days and 3 weeks, respectively), completely sequenced genome and tractability to genetic manipulation. Protein misfolding and aggregation are key pathological features in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Animal models, including C. elegans, have been extensively used to discover and validate new drugs against neurodegenerative diseases. The well-defined and genetically tractable nervous system of C. elegans offers an effective model to explore basic mechanistic pathways of neurodegenerative diseases. Recent progress in high-throughput drug screening also provides a powerful approach for identifying chemical modulators of biological processes. Here, we summarize the latest progress of using C. elegans as a model system for target identification and drug screening in neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yudan Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan 430060, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Center for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
62
|
Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Brain Sci 2017; 7:brainsci7100128. [PMID: 29019918 PMCID: PMC5664055 DOI: 10.3390/brainsci7100128] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and aggregation of the expanded polyQ proteins are the most upstream event in the most common pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for development of disease-modifying therapies for polyQ diseases. In this review, we summarize the current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ proteins. We hope that in the near future, effective therapies are developed, to bring hope to many patients suffering from currently intractable polyQ diseases.
Collapse
|
63
|
Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurol 2017; 17:175. [PMID: 28882119 PMCID: PMC5590178 DOI: 10.1186/s12883-017-0938-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022] Open
Abstract
Background Alexander disease (AxD) is an astrogliopathy that predominantly affects the white matter of the central nervous system (CNS), and is caused by a mutation in the gene encoding the glial fibrillary acidic protein (GFAP), an intermediate filament primarily expressed in astrocytes and ependymal cells. The main pathologic feature of AxD is the presence of Rosenthal fibers (RFs), homogeneous eosinophilic inclusions found in astrocytes. Because of difficulties in procuring patient’ CNS tissues and the presence of RFs in other pathologic conditions, there is a need to develop an in vivo assay that can determine whether a mutation in the GFAP results in aggregation and is thus disease-causing. Methods We found a GFAP mutation (c.382G > A, p.Asp128Asn) in a 68-year-old man with slowly progressive gait disturbance with tendency to fall. The patient was tentatively diagnosed with AxD based on clinical and radiological findings. To develop a vertebrate model to assess the aggregation tendency of GFAP, we expressed several previously reported mutant GFAPs and p.Asp128Asn GFAP in zebrafish embryos. Results The most common GFAP mutations in AxD, p.Arg79Cys, p.Arg79His, p.Arg239Cys and p.Arg239His, and p.Asp128Asn induced a significantly higher number of GFAP aggregates in zebrafish embryos than wild-type GFAP. Conclusions The p.Asp128Asn GFAP mutation is likely to be a disease-causing mutation. Although it needs to be tested more extensively in larger case series, the zebrafish assay system presented here would help clinicians determine whether GFAP mutations identified in putative AxD patients are disease-causing.
Collapse
|
64
|
Approaches for Studying Autophagy in Caenorhabditis elegans. Cells 2017; 6:cells6030027. [PMID: 28867808 PMCID: PMC5617973 DOI: 10.3390/cells6030027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 01/10/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an intracellular degradative process, well conserved among eukaryotes. By engulfing cytoplasmic constituents into the autophagosome for degradation, this process is involved in the maintenance of cellular homeostasis. Autophagy induction triggers the formation of a cup-shaped double membrane structure, the phagophore, which progressively elongates and encloses materials to be removed. This double membrane vesicle, which is called an autophagosome, fuses with lysosome and forms the autolysosome. The inner membrane of the autophagosome, along with engulfed compounds, are degraded by lysosomal enzymes, which enables the recycling of carbohydrates, amino acids, nucleotides, and lipids. In response to various factors, autophagy can be induced for non-selective degradation of bulk cytoplasm. Autophagy is also able to selectively target cargoes and organelles such as mitochondria or peroxisome, functioning as a quality control system. The modification of autophagy flux is involved in developmental processes such as resistance to stress conditions, aging, cell death, and multiple pathologies. So, the use of animal models is essential for understanding these processes in the context of different cell types throughout the entire lifespan. For almost 15 years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. This review presents a rapid overview of physiological processes involving autophagy in Caenorhabditis elegans, the different assays used to monitor autophagy, their drawbacks, and specific tools for the analyses of selective autophagy.
Collapse
|
65
|
Van Assche R, Borghgraef C, Vaneyck J, Dumoulin M, Schoofs L, Temmerman L. In vitro aggregating β-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. J Negat Results Biomed 2017; 16:14. [PMID: 28830560 PMCID: PMC5568214 DOI: 10.1186/s12952-017-0080-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A series of human diseases are caused by the misfolding and aggregation of specific proteins or peptides into amyloid fibrils; nine of these diseases, referred to as polyglutamine diseases, are associated with proteins carrying an expanded polyglutamine (polyQ) region. While the presence of this latter is thought to be the determinant factor for the development of polyQ diseases, the non-polyQ regions of the host proteins are thought to play a significant modulating role. METHOD In order to better understand the role of non-polyQ regions, the toxic effects of model proteins bearing different polyQ regions (containing up to 79 residues) embedded at two distinct locations within the β-lactamase (BlaP) host enzyme were evaluated in Caenorhabditis elegans. This small organism can be advantageous for the validation of in vitro findings, as it provides a multicellular context yet avoids the typical complexity of common studies relying on vertebrate models. Several phenotypic assays were performed in order to screen for potential toxic effects of the different BlaP-polyQ proteins. RESULTS Despite the significant in vitro aggregation of BlaP-polyQ proteins with long polyQ regions, none of the BlaP-polyQ chimeras aggregated in the generated transgenic in vivo models. CONCLUSION The absence of a toxic effect of the expression of BlaP-polyQ chimeras may find its cause in biochemical mechanisms present in vivo to cope with protein aggregation (e.g. presence of chaperones) or in C. elegans' limitations such as its short lifespan. It is plausible that the aggregation propensities of the different BlaP chimeras containing embedded polyQ sequences are too low in this in vivo environment to permit their aggregation. These experiments emphasize the need for several comparative and in vivo verification studies of biologically relevant in vitro findings, which reveal both the strengths and limitations of widely used model systems.
Collapse
Affiliation(s)
- Roel Van Assche
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Charline Borghgraef
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonathan Vaneyck
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Mireille Dumoulin
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
66
|
Lee AL, Ung HM, Sands LP, Kikis EA. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles. PLoS One 2017; 12:e0173644. [PMID: 28282438 PMCID: PMC5345860 DOI: 10.1371/journal.pone.0173644] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/22/2017] [Indexed: 11/29/2022] Open
Abstract
Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington’s Disease (HD) that is caused by a polyglutamine expansion in the human huntingtin protein (htt). The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells. However, the molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the muscle phenotypes have not been well studied. To generate tools to elucidate the basis for muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previous models, the data suggest that the protein context in which a polyglutamine tract is embedded alters aggregation propensity and toxicity, likely by affecting interactions with the muscle cell environment.
Collapse
Affiliation(s)
- Amy L. Lee
- Biology Department, The University of the South, Sewanee, TN, United States of America
| | - Hailey M. Ung
- Biology Department, The University of the South, Sewanee, TN, United States of America
| | - L. Paul Sands
- Biology Department, The University of the South, Sewanee, TN, United States of America
| | - Elise A. Kikis
- Biology Department, The University of the South, Sewanee, TN, United States of America
- * E-mail:
| |
Collapse
|
67
|
Abstract
Disruption of protein quality control can be detrimental, having toxic effects on single cell organisms and contributing to neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's in humans. Here, we examined the effects of polyglutamine (polyQ) aggregation in a major fungal pathogen of humans, Candida albicans, with the goal of identifying new approaches to disable this fungus. However, we discovered that expression of polyQ stretches up to 230Q had no effect on C. albicans ability to grow and withstand proteotoxic stress. Bioinformatics analysis demonstrates that C. albicans has a similarly glutamine-rich proteome to the unicellular fungus Saccharomyces cerevisiae, which exhibits polyQ toxicity with as few as 72Q. Surprisingly, global transcriptional profiles indicated no significant change upon induction of up to 230Q. Proteomic analysis highlighted two key interactors of 230Q, Sis1 and Sgt2; however, loss of either protein had no additional effect on C. albicans toxicity. Our data suggest that C. albicans has evolved powerful mechanisms to overcome the toxicity associated with aggregation-prone proteins, providing a unique model for studying polyQ-associated diseases.
Collapse
|
68
|
Sorkaç A, Alcantara IC, Hart AC. In Vivo Modelling of ATP1A3 G316S-Induced Ataxia in C. elegans Using CRISPR/Cas9-Mediated Homologous Recombination Reveals Dominant Loss of Function Defects. PLoS One 2016; 11:e0167963. [PMID: 27936181 PMCID: PMC5148073 DOI: 10.1371/journal.pone.0167963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
The NIH Undiagnosed Diseases Program admitted a male patient with unclassifiable late-onset ataxia-like symptoms. Exome sequencing revealed a heterozygous de novo mutation converting glycine 316 to serine in ATP1A3, which might cause disease. ATP1A3 encodes the Na+/K+ ATPase pump α3-subunit. Using CRISPR/Cas9-mediated homologous recombination for genome editing, we modelled this putative disease-causing allele in Caenorhabditis elegans, recreating the patient amino acid change in eat-6, the orthologue of ATP1A3. The impact of the mutation on eat-6 function at the neuromuscular junction was examined using two behavioural assays: rate of pharyngeal pumping and sensitivity to aldicarb, a drug that causes paralysis over time via the inhibition of acetylcholinesterase. The patient allele decreased pumping rates and caused hypersensitivity to aldicarb. Animals heterozygous for the allele exhibited similar defects, whereas loss of function mutations in eat-6 were recessive. These results indicate that the mutation is dominant and impairs the neuromuscular function. Thus, we conclude that the de novo G316S mutation in ATP1A3 likely causes or contributes to patient symptoms. More broadly, we conclude that, for conserved genes, it is possible to rapidly and easily model human diseases in C. elegans using CRIPSR/Cas9 genome editing.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Ivan C. Alcantara
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Anne C. Hart
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
69
|
Lokhande S, Patra BN, Ray A. A link between chromatin condensation mechanisms and Huntington's disease: connecting the dots. MOLECULAR BIOSYSTEMS 2016; 12:3515-3529. [PMID: 27714015 DOI: 10.1039/c6mb00598e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Huntington's disease is a rare neurodegenerative disorder whose complex pathophysiology exhibits system-wide changes in the body, with striking and debilitating clinical features targeting the central nervous system. Among the various molecular functions affected in this disease, mitochondrial dysfunction and transcriptional dysregulation are some of the most studied aspects of this disease. However, there is evidence of the involvement of a mutant Huntingtin protein in the processes of DNA damage, chromosome condensation and DNA repair. This review attempts to briefly recapitulate the clinical features, model systems used to study the disease, major molecular processes affected, and, more importantly, examines recent evidence for the involvement of the mutant Huntingtin protein in the processes regulating chromosome condensation, leading to DNA damage response and neuronal death.
Collapse
Affiliation(s)
- Sonali Lokhande
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Biranchi N Patra
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Animesh Ray
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| |
Collapse
|
70
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
71
|
Zhang J, Shi R, Li H, Xiang Y, Xiao L, Hu M, Ma F, Ma CW, Huang Z. Antioxidant and neuroprotective effects of Dictyophora indusiata polysaccharide in Caenorhabditis elegans. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:413-422. [PMID: 27647012 DOI: 10.1016/j.jep.2016.09.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dictyophora indusiata is a medicinal mushroom traditionally used in China for a variety of conditions, including inflammatory and neural diseases. D. indusiata polysaccharides (DiPS) are shown to have in vitro antioxidant activity but in vivo evidence is lacking. This study aimes to explore the antioxidant capacity and related neuroptotective activities of DiPS using wild-type and neurodegenerative Caenorhabditis elegans models. MATERIALS AND METHODS The antioxidant capacities of DiPS were first determined using paraquat survival and Pgst-4::GFP expression assays in wild-type and transgenic C. elegans models, respectively, and then further investigated by determining reactive oxygen species (ROS) level, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity as well as functional parameters of mitochondria. The activation of stress response transcription factors and neuroptotective activities were examined using nuclear localization and chemosensory behavioral assays in transgenic nematodes, respectively. RESULTS DiPS was shown not only to increase survival rate and reduce stress level under paraquat-induced oxidative conditions but also to decrease ROS and MDA levels and increase SOD activity in C. elegans models. Moreover, DiPS was also able to restore the functional parameters of mitochondria, including membrane potential and ATP content, in paraquat-stressed nematodes. In addition, nuclear translocation assays demonstrate that the stress response transcription factor DAF-16/FOXO was involved in the antioxidant activity of the polysaccharide. Further experiments reveal that DiPS was capable of reducing ROS levels and alleviating chemosensory behavior dysfunction in transgenic nematode models of neurodegenerative diseases mediated by polyglutamine and amyloid-β protein. CONCLUSIONS These findings demonstrate the antioxidant and neuroprotective activities of the D. indusiata polysaccharide DiPS in wild-type and neurodegenerative C. elegans models, and thus provide an important pharmacological basis for the therapeutic potential of D. indusiata in neurodegeneration.
Collapse
Affiliation(s)
- Ju Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ruona Shi
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haifeng Li
- Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yanxia Xiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Lingyun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Research & Development Center, Infinitus (China) Company Ltd., Guangzhou 510665, China.
| | - Minghua Hu
- Research & Development Center, Infinitus (China) Company Ltd., Guangzhou 510665, China.
| | - Fangli Ma
- Research & Development Center, Infinitus (China) Company Ltd., Guangzhou 510665, China.
| | - Chung Wah Ma
- Research & Development Center, Infinitus (China) Company Ltd., Guangzhou 510665, China.
| | - Zebo Huang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
72
|
Kikis EA. The struggle by Caenorhabditis elegans to maintain proteostasis during aging and disease. Biol Direct 2016; 11:58. [PMID: 27809888 PMCID: PMC5093949 DOI: 10.1186/s13062-016-0161-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
The presence of only small amounts of misfolded protein is an indication of a healthy proteome. Maintaining proteome health, or more specifically, “proteostasis,” is the purview of the “proteostasis network.” This network must respond to constant fluctuations in the amount of destabilized proteins caused by errors in protein synthesis and exposure to acute proteotoxic conditions. Aging is associated with a gradual increase in damaged and misfolded protein, which places additional stress on the machinery of the proteostasis network. In fact, despite the ability of the proteostasis machinery to readjust its stoichiometry in an attempt to maintain homeostasis, the capacity of cells to buffer against misfolding is strikingly limited. Therefore, subtle changes in the folding environment that occur during aging can significantly impact the health of the proteome. This decline and eventual collapse in proteostasis is most pronounced in individuals with neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease that are caused by the misfolding, aggregation, and toxicity of certain proteins. This review discusses how C. elegans models of protein misfolding have contributed to our current understanding of the proteostasis network, its buffering capacity, and its regulation. Reviewers: This article was reviewed by Luigi Bubacco, Patrick Lewis and Xavier Roucou.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, 735 University Avenue, Sewanee, TN, 37383, USA.
| |
Collapse
|
73
|
Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nat Commun 2016; 7:13023. [PMID: 27725672 PMCID: PMC5062571 DOI: 10.1038/ncomms13023] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ∼4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ∼100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ∼1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
Collapse
|
74
|
Kim DK, Kim TH, Lee SJ. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Exp Mol Med 2016; 48:e263. [PMID: 27713398 PMCID: PMC5099420 DOI: 10.1038/emm.2016.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Aging is the most important risk factor for human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Pathologically, these diseases are characterized by the deposition of specific protein aggregates in neurons and glia, representing the impairment of neuronal proteostasis. However, the mechanism by which aging affects the proteostasis system and promotes protein aggregation remains largely unknown. The short lifespan and ample genetic resources of Caenorhabditis elegans (C. elegans) have made this species a favorite model organism for aging research, and the development of proteinopathy models in this organism has helped us to understand how aging processes affect protein aggregation and neurodegeneration. Here, we review the recent literature on proteinopathies in C. elegans models and discuss the insights we have gained into the mechanisms of how aging processes are integrated into the pathogenesis of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Tae Ho Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
75
|
Machiela E, Dues DJ, Senchuk MM, Van Raamsdonk JM. Oxidative stress is increased in C. elegans models of Huntington's disease but does not contribute to polyglutamine toxicity phenotypes. Neurobiol Dis 2016; 96:1-11. [PMID: 27544481 DOI: 10.1016/j.nbd.2016.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is an adult onset neurodegenerative disorder for which there is currently no cure. While HD patients and animal models of the disease exhibit increased oxidative damage, it is currently uncertain to what extent oxidative stress contributes to disease pathogenesis. In this work, we use a genetic approach to define the role of oxidative stress in HD. We find that a C. elegans model of HD expressing a disease-length polyglutamine tract in the body wall muscle is hypersensitive to oxidative stress and shows an upregulation of antioxidant defense genes, indicating that the HD worm model has increased levels of oxidative stress. To determine whether this increase in oxidative stress contributes to the development of polyglutamine-toxicity phenotypes in this HD model, we examined the effect of deleting individual superoxide dismutase (sod) genes in the HD worm model. As predicted, we found that deletion of sod genes in the HD worm model resulted in a clear increase in sensitivity to oxidative stress. However, we found that increasing oxidative stress in the HD worm model did not exacerbate deficits caused by polyglutamine toxicity. We confirmed these observations in two worm models expressing disease-length polyglutamine tracts in neurons. Furthermore, we found that treatment with antioxidants failed to rescue movement deficits or decrease aggregation in HD worm models. Combined, this suggests that the increase in oxidative stress in worm models of HD does not contribute to the phenotypic deficits observed in these worms, and provides a possible explanation for the failure of antioxidants in HD clinical trials.
Collapse
Affiliation(s)
- Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA; Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Department of Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
76
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
77
|
Norflus F, Bu J, Guyton E, Gutekunst CA. Behavioral analysis of the huntingtin-associated protein 1 ortholog trak-1 in Caenorhabditis elegans. J Neurosci Res 2016; 94:850-6. [PMID: 27319755 DOI: 10.1002/jnr.23756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fran Norflus
- Department of Biology, Clayton State University, Morrow, Georgia
| | - Jingnan Bu
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Evon Guyton
- Department of Biology, Clayton State University, Morrow, Georgia
| | | |
Collapse
|
78
|
Zeng Y, Guo W, Xu G, Wang Q, Feng L, Long S, Liang F, Huang Y, Lu X, Li S, Zhou J, Burgunder JM, Pang J, Pei Z. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1443-51. [PMID: 27110099 PMCID: PMC4835117 DOI: 10.2147/dddt.s94666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Huntington's disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt). Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington's disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson's and Alzheimer's diseases. To identify potential neuroprotective molecules for Huntington's disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington's disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a stable trimeric complex that can prevent the formation of mutant Htt aggregates. Taken together, we conclude that xyloketal derivatives could be novel drug candidates for treating Huntington's disease. Molecular target analysis is a good method to simulate the interaction between proteins and drug compounds. Further, protective candidate drugs could be designed in future using the guidance of molecular docking results.
Collapse
Affiliation(s)
- Yixuan Zeng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| | - Wenyuan Guo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guangqing Xu
- Department of Rehabilitation, The First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qinmei Wang
- Key laboratory on Assisted Circulation, Ministry of Health, Department of Cardiovascular Medicine of the First Affiliated Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Luyang Feng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fengyin Liang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yi Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xilin Lu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shichang Li
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiebin Zhou
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jean-Marc Burgunder
- Swiss Huntington's Disease Center, Department of Neurology, University of Bern, Bern, Switzerland
| | - Jiyan Pang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangzhou Center, Chinese Huntington's Disease Network, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
79
|
Vayndorf EM, Scerbak C, Hunter S, Neuswanger JR, Toth M, Parker JA, Neri C, Driscoll M, Taylor BE. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis. NPJ Aging Mech Dis 2016; 2. [PMID: 27347427 PMCID: PMC4920063 DOI: 10.1038/npjamd.2016.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal aging is strongly affected by disrupted proteostasis and expression of disease-associated, misfolded proteins such as human polyQ-Htt species.
Collapse
Affiliation(s)
- Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Courtney Scerbak
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Skyler Hunter
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jason R Neuswanger
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Marton Toth
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - J Alex Parker
- Department of Neuroscience, CRCHUM, University of Montreal, Montreal, QC, Canada
| | - Christian Neri
- Laboratory of Neuronal Cell Biology and Pathology, Centre National de la Recherche Scientifique, Paris, France; Sorbonnes Universités, UPMC Univ Paris 06, Paris, France
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara E Taylor
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
80
|
Jiang Y, Chadwick SR, Lajoie P. Endoplasmic reticulum stress: The cause and solution to Huntington's disease? Brain Res 2016; 1648:650-657. [PMID: 27040914 DOI: 10.1016/j.brainres.2016.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Accumulation of misfolded proteins is a hallmark of many human diseases, including several incurable neurological disorders, such as Huntington's disease (HD). In HD, expansion of a polyglutamine stretch within the first exon of the Huntingtin protein (Htt) leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Several studies in various organisms (from yeast to humans) have identified the accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER stress) as a crucial determinant of cellular toxicity in HD. In this review, we highlight the recent research linking HD to ER stress. We also discuss how the modulation of signaling pathways responsible for coping with misfolded protein accumulation in the ER may constitute attractive methods to reduce toxicity and identify new therapeutic targets for treatment of HD. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1
| | - Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1.
| |
Collapse
|
81
|
Young D. Gene Therapy-Based Modeling of Neurodegenerative Disorders: Huntington's Disease. Methods Mol Biol 2016; 1382:383-95. [PMID: 26611601 DOI: 10.1007/978-1-4939-3271-9_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by impairments in motor control, and cognitive and psychiatric disturbances. In this chapter, viral vector-mediated approaches used in modeling the key neuropathological features of the disease including the production of abnormal intracellular protein aggregates, neuronal dysfunction and degeneration and motor impairments in rodents are described.
Collapse
Affiliation(s)
- Deborah Young
- Department of Pharmacology & Clinical Pharmacology & Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
82
|
Veldman MB, Rios-Galdamez Y, Lu XH, Gu X, Qin W, Li S, Yang XW, Lin S. The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model. Mol Neurodegener 2015; 10:67. [PMID: 26645399 PMCID: PMC4673728 DOI: 10.1186/s13024-015-0063-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/30/2015] [Indexed: 01/14/2023] Open
Abstract
Background Although the genetic cause for Huntington’s disease (HD) has been known for over 20 years, the mechanisms that cause the neurotoxicity and behavioral symptoms of this disease are not well understood. One hypothesis is that N-terminal fragments of the HTT protein are the causative agents in HD and that peptide sequences adjacent to the poly-glutamine (Q) repeats modify its toxicity. Here we test the function of the N-terminal 17 amino acids (N17) in the context of the exon 1 fragment of HTT in a novel, inducible zebrafish model of HD. Results Deletion of N17 coupled with 97Q expansion (mHTT-ΔN17-exon1) resulted in a robust, rapidly progressing movement deficit, while fish with intact N17 and 97Q expansion (mHTT-exon1) have more delayed-onset movement deficits with slower progression. The level of mHTT-ΔN17-exon1 protein was significantly higher than mHTT-exon1, although the mRNA level of each transgene was marginally different, suggesting that N17 may regulate HTT protein stability in vivo. In addition, cell lineage specific induction of the mHTT-ΔN17-exon1 transgene in neurons was sufficient to recapitulate the consequences of ubiquitous transgene expression. Within neurons, accelerated nuclear accumulation of the toxic HTT fragment was observed in mHTT-ΔN17-exon1 fish, demonstrating that N17 also plays an important role in sub-cellular localization in vivo. Conclusions We have developed a novel, inducible zebrafish model of HD. These animals exhibit a progressive movement deficit reminiscent of that seen in other animal models and human patients. Deletion of the N17 terminal amino acids of the huntingtin fragment results in an accelerated HD-like phenotype that may be due to enhanced protein stability and nuclear accumulation of HTT. These transgenic lines will provide a valuable new tool to study mechanisms of HD at the behavioral, cellular, and molecular levels. Future experiments will be focused on identifying genetic modifiers, mechanisms and therapeutics that alleviate polyQ aggregation in the nucleus of neurons. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0063-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew B Veldman
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Yesenia Rios-Galdamez
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Qin
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Song Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA. .,Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
83
|
Martinez BA, Kim H, Ray A, Caldwell GA, Caldwell KA. A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. Cell Death Dis 2015; 6:e1908. [PMID: 26469957 PMCID: PMC4632299 DOI: 10.1038/cddis.2015.270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/14/2023]
Abstract
Gene-by-environment interactions are thought to underlie the majority of idiopathic cases of neurodegenerative disease. Recently, we reported that an environmental metabolite extracted from Streptomyces venezuelae increases ROS and damages mitochondria, leading to eventual neurodegeneration of C. elegans dopaminergic neurons. Here we link those data to idiopathic disease models that predict loss of protein handling as a component of disorder progression. We demonstrate that the bacterial metabolite leads to proteostatic disruption in multiple protein-misfolding models and has the potential to synergistically enhance the toxicity of aggregate-prone proteins. Genetically, this metabolite is epistatically regulated by loss-of-function to pink-1, the C. elegans PARK6 homolog responsible for mitochondrial maintenance and autophagy in other animal systems. In addition, the metabolite works through a genetic pathway analogous to loss-of-function in the ubiquitin proteasome system (UPS), which we find is also epistatically regulated by loss of PINK-1 homeostasis. To determine remitting counter agents, we investigated several established antioxidants and found that glutathione (GSH) can significantly protect against metabolite-induced proteostasis disruption. In addition, GSH protects against the toxicity of MG132 and can compensate for the combined loss of both pink-1 and the E3 ligase pdr-1, a Parkin homolog. In assessing the impact of this metabolite on mitochondrial maintenance, we observe that it causes fragmentation of mitochondria that is attenuated by GSH and an initial surge in PINK-1-dependent autophagy. These studies mechanistically advance our understanding of a putative environmental contributor to neurodegeneration and factors influencing in vivo neurotoxicity.
Collapse
Affiliation(s)
- B A Martinez
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - H Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - A Ray
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - G A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
- Departments of Neurobiology and Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
- Departments of Neurobiology and Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
84
|
|
85
|
Philips T, Rothstein JD, Pouladi MA. Preclinical models: needed in translation? A Pro/Con debate. Mov Disord 2015; 29:1391-6. [PMID: 25216370 DOI: 10.1002/mds.26010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
The discovery of the causative mutations and many of the predisposing risk factors for neurodegenerative disorders such as Amyotrophic Lateral Sclerosis, Alzheimer's, Parkinson's, and Huntington's disease (HD), has led to the development of a large number of genetic animal models of disease. In the case of HD, for example, over 20 different transgenic rodent models have been generated. These models have been of immense value in providing novel insights into mechanisms of disease, with the promise of accelerating the development of therapies that can delay the onset or slow the progression of the disease. Yet, despite extensive use of such models, no effective treatment for HD has been developed. Here, we discuss the value of animal models, highlighting their strengths and shortcomings in the context of translational research for HD.
Collapse
Affiliation(s)
- Thomas Philips
- Johns Hopkins University, Brain Science Institute, Baltimore, Maryland, USA
| | | | | |
Collapse
|
86
|
Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc Natl Acad Sci U S A 2015; 112:E2620-9. [PMID: 25941378 DOI: 10.1073/pnas.1504459112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome.
Collapse
|
87
|
Mason RP, Breda C, Kooner GS, Mallucci GR, Kyriacou CP, Giorgini F. Modeling Huntington Disease in Yeast and Invertebrates. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
88
|
Nussbaum-Krammer CI, Morimoto RI. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Model Mech 2014; 7:31-9. [PMID: 24396152 PMCID: PMC3882046 DOI: 10.1242/dmm.013011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Carmen I Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | |
Collapse
|
89
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
90
|
Scerbak C, Vayndorf EM, Parker JA, Neri C, Driscoll M, Taylor BE. Insulin signaling in the aging of healthy and proteotoxically stressed mechanosensory neurons. Front Genet 2014; 5:212. [PMID: 25101108 PMCID: PMC4107846 DOI: 10.3389/fgene.2014.00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/20/2014] [Indexed: 12/22/2022] Open
Abstract
Insulin signaling is central to cellular metabolism and organismal aging. However, the role of insulin signaling in natural and proteotoxically stressed aging neurons has yet to be fully described. We studied aging of Caenorbaditis elegans mechanosensory neurons expressing a neurotoxic expanded polyglutamine transgene (polyQ128), or lacking this proteotoxicity stressor (polyQ0), under conditions in which the insulin signaling pathway was disrupted by RNA interference (RNAi). We describe specific changes in lifespan, mechanosensory neuronal morphologies, and mechansensory function following RNAi treatment targeting the insulin signaling pathway. Overall, we confirmed that transcription factor DAF-16 is neuroprotective in the proteotoxically stressed model, though not strikingly in the naturally aging model. Decreased insulin signaling through daf-2 RNAi improved mechanosensory function in both models and decreased protein aggregation load in polyQ128, yet showed opposing effects on accumulation of neuronal aberrations in both strains. Decreased daf-2 signaling slightly enhanced mechanosensation while greatly enhancing branching of the mechanosensory neuron axons and dendrites in polyQ0 animals, suggesting that branching is an adaptive response in natural aging. These effects in polyQ0 did not appear to involve DAF-16, suggesting the existence of a non-canonical DAF-2 pathway for the modulation of morphological adaptation. However, in polyQ128 animals, decreased daf-2 signaling significantly enhanced mechanosensation while decreasing neuronal aberrations. Unlike other interventions that reduce the strength of insulin signaling, daf-2 RNAi dramatically redistributed large polyQ128 aggregates to the cell body, away from neuronal processes. Our results suggest that insulin signaling strength can differentially affect specific neurons aging naturally or under proteotoxic stress.
Collapse
Affiliation(s)
- Courtney Scerbak
- Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA ; Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA
| | - J Alex Parker
- Department of Neuroscience, CRCHUM, University of Montreal Montreal, QC, Canada
| | - Christian Neri
- Laboratory of Neuronal Cell Biology and Pathology, Centre National de la Recherche Scientifique, UMR 8652 Paris, France ; Sorbonnes Universités, UPMC Univ Paris 06 Paris, France
| | - Monica Driscoll
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Barbara E Taylor
- Institute of Arctic Biology, University of Alaska Fairbanks Fairbanks, AK, USA ; Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| |
Collapse
|
91
|
Ribeiro FM, Camargos ERDS, de Souza LC, Teixeira AL. Animal models of neurodegenerative diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35 Suppl 2:S82-91. [PMID: 24271230 DOI: 10.1590/1516-4446-2013-1157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.
Collapse
Affiliation(s)
- Fabíola Mara Ribeiro
- Neurobiochemistry Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo HorizonteMG, Brazil
| | | | | | | |
Collapse
|
92
|
Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci 2014; 6:89. [PMID: 24904406 PMCID: PMC4032941 DOI: 10.3389/fnagi.2014.00089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/27/2014] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. Additional clinical manifestations include non-motor symptoms such as insomnia, depression, psychosis, and cognitive impairment. PD patients with mild cognitive impairment have an increased risk of developing dementia. The affected brain regions also show perturbed metal ion levels, primarily iron. These observations have led to speculation that metal ion dyshomeostasis plays a key role in the neuronal death of this disease. However, the mechanisms underlying this metal-associated neurodegeneration have yet to be completely elucidated. Mammalian models have traditionally been used to investigate PD pathogenesis. However, alternate animal models are also being adopted, bringing to bear their respective experimental advantage. The nematode, Caenorhabditis elegans, is one such system that has well-developed genetics, is amenable to transgenesis and has relatively low associated experimental costs. C. elegans has a well characterized neuronal network that includes a simple DAergic system. In this review we will discuss mechanisms thought to underlie PD and the use of C. elegans to investigate these processes.
Collapse
Affiliation(s)
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
93
|
|
94
|
Sin O, Michels H, Nollen EAA. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1951-1959. [PMID: 24525026 DOI: 10.1016/j.bbadis.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 01/17/2023]
Abstract
Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be applied to "humanized" models of C. elegans for neurodegenerative diseases, enabling for example the identification of genes involved in protein aggregation, one of the hallmarks of these diseases. In this review, we will describe the genetic screens employed in C. elegans and how these can be used to understand molecular processes involved in neurodegenerative and other human diseases. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Olga Sin
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Helen Michels
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - Ellen A A Nollen
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
95
|
Doke SK, Dhawale SC. Alternatives to animal testing: A review. Saudi Pharm J 2013; 23:223-9. [PMID: 26106269 PMCID: PMC4475840 DOI: 10.1016/j.jsps.2013.11.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023] Open
Abstract
The number of animals used in research has increased with the advancement of research and development in medical technology. Every year, millions of experimental animals are used all over the world. The pain, distress and death experienced by the animals during scientific experiments have been a debating issue for a long time. Besides the major concern of ethics, there are few more disadvantages of animal experimentation like requirement of skilled manpower, time consuming protocols and high cost. Various alternatives to animal testing were proposed to overcome the drawbacks associated with animal experiments and avoid the unethical procedures. A strategy of 3 Rs (i.e. reduction, refinement and replacement) is being applied for laboratory use of animals. Different methods and alternative organisms are applied to implement this strategy. These methods provide an alternative means for the drug and chemical testing, up to some levels. A brief account of these alternatives and advantages associated is discussed in this review with examples. An integrated application of these approaches would give an insight into minimum use of animals in scientific experiments.
Collapse
Affiliation(s)
- Sonali K Doke
- School of Pharmacy, SRTM University, Nanded 431 606, MS, India
| | | |
Collapse
|
96
|
Hanover JA, Wang P. O-GlcNAc cycling shows neuroprotective potential in C. elegans models of neurodegenerative disease. WORM 2013; 2:e27043. [PMID: 24744983 DOI: 10.4161/worm.27043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 01/17/2023]
Abstract
C. elegans has proven to be an excellent organism in which to model human neurodegenerative disease.(1) (-) (7) The worm's simple nervous system, lineage, and neural maps, easily scored movement phenotypes, and robust forward and reverse genetics make it optimal for studying age-dependent processes on a reasonable time scale. A popular approach has been the introduction of transgenes expressing GFP-tagged proteotoxic human proteins into neurons leading to visible aggregation or movement phenotypes.(2) (,) (4) (,) (6) (,) (8) (-) (13) In addition, the maintenance of proteostasis networks has been extensively studied using the power of worm genetics.(8) (-) (13) These networks include genes involved in insulin-like signaling, the heat shock response, the response to hypoxia, and mTOR and AMPK pathways linked to aging.(14) Another pathway with suggestive links to neurodegeneration is the O-GlcNAc cycling pathway, a nutrient-dependent post-translational modification known to be altered in brains from patients with Alzheimer disease.(15) (-) (19) In this commentary, we summarize our recent findings showing that viable mutants of O-GlcNAc cycling in C. elegans dramatically alter the neurotoxicity of four distinct C. elegans models of neurodegenerative disease.(7) Mutants in O-GlcNAc cycling alter the toxicity of mutant tau, polyglutamine expansion reporters, and amyloid β-peptide. The findings further suggest that O-GlcNAc cycling acts at many steps in the lifecycle of aggregation-prone targets. The C. elegans system is likely to continue to provide insights into this complex problem. The involvement of O-GlcNAc cycling in the maintenance of proteostasis raises the possibility of targeting the enzymes catalyzing this critical post-translational modification for therapeutic intervention.
Collapse
|
97
|
Li J, Le W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 2013; 250:94-103. [PMID: 24095843 DOI: 10.1016/j.expneurol.2013.09.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington disease (HD), and others are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Despite the research progress in identification of several disease-related genes, the mechanisms underlying the neurodegeneration in these diseases remain unclear. Given the molecular conservation in neuronal signaling between Caenorhabditis elegans and vertebrates, an increasing number of research scientists have used the nematode to study this group of diseases. This review paper will focus on the model system that has been established in C. elegans to investigate the pathogenetic roles of those reported disease-related genes in AD, PD, ALS, HD and others. The progress in C. elegans provides useful information of the genetic interactions and molecular pathways that are critical in the disease process, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Jia Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | | |
Collapse
|
98
|
|
99
|
Popiel HA, Takeuchi T, Burke JR, Strittmatter WJ, Toda T, Wada K, Nagai Y. Inhibition of protein misfolding/aggregation using polyglutamine binding peptide QBP1 as a therapy for the polyglutamine diseases. Neurotherapeutics 2013; 10:440-6. [PMID: 23504628 PMCID: PMC3701761 DOI: 10.1007/s13311-013-0184-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases, which are collectively called the "protein misfolding diseases". In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). We show that QBP1 does, indeed, inhibit misfolding and aggregation of the expanded polyQ protein in vitro. Furthermore overexpression of QBP1 by the crossing of transgenic animals inhibits neurodegeneration in Drosophila models of the polyQ diseases. We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.
Collapse
Affiliation(s)
- H. Akiko Popiel
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Toshihide Takeuchi
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - James R. Burke
- />Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710 USA
| | - Warren J. Strittmatter
- />Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710 USA
| | - Tatsushi Toda
- />Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, 650-0017 Japan
| | - Keiji Wada
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Yoshitaka Nagai
- />Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa Higashi, Kodaira, Tokyo 187-8502 Japan
- />Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, 332-0012 Japan
| |
Collapse
|
100
|
Calamini B, Lo DC, Kaltenbach LS. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration. Neurotherapeutics 2013; 10:400-15. [PMID: 23700210 PMCID: PMC3701774 DOI: 10.1007/s13311-013-0195-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Huntington's disease (HD) typifies a class of inherited neurodegenerative disorders in which a CAG expansion in a single gene leads to an extended polyglutamine tract and misfolding of the expressed protein, driving cumulative neural dysfunction and degeneration. HD is invariably fatal with symptoms that include progressive neuropsychiatric and cognitive impairments, and eventual motor disability. No curative therapies yet exist for HD and related polyglutamine diseases; therefore, substantial efforts have been made in the drug discovery field to identify potential drug and drug target candidates for disease-modifying treatment. In this context, we review here a range of early-stage screening approaches based in in vitro, cellular, and invertebrate models to identify pharmacological and genetic modifiers of polyglutamine aggregation and induced neurodegeneration. In addition, emerging technologies, including high-content analysis, three-dimensional culture models, and induced pluripotent stem cells are increasingly being incorporated into drug discovery screening pipelines for protein misfolding disorders. Together, these diverse screening strategies are generating novel and exciting new probes for understanding the disease process and for furthering development of therapeutic candidates for eventual testing in the clinical setting.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Donald C. Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Linda S. Kaltenbach
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| |
Collapse
|