51
|
Bhattacharjee N, Biswas P. Helical ambivalency induced by point mutations. BMC STRUCTURAL BIOLOGY 2013; 13:9. [PMID: 23675772 PMCID: PMC3683331 DOI: 10.1186/1472-6807-13-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 05/02/2013] [Indexed: 01/15/2023]
Abstract
Background Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known. Results Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible. Conclusions All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design de novo proteins via point mutations.
Collapse
|
52
|
Xu J, Liu S, Chen M, Ma J, Matthews KS. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Biochemistry 2011; 50:9002-13. [PMID: 21928765 DOI: 10.1021/bi200896t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactose repressor protein (LacI), a negative transcriptional regulator in Escherichia coli, relies on an allosteric conformational change for its function. The LacI effector isopropyl-β,D-thiogalactoside (IPTG) promotes this allosteric response and engages the side chains of residues N125 and D149 based on the crystallographic structure of LacI·IPTG. Targeted molecular dynamics (TMD) simulations have indicated involvement of these side chains during the protein structural changes in response to inducer binding. To examine this region further, we applied stochastic boundary molecular dynamics (SBMD) simulation and identified a transient interaction between residues N125 and D149. On the basis of these data, we introduced substitutions for either/both residues and analyzed their impact on protein function. The substitutions utilized were alanine to preclude hydrogen bonding or cysteine to allow disulfide bond formation, which was not observed for N125C/D149C. Minimal impacts were observed on operator affinity for all substitutions, but D149C, N125A/D149A, and N125C/D149C bound to IPTG with 5-8-fold lower affinity than wild-type LacI, and exhibited decreased allosteric amplitude (K(RI/O)/K(R/O)). Of interest, the double mutants did not exhibit an allosteric response to an alternate inducer, 2-phenylethyl-β,D-galactoside (PhEG), despite demonstration of PhEG binding. Further, the presence of the anti-inducer, o-nitrophenyl-β,D-fucoside (ONPF), enhanced operator affinity for wild-type LacI and all other mutant proteins examined, but behaved as an inducer for N125A/D149A, decreasing operator binding affinity. These results confirm the role of residues 125 and 149 in ligand binding and allosteric response and illustrate how readily the function of a regulatory protein can be altered.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States.
| | | | | | | | | |
Collapse
|
53
|
Penner RC, Knudsen M, Wiuf C, Andersen JE. An Algebro-topological description of protein domain structure. PLoS One 2011; 6:e19670. [PMID: 21629687 PMCID: PMC3101207 DOI: 10.1371/journal.pone.0019670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/03/2011] [Indexed: 11/25/2022] Open
Abstract
The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH.
Collapse
Affiliation(s)
- Robert Clark Penner
- Center for the Topology and Quantization of Moduli Spaces, Department of Mathematical Sciences, Aarhus University, Aarhus, Denmark
- Departments of Mathematics and Physics/Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Michael Knudsen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Jørgen Ellegaard Andersen
- Center for the Topology and Quantization of Moduli Spaces, Department of Mathematical Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
54
|
di Luccio E, Koehl P. A quality metric for homology modeling: the H-factor. BMC Bioinformatics 2011; 12:48. [PMID: 21291572 PMCID: PMC3213331 DOI: 10.1186/1471-2105-12-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The analysis of protein structures provides fundamental insight into most biochemical functions and consequently into the cause and possible treatment of diseases. As the structures of most known proteins cannot be solved experimentally for technical or sometimes simply for time constraints, in silico protein structure prediction is expected to step in and generate a more complete picture of the protein structure universe. Molecular modeling of protein structures is a fast growing field and tremendous works have been done since the publication of the very first model. The growth of modeling techniques and more specifically of those that rely on the existing experimental knowledge of protein structures is intimately linked to the developments of high resolution, experimental techniques such as NMR, X-ray crystallography and electron microscopy. This strong connection between experimental and in silico methods is however not devoid of criticisms and concerns among modelers as well as among experimentalists. RESULTS In this paper, we focus on homology-modeling and more specifically, we review how it is perceived by the structural biology community and what can be done to impress on the experimentalists that it can be a valuable resource to them. We review the common practices and provide a set of guidelines for building better models. For that purpose, we introduce the H-factor, a new indicator for assessing the quality of homology models, mimicking the R-factor in X-ray crystallography. The methods for computing the H-factor is fully described and validated on a series of test cases. CONCLUSIONS We have developed a web service for computing the H-factor for models of a protein structure. This service is freely accessible at http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor.
Collapse
Affiliation(s)
- Eric di Luccio
- Computer Science Department, Room 4337, Genome Center, GBSF University of California Davis 451 East Health Sciences Drive Davis, CA 95616, USA.
| | | |
Collapse
|
55
|
Abstract
The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so-called "twilight zone" problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment-free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20-letter amino acid alphabet) into a more tractable number of reduced tetramers (approximately 15-30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver-operating characteristic measure, we demonstrate potentially significant improvement in using information-optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the "twilight zone".
Collapse
Affiliation(s)
- Armando D. Solis
- Biological Sciences Department, New York City College of Technology, The City University of New York, Brooklyn, NY 11201, U.S.A. phone: (718) 260-5894, fax: (718)
| | - Shalom R. Rackovsky
- Department of Pharmacology and Systems Therapeutics, Box 1603, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, U.S.A. phone: (212) 241-4868, fax: (212) 996-7214
| |
Collapse
|
56
|
Bhattacharjee N, Biswas P. Position-specific propensities of amino acids in the β-strand. BMC STRUCTURAL BIOLOGY 2010; 10:29. [PMID: 20920153 PMCID: PMC2955036 DOI: 10.1186/1472-6807-10-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/28/2010] [Indexed: 11/23/2022]
Abstract
Background Despite the importance of β-strands as main building blocks in proteins, the propensity of amino acid in β-strands is not well-understood as it has been more difficult to determine experimentally compared to α-helices. Recent studies have shown that most of the amino acids have significantly high or low propensity towards both ends of β-strands. However, a comprehensive analysis of the sequence dependent amino acid propensities at positions between the ends of the β-strand has not been investigated. Results The propensities of the amino acids calculated from a large non-redundant database of proteins are found to be highly position-specific and vary continuously throughout the length of the β-strand. They follow an unexpected characteristic periodic pattern in inner positions with respect to the cap residues in both termini of β-strands; this periodic nature is markedly different from that of the α-helices with respect to the strength and pattern in periodicity. This periodicity is not only different for different amino acids but it also varies considerably for the amino acids belonging to the same physico-chemical group. Average hydrophobicity is also found to be periodic with respect to the positions from both termini of β-strands. Conclusions The results contradict the earlier perception of isotropic nature of amino acid propensities in the middle region of β-strands. These position-specific propensities should be of immense help in understanding the factors responsible for β-strand design and efficient prediction of β-strand structure in unknown proteins.
Collapse
|
57
|
Ridout KE, Dixon CJ, Filatov DA. Positive selection differs between protein secondary structure elements in Drosophila. Genome Biol Evol 2010; 2:166-79. [PMID: 20624723 PMCID: PMC2997536 DOI: 10.1093/gbe/evq008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Different protein secondary structure elements have different physicochemical properties and roles in the protein, which may determine their evolutionary flexibility. However, it is not clear to what extent protein structure affects the way Darwinian selection acts at the amino acid level. Using phylogeny-based likelihood tests for positive selection, we have examined the relationship between protein secondary structure and selection across six species of Drosophila. We find that amino acids that form disordered regions, such as random coils, are far more likely to be under positive selection than expected from their proportion in the proteins, and residues in helices and β-structures are subject to less positive selection than predicted. In addition, it appears that sites undergoing positive selection are more likely than expected to occur close to one another in the protein sequence. Finally, on a genome-wide scale, we have determined that positively selected sites are found more frequently toward the gene ends. Our results demonstrate that protein structures with a greater degree of organization and strong hydrophobicity, represented here as helices and β-structures, are less tolerant to molecular adaptation than disordered, hydrophilic regions, across a diverse set of proteins.
Collapse
Affiliation(s)
- Kate E Ridout
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
58
|
Schmidt am Busch M, Sedano A, Simonson T. Computational protein design: validation and possible relevance as a tool for homology searching and fold recognition. PLoS One 2010; 5:e10410. [PMID: 20463972 PMCID: PMC2864755 DOI: 10.1371/journal.pone.0010410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/31/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Protein fold recognition usually relies on a statistical model of each fold; each model is constructed from an ensemble of natural sequences belonging to that fold. A complementary strategy may be to employ sequence ensembles produced by computational protein design. Designed sequences can be more diverse than natural sequences, possibly avoiding some limitations of experimental databases. METHODOLOGY/PRINCIPAL FINDINGS WE EXPLORE THIS STRATEGY FOR FOUR SCOP FAMILIES: Small Kunitz-type inhibitors (SKIs), Interleukin-8 chemokines, PDZ domains, and large Caspase catalytic subunits, represented by 43 structures. An automated procedure is used to redesign the 43 proteins. We use the experimental backbones as fixed templates in the folded state and a molecular mechanics model to compute the interaction energies between sidechain and backbone groups. Calculations are done with the Proteins@Home volunteer computing platform. A heuristic algorithm is used to scan the sequence and conformational space, yielding 200,000-300,000 sequences per backbone template. The results confirm and generalize our earlier study of SH2 and SH3 domains. The designed sequences ressemble moderately-distant, natural homologues of the initial templates; e.g., the SUPERFAMILY, profile Hidden-Markov Model library recognizes 85% of the low-energy sequences as native-like. Conversely, Position Specific Scoring Matrices derived from the sequences can be used to detect natural homologues within the SwissProt database: 60% of known PDZ domains are detected and around 90% of known SKIs and chemokines. Energy components and inter-residue correlations are analyzed and ways to improve the method are discussed. CONCLUSIONS/SIGNIFICANCE For some families, designed sequences can be a useful complement to experimental ones for homologue searching. However, improved tools are needed to extract more information from the designed profiles before the method can be of general use.
Collapse
Affiliation(s)
- Marcel Schmidt am Busch
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Audrey Sedano
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
59
|
Toombs JA, McCarty BR, Ross ED. Compositional determinants of prion formation in yeast. Mol Cell Biol 2010; 30:319-32. [PMID: 19884345 PMCID: PMC2798286 DOI: 10.1128/mcb.01140-09] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 11/20/2022] Open
Abstract
Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into beta-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains.
Collapse
Affiliation(s)
- James A. Toombs
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Blake R. McCarty
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
60
|
am Busch MS, Mignon D, Simonson T. Computational protein design as a tool for fold recognition. Proteins 2009; 77:139-58. [PMID: 19408297 DOI: 10.1002/prot.22426] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computationally designed protein sequences have been proposed as a basis to perform fold recognition and homology searching. To investigate this possibility, an automated procedure is used to completely redesign 24 SH3 proteins and 22 SH2 proteins. We use the experimental backbone coordinates as fixed templates in the folded state and a molecular mechanics model to compute the pairwise interaction energies between all sidechain types and conformations. Energy calculations are done with the Proteins@Home volunteer computing platform. A heuristic algorithm is then used to scan the sequence and conformational space for optimal solutions. We produced 200,000-450,000 sequences for each backbone template. The designed sequences ressemble moderately-distant, natural homologues of the initial templates, according to their identity scores and their similarity with respect to the Pfam sets of SH2 and SH3 domains. Standard homology detection tools document their native-like character: the Conserved Domain Database recognizes 61% (52%) of our low-energy sequences as SH3 (SH2) domains; the SUPERFAMILY, Hidden-Markov Model library recognizes 81% (84%). Conversely, position specific scoring matrices (PSSMs) derived from our designed sequences can be used to detect natural homologues in sequence databases. Within SwissProt, a set of natural SH3 PSSMs detects 772 SH3 domains, for example; our designed PSSMs detect 67% of these, plus one additional sequence and two false positives. If six amino acids involved in substrate binding (a selective pressure not accounted for in our design) are reset to their experimental types, then 77% of the experimental SH3 domains are detected. Results for the SH2 domains are similar. Several directions to improve the method further are discussed.
Collapse
Affiliation(s)
- Marcel Schmidt am Busch
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | |
Collapse
|
61
|
Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model 2009; 15:1093-108. [PMID: 19234730 PMCID: PMC2712621 DOI: 10.1007/s00894-009-0454-9] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 01/02/2009] [Indexed: 12/01/2022]
Abstract
The burial of hydrophobic amino acids in the protein core is a driving force in protein folding. The extent to which an amino acid interacts with the solvent and the protein core is naturally proportional to the surface area exposed to these environments. However, an accurate calculation of the solvent-accessible surface area (SASA), a geometric measure of this exposure, is numerically demanding as it is not pair-wise decomposable. Furthermore, it depends on a full-atom representation of the molecule. This manuscript introduces a series of four SASA approximations of increasing computational complexity and accuracy as well as knowledge-based environment free energy potentials based on these SASA approximations. Their ability to distinguish correctly from incorrectly folded protein models is assessed to balance speed and accuracy for protein structure prediction. We find the newly developed "Neighbor Vector" algorithm provides the most optimal balance of accurate yet rapid exposure measures.
Collapse
Affiliation(s)
- Elizabeth Durham
- Departments of Chemistry, Pharmacology, and Biomedical Informatics and Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BioSci/MRB III, Room 5144B, Nashville, TN 37232-8725 USA
| | - Brent Dorr
- Departments of Chemistry, Pharmacology, and Biomedical Informatics and Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BioSci/MRB III, Room 5144B, Nashville, TN 37232-8725 USA
| | - Nils Woetzel
- Departments of Chemistry, Pharmacology, and Biomedical Informatics and Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BioSci/MRB III, Room 5144B, Nashville, TN 37232-8725 USA
| | - René Staritzbichler
- Departments of Chemistry, Pharmacology, and Biomedical Informatics and Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BioSci/MRB III, Room 5144B, Nashville, TN 37232-8725 USA
| | - Jens Meiler
- Departments of Chemistry, Pharmacology, and Biomedical Informatics and Center for Structural Biology, Vanderbilt University, 465 21st Ave South, BioSci/MRB III, Room 5144B, Nashville, TN 37232-8725 USA
- Department of Chemistry, VU Station B # 351822, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235-1822 USA
| |
Collapse
|
62
|
Chiu HP, Kokona B, Fairman R, Cheng RP. Effect of Highly Fluorinated Amino Acids on Protein Stability at a Solvent-Exposed Position on an Internal Strand of Protein G B1 Domain. J Am Chem Soc 2009; 131:13192-3. [DOI: 10.1021/ja903631h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hsien-Po Chiu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, Department of Biology, Haverford College, Haverford, Pennsylvania 19041, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Bashkim Kokona
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, Department of Biology, Haverford College, Haverford, Pennsylvania 19041, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Robert Fairman
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, Department of Biology, Haverford College, Haverford, Pennsylvania 19041, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Richard P. Cheng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, Department of Biology, Haverford College, Haverford, Pennsylvania 19041, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
63
|
Suárez M, Jaramillo A. Challenges in the computational design of proteins. J R Soc Interface 2009; 6 Suppl 4:S477-91. [PMID: 19324680 PMCID: PMC2843960 DOI: 10.1098/rsif.2008.0508.focus] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 02/04/2009] [Indexed: 11/12/2022] Open
Abstract
Protein design has many applications not only in biotechnology but also in basic science. It uses our current knowledge in structural biology to predict, by computer simulations, an amino acid sequence that would produce a protein with targeted properties. As in other examples of synthetic biology, this approach allows the testing of many hypotheses in biology. The recent development of automated computational methods to design proteins has enabled proteins to be designed that are very different from any known ones. Moreover, some of those methods mostly rely on a physical description of atomic interactions, which allows the designed sequences not to be biased towards known proteins. In this paper, we will describe the use of energy functions in computational protein design, the use of atomic models to evaluate the free energy in the unfolded and folded states, the exploration and optimization of amino acid sequences, the problem of negative design and the design of biomolecular function. We will also consider its use together with the experimental techniques such as directed evolution. We will end by discussing the challenges ahead in computational protein design and some of their future applications.
Collapse
Affiliation(s)
- María Suárez
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
- Epigenomics Project, Genopole, Université d'Evry Val d'Essonne-Genopole-CNRS, Tour Evry2, Etage 10, Terrasses de l'Agora, 91034 Evry Cedex, France
| | - Alfonso Jaramillo
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
- Epigenomics Project, Genopole, Université d'Evry Val d'Essonne-Genopole-CNRS, Tour Evry2, Etage 10, Terrasses de l'Agora, 91034 Evry Cedex, France
| |
Collapse
|
64
|
Zhang G, Li H, Fang B. Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
|
66
|
Jager M, Deechongkit S, Koepf EK, Nguyen H, Gao J, Powers ET, Gruebele M, Kelly JW. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective. Biopolymers 2009; 90:751-8. [PMID: 18844292 DOI: 10.1002/bip.21101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perturbing the structure of the Pin1 WW domain, a 34-residue protein comprised of three beta-strands and two intervening loops has provided significant insight into the structural and energetic basis of beta-sheet folding. We will review our current perspective on how structure acquisition is influenced by the sequence, which determines local conformational propensities and mediates the hydrophobic effect, hydrogen bonding, and analogous intramolecular interactions. We have utilized both traditional site-directed mutagenesis and backbone mutagenesis approaches to alter the primary structure of this beta-sheet protein. Traditional site-directed mutagenesis experiments are excellent for altering side-chain structure, whereas amide-to-ester backbone mutagenesis experiments modify backbone-backbone hydrogen bonding capacity. The transition state structure associated with the folding of the Pin1 WW domain features a partially H-bonded, near-native reverse turn secondary structure in loop 1 that has little influence on thermodynamic stability. The thermodynamic stability of the Pin1 WW domain is largely determined by the formation of a small hydrophobic core and by the formation of desolvated backbone-backbone H-bonds enveloped by this hydrophobic core. Loop 1 engineering to the consensus five-residue beta-bulge-turn found in most WW domains or a four-residue beta-turn found in most beta-hairpins accelerates folding substantially relative to the six-residue turn found in the wild type Pin1 WW domain. Furthermore, the more efficient five- and four-residue reverse turns now contribute to the stability of the three-stranded beta-sheet. These insights have allowed the design of Pin1 WW domains that fold at rates that approach the theoretical speed limit of folding.
Collapse
Affiliation(s)
- Marcus Jager
- Department of Chemistry, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Nesgaard L, Vad B, Christiansen G, Otzen D. Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:84-93. [DOI: 10.1016/j.bbapap.2008.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/19/2008] [Accepted: 09/28/2008] [Indexed: 12/01/2022]
|
68
|
Hu X, Wang H, Ke H, Kuhlman B. Computer-based redesign of a beta sandwich protein suggests that extensive negative design is not required for de novo beta sheet design. Structure 2008; 16:1799-805. [PMID: 19081056 PMCID: PMC2688708 DOI: 10.1016/j.str.2008.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/19/2008] [Accepted: 09/21/2008] [Indexed: 02/01/2023]
Abstract
The de novo design of globular beta sheet proteins remains largely an unsolved problem. It is unclear whether most designs are failing because the designed sequences do not have favorable energies in the target conformations or whether more emphasis should be placed on negative design, that is, explicitly identifying sequences that have poor energies when adopting undesired conformations. We tested whether we could redesign the sequence of a naturally occurring beta sheet protein, tenascin, with a design algorithm that does not include explicit negative design. Denaturation experiments indicate that the designs are significantly more stable than the wild-type protein and the crystal structure of one design closely matches the design model. These results suggest that extensive negative design is not required to create well-folded beta sandwich proteins. However, it is important to note that negative design elements may be encoded in the conformation of the protein backbone which was preserved from the wild-type protein.
Collapse
Affiliation(s)
- Xiaozhen Hu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7260, USA
| | - Huanchen Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7260, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7260, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7260, USA
| |
Collapse
|
69
|
Malet I, Soulie C, Tchertanov L, Derache A, Amellal B, Traore O, Simon A, Katlama C, Mouscadet JF, Calvez V, Marcelin AG. Structural effects of amino acid variations between B and CRF02-AG HIV-1 integrases. J Med Virol 2008; 80:754-61. [PMID: 18360887 DOI: 10.1002/jmv.21169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIV-1 integrase is one of the three essential enzyme required for viral replication and has a great potential as a novel target for anti-HIV drugs. The sequence variability of the entire integrase (IN) was examined in HIV-1 subtype B and CRF02-AG antiretroviral naïve infected patients for the presence of naturally occurring polymorphisms IN gene sequences and protein structures from both subtypes were compared. The phylogenetic analysis showed a total concordance between the 3 pol gene sequences for patients identified as subtype B whereas 3% of patients identified as CRF02-AG showed a mixture of subtypes. The analysis of IN aa sequences showed that 13 positions (K/R14, V/I31, L/I101, T/V112, T/A124, T/A125, G/N134, I/V135, K/T136, V/I201, T/S206, L/I234, and S/G283) differed between subtypes B and CRF02-AG. As observed in the 3D model of the preintegration complex, these differences may impact the functional property of IN. The fact that most variations were grouped suggests that some of them are linked together through compensatory mechanisms. This comparison allowed us to identify several variations of amino acids in HIV-1 IN subtype CRF02-AG that could have a putative impact on anti-integrase sensitivity. In particular, the region formed by Thr125, Thr124, Val31 contains at least one residue, T125, which variation has been involved in eliciting resistance to the naphtyridine carboxamide L870,810 IN inhibitor. In conclusion, virological response to anti-integrase should be studied carefully, according to the subtype, in clinical trials.
Collapse
|
70
|
Kinjo AR, Nakamura H. Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices. PLoS One 2008; 3:e1963. [PMID: 18398479 PMCID: PMC2276316 DOI: 10.1371/journal.pone.0001963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/05/2008] [Indexed: 11/19/2022] Open
Abstract
Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | | |
Collapse
|
71
|
Schmidt Am Busch M, Lopes A, Mignon D, Simonson T. Computational protein design: Software implementation, parameter optimization, and performance of a simple model. J Comput Chem 2008; 29:1092-102. [DOI: 10.1002/jcc.20870] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
Design of 11-residue peptides with unusual biophysical properties: induced secondary structure in the absence of water. Biophys J 2007; 94:1807-17. [PMID: 18024497 DOI: 10.1529/biophysj.107.118299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of oligopeptides with beta-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6 mM. The FLIVI containing peptide adopted a beta-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts beta-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH.
Collapse
|
73
|
Masman MF, Lovas S, Murphy RF, Enriz RD, Rodríguez AM. Conformational Preferences of N-Acetyl-l-leucine-N‘-methylamide. Gas-Phase and Solution Calculations on the Model Dipeptide. J Phys Chem A 2007; 111:10682-91. [PMID: 17887655 DOI: 10.1021/jp0716886] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A DFT study of N-acetyl-l-leucine-N'-methylamide conformers in the gas phase and in solution was carried out. The theoretical computational analysis revealed 43 different conformations at the B3LYP/6-31G(d) level of theory in the gas phase. In addition, the effects of three solvents (water, acetonitrile, and chloroform) were included in the calculations using the isodensity polarizable continuum model (IPCM) and the Poisson-Boltzmann self-consistent reaction field (PB-SCRF) method. The stability order of the different conformers in solution has been analyzed. The theoretical results were compared with some experimental data (X-ray, IR, and NMR).
Collapse
Affiliation(s)
- Marcelo F Masman
- Departamento de Química, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | | | | | | | | |
Collapse
|
74
|
Du D, Bunagan MR, Gai F. The effect of charge-charge interactions on the kinetics of alpha-helix formation. Biophys J 2007; 93:4076-82. [PMID: 17704172 PMCID: PMC2084238 DOI: 10.1529/biophysj.107.108548] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of the monomeric alpha-helix represents one of the simplest scenarios in protein folding; however, our current understanding of the folding dynamics of the alpha-helix motif is mainly based on studies of alanine-rich model peptides. To examine the effect of peptide sequence on the folding kinetics of alpha-helices, we studied the relaxation kinetics of a 21-residue helical peptide, Conantokin-T (Con-T), using time-resolved infrared spectroscopy in conjunction with a laser-induced temperature jump technique. Con-T is a neuroactive peptide containing a large number of charged residues that is found in the venom of the piscivorous cone snail Conus tulipa . The temperature-jump relaxation kinetics of Con-T is distinctly slower than that of previously studied alanine-based peptides, suggesting that the folding time of alpha-helices is sequence-dependent. Furthermore, it appears that the slower folding of Con-T can be attributed to the fact that its helical conformation is stabilized by charge-charge interactions or salt bridges. Although this finding contradicts an earlier molecular dynamics simulation, it also has implications for existing models of protein folding.
Collapse
Affiliation(s)
- Deguo Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
75
|
Burton RA, Tsurupa G, Hantgan RR, Tjandra N, Medved L. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment. Biochemistry 2007; 46:8550-60. [PMID: 17590019 PMCID: PMC2597398 DOI: 10.1021/bi700606v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
According to the existing hypothesis, in fibrinogen, the COOH-terminal portions of two Aalpha chains are folded into compact alphaC-domains that interact intramolecularly with each other and with the central region of the molecule; in fibrin, the alphaC-domains switch to an intermolecular interaction resulting in alphaC-polymers. In agreement, our recent NMR study identified within the bovine fibrinogen Aalpha374-538 alphaC-domain fragment an ordered compact structure including a beta-hairpin restricted at the base by a 423-453 disulfide linkage. To establish the complete structure of the alphaC-domain and to further test the hypothesis, we expressed a shorter alphaC-fragment, Aalpha406-483, and performed detailed analysis of its structure, stability, and interactions. NMR experiments on the Aalpha406-483 fragment identified a second loose beta-hairpin formed by residues 459-476, yielding a structure consisting of an intrinsically unstable mixed parallel/antiparallel beta-sheet. Size-exclusion chromatography and sedimentation velocity experiments revealed that the Aalpha406-483 fragment forms soluble oligomers whose fraction increases with an increase in concentration. This was confirmed by sedimentation equilibrium analysis, which also revealed that the addition of each monomer to an assembling alphaC-oligomer substantially increases its stabilizing free energy. In agreement, unfolding experiments monitored by CD established that oligomerization of Aalpha406-483 results in increased thermal stability. Altogether, these experiments establish the complete NMR solution structure of the Aalpha406-483 alphaC-domain fragment, provide direct evidence for the intra- and intermolecular interactions between the alphaC-domains, and confirm that these interactions are thermodynamically driven.
Collapse
Affiliation(s)
- Robert A. Burton
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 Center Drive, Bethesda, MD 20892
| | - Galina Tsurupa
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201
| | - Roy R. Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 Center Drive, Bethesda, MD 20892
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201
| |
Collapse
|
76
|
López-Llano J, Campos LA, Sancho J. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy. Proteins 2006; 64:769-78. [PMID: 16755589 DOI: 10.1002/prot.21041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The energetics of alpha-helix formation are fairly well understood and the helix content of a given amino acid sequence can be calculated with reasonable accuracy from helix-coil transition theories that assign to the different residues specific effects on helix stability. In internal helical positions, alanine is regarded as the most stabilizing residue, whereas glycine, after proline, is the more destabilizing. The difference in stabilization afforded by alanine and glycine has been explained by invoking various physical reasons, including the hydrophobic effect and the entropy of folding. Herein, the contribution of these two effects and that of hydrophilic area burial is evaluated by analyzing Ala and Gly mutants implemented in three helices of apoflavodoxin. These data, combined with available data for similar mutations in other proteins (22 Ala/Gly mutations in alpha-helices have been considered), allow estimation of the difference in backbone entropy between alanine and glycine and evaluation of its contribution and that of apolar and polar area burial to the helical stabilization typically associated to Gly-->Ala substitutions. Alanine consistently stabilizes the helical conformation relative to glycine because it buries more apolar area upon folding and because its backbone entropy is lower. However, the relative contribution of polar area burial (which is shown to be destabilizing) and of backbone entropy critically depends on the approximation used to model the structure of the denatured state. In this respect, the excised-peptide model of the unfolded state, proposed by Creamer and coworkers (1995), predicts a major contribution of polar area burial, which is in good agreement with recent quantitations of the relative enthalpic contribution of Ala and Gly residues to alpha-helix formation.
Collapse
Affiliation(s)
- J López-Llano
- Departamento de Bioquímica y Biología Molecular y Celular & Biocomputation and Complex Systems Physics Institute BIFI, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
77
|
Campbell-Valois FX, Tarassov K, Michnick SW. Massive sequence perturbation of the Raf ras binding domain reveals relationships between sequence conservation, secondary structure propensity, hydrophobic core organization and stability. J Mol Biol 2006; 362:151-71. [PMID: 16916524 DOI: 10.1016/j.jmb.2006.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/23/2006] [Accepted: 06/21/2006] [Indexed: 11/25/2022]
Abstract
The contributions of specific residues to the delicate balance between function, stability and folding rates could be determined, in part by [corrected] comparing the sequences of structures having identical folds, but insignificant sequence homology. Recently, we have devised an experimental strategy to thoroughly explore residue substitutions consistent with a specific class of structure. Using this approach, the amino acids tolerated at virtually all residues of the c-Raf/Raf1 ras binding domain (Raf RBD), an exemplar of the common beta-grasp ubiquitin-like topology, were obtained and used to define the sequence determinants of this fold. Herein, we present analyses suggesting that more subtle sequence selection pressure, including propensity for secondary structure, the hydrophobic core organization and charge distribution are imposed on the Raf RBD sequence. Secondly, using the Gibbs free energies (DeltaG(F-U)) obtained for 51 mutants of Raf RBD, we demonstrate a strong correlation between amino acid conservation and the destabilization induced by truncating mutants. In addition, four mutants are shown to significantly stabilize Raf RBD native structure. Two of these mutations, including the well-studied R89L, are known to severely compromise binding affinity for ras. Another stabilized mutant consisted of a deletion of amino acid residues E104-K106. This deletion naturally occurs in the homologues a-Raf and b-Raf and could indicate functional divergence. Finally, the combination of mutations affecting five of 78 residues of Raf RBD results in stabilization of the structure by approximately 12 kJ mol(-1) (DeltaG(F-U) is -22 and -34 kJ mol(-1) for wt and mutant, respectively). The sequence perturbation approach combined with sequence/structure analysis of the ubiquitin-like fold provide a basis for the identification of sequence-specific requirements for function, stability and folding rate of the Raf RBD and structural analogues, highlighting the utility of conservation profiles as predictive tools of structural organization.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Département de Biochimie, Université de Montréal, C.P. 6128, Succ. centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
78
|
Ofran Y, Margalit H. Proteins of the same fold and unrelated sequences have similar amino acid composition. Proteins 2006; 64:275-9. [PMID: 16565950 DOI: 10.1002/prot.20964] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well established that there is a relationship between the amino acid composition of a protein and its structural class (i.e., alpha, beta, alpha + beta, or alpha/beta). Several studies have even shown the power of amino acid composition in predicting the secondary structure class of a protein. Herein, we show that significant similarity in amino acid composition exists not only between proteins of the same class, but even between proteins of the same fold. To test conjectural explanations for this phenomenon, we analyzed a set of structurally similar proteins that are dissimilar in sequence. Based on this analysis, we suggest that specific residues that are involved in intramolecular interactions may account for this surprising relationship between composition and structure.
Collapse
Affiliation(s)
- Yanay Ofran
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
79
|
Zhan H, Swint-Kruse L, Matthews KS. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 2006; 45:5896-906. [PMID: 16669632 PMCID: PMC2701349 DOI: 10.1021/bi052619p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A significant number of eukaryotic regulatory proteins are predicted to have disordered regions. Many of these proteins bind DNA, which may serve as a template for protein folding. Similar behavior is seen in the prokaryotic LacI/GalR family of proteins that couple hinge-helix folding with DNA binding. These hinge regions form short alpha-helices when bound to DNA but appear to be disordered in other states. An intriguing question is whether and to what degree intrinsic helix propensity contributes to the function of these proteins. In addition to its interaction with operator DNA, the LacI hinge helix interacts with the hinge helix of the homodimer partner as well as to the surface of the inducer-binding domain. To explore the hierarchy of these interactions, we made a series of substitutions in the LacI hinge helix at position 52, the only site in the helix that does not interact with DNA and/or the inducer-binding domain. The substitutions at V52 have significant effects on operator binding affinity and specificity, and several substitutions also impair functional communication with the inducer-binding domain. Results suggest that helical propensity of amino acids in the hinge region alone does not dominate function; helix-helix packing interactions appear to also contribute. Further, the data demonstrate that variation in operator sequence can overcome side chain effects on hinge-helix folding and/or hinge-hinge interactions. Thus, this system provides a direct example whereby an extrinsic interaction (DNA binding) guides internal events that influence folding and functionality.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kathleen Shive Matthews
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- W. M. Keck Center for Computational Biology, MS 140, Rice University, Houston, TX 77005
| |
Collapse
|
80
|
Hu X, Kuhlman B. Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences. Proteins 2006; 62:739-48. [PMID: 16317667 DOI: 10.1002/prot.20786] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the protein design algorithm, RosettaDesign. In the standard version of the program, the energy of a particular sequence for a fixed backbone depends only on the lowest energy side-chain conformations that can be identified for that sequence. In the new model, the free energy of a single amino acid sequence is calculated by evaluating the average energy and entropy of an ensemble of structures generated by Monte Carlo sampling of amino acid side-chain conformations. To evaluate the impact of including explicit side-chain entropy, sequences were designed for 110 native protein backbones with and without the entropy model. In general, the differences between the two sets of sequences are modest, with the largest changes being observed for the longer amino acids: methionine and arginine. Overall, the identity between the designed sequences and the native sequences does not increase with the addition of entropy, unlike what is observed when other key terms are added to the model (hydrogen bonding, Lennard-Jones energies, and solvation energies). These results suggest that side-chain conformational entropy has a relatively small role in determining the preferred amino acid at each residue position in a protein.
Collapse
Affiliation(s)
- Xiaozhen Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
81
|
Chapagain PP, Gerstman BS. Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model α-helical hairpin peptide. Biopolymers 2006; 81:167-78. [PMID: 16215990 DOI: 10.1002/bip.20388] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The presence of non-native kinetic traps in the free energy landscape of a protein may significantly lengthen the overall folding time so that the folding process becomes unreliable. We use a computational model alpha-helical hairpin peptide to calculate structural free energy landscapes and relate them to the kinetics of folding. We show how protein engineering through strategic changes in only a few amino acid residues along the primary sequence can greatly increase the speed and reliability of the folding process, as seen experimentally. These strategic substitutions also prevent the formation of long-lived misfolded configurations that can cause unwanted aggregations of peptides. These results support arguments that removal of kinetic traps, obligatory or nonobligatory, is crucial for fast folding.
Collapse
Affiliation(s)
- Prem P Chapagain
- Department of Physics, Florida International University, University Park, Miami, FL 33199, USA
| | | |
Collapse
|
82
|
Acevedo OE, Lareo LR. Amino Acid Propensities Revisited. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:391-9. [PMID: 16402896 DOI: 10.1089/omi.2005.9.391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Statistical analysis of amino acid patterns in approximately 160,000 alpha-helices in experimentally determined structures revealed di-, tri-, and tetrapeptides, whose frequencies deviate most from the statistical model. Importantly, some sequences were never found in alpha- helices. This fact was detected initially with tripeptides, where nearly 1% of the possible sequences were never seen in the helical segments. For tetrapeptides, this effect is very strong and significant; almost 43% of the possible sequences never appear in alpha-helices. It is possible that there are some steric and energetic restrictions that do not allow these tetrameric amino acid sequences to form alpha-helical structure.
Collapse
Affiliation(s)
- Orlando E Acevedo
- Computational and Structural Biochemistry and Bioinformatics, Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana, Carlos Ortiz Building, Rm. 107, Carrera 7a #43-82, Bogotá, Colombia
| | | |
Collapse
|
83
|
Abstract
MOTIVATION Despite the importance of beta-sheets as building blocks in proteins and also toxic elements in the pathological disorders, ranging from Alzheimer's disease to mad cow disease, the principles underlying their stability are not well understood. Non-random beta-sheet propensities of amino acids have been revealed both by their distinct statistical preferences within known protein structures and by the relative thermodynamic scales through the experimental host-guest systems. However, recent fitting analysis has proved that a native beta-sheet conforms to a minimal surface with zero mean curvature, like the physical model of soap films. RESULTS We here suggest that the stability of a residue in the all beta-sheet proteins can be measured with its mean curvature parameter, using discrete differential geometry. The sharply decreasing mean curvature with increasing number of beta-strands identifies a significant cooperative effect whereby the interstrand interaction increases in strength with the number of beta-strands. Furthermore, strong correlations of mean curvatures with previous beta-sheet propensities of amino acids show that their intrinsic differences in adopting the ideal beta-sheet structure are affected by the water-accessible area of side-chains, and result in the distinct statistical and thermodynamic beta-sheet propensities. Therefore, we conclude that mean curvature should be considered as the significant stability index of a beta-sheet structure.
Collapse
Affiliation(s)
- Eunhee Koh
- Department of Biology, Yonsei University 134, Sinchon-dong, Seodaemun-gu, Seoul, 120-749, Korea.
| | | | | |
Collapse
|
84
|
Bisetty K, Catalan JG, Kruger HG, Perez JJ. Conformational analysis of small peptides of the type Ac–X–NHMe, where X=Gly, Ala, Aib and Cage. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.04.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
85
|
Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM. Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. J Mol Biol 2005; 350:379-92. [PMID: 15925383 DOI: 10.1016/j.jmb.2005.04.016] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 02/08/2023]
Abstract
Increasing evidence indicates that many peptides and proteins can be converted in vitro into highly organised amyloid structures, provided that the appropriate experimental conditions can be found. In this work, we define intrinsic propensities for the aggregation of individual amino acids and develop a method for identifying the regions of the sequence of an unfolded peptide or protein that are most important for promoting amyloid formation. This method is applied to the study of three polypeptides associated with neurodegenerative diseases, Abeta42, alpha-synuclein and tau. In order to validate the approach, we compare the regions of proteins that are predicted to be most important in driving aggregation, either intrinsically or as the result of mutations, with those determined experimentally. The knowledge of the location and the type of the "sensitive regions" for aggregation is important both for rationalising the effects of sequence changes on the aggregation of polypeptide chains and for the development of targeted strategies to combat diseases associated with amyloid formation.
Collapse
Affiliation(s)
- Amol P Pawar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
The identification of protein mutations that enhance binding affinity may be achieved by computational or experimental means, or by a combination of the two. Sources of affinity enhancement may include improvements to the net balance of binding interactions of residues forming intermolecular contacts at the binding interface, such as packing and hydrogen-bonding interactions. Here we identify noncontacting residues that make substantial contributions to binding affinity and that also provide opportunities for mutations that increase binding affinity of the TEM1 beta-lactamase (TEM1) to the beta-lactamase inhibitor protein (BLIP). A region of BLIP not on the direct TEM1-binding surface was identified for which changes in net charge result in particularly large increases in computed binding affinity. Some mutations to the region have previously been characterized, and our results are in good correspondence with this results of that study. In addition, we propose novel mutations to BLIP that were computed to improve binding significantly without contacting TEM1 directly. This class of noncontacting electrostatic interactions could have general utility in the design and tuning of binding interactions.
Collapse
Affiliation(s)
- Brian A Joughin
- Computer Science and Artificial Intelligence Laboratory, Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, Room 32-212, Cambridge, MA 02139-4307, USA
| | | | | |
Collapse
|
87
|
Huang F, Hudgins RR, Nau WM. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates. J Am Chem Soc 2005; 126:16665-75. [PMID: 15600373 DOI: 10.1021/ja0466053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically discussed.
Collapse
Affiliation(s)
- Fang Huang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
88
|
Tizzano B, Palladino P, De Capua A, Marasco D, Rossi F, Benedetti E, Pedone C, Ragone R, Ruvo M. The human prion protein α2 helix: A thermodynamic study of its conformational preferences. Proteins 2005; 59:72-9. [PMID: 15688445 DOI: 10.1002/prot.20395] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2.1 x 10(-5) M, the spectrum of the blocked peptide exhibited a single band centered at 200 nm, unequivocally associated to random conformations, which did not evolve even after 24 h. Conformational preferences of this last peptide have been investigated as a function of temperature, using trifluoroethanol or low-concentration sodium dodecyl sulfate as alpha- or beta-structure inducers, respectively. Extrapolation of free energy data to zero concentration of structuring agent highlighted that the peptide prefers alpha-helical to beta-type organization, in spite of results from prediction algorithms. However, the free energy difference between the two forms, as obtained by a thermodynamic cycle, is subtle (roughly 5-8 kJ mol(-1) at any temperature from 280 K to 350 K), suggesting conformational ambivalence. This result supports the view that, in the prion protein, the structural behavior of the peptide is governed by the cellular microenvironment.
Collapse
Affiliation(s)
- Barbara Tizzano
- Dipartimento di Chimica Biologica, Università Federico II di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Gromiha MM, Parry DAD. Characteristic features of amino acid residues in coiled-coil protein structures. Biophys Chem 2004; 111:95-103. [PMID: 15381307 DOI: 10.1016/j.bpc.2004.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/21/2022]
Abstract
Detailed analyses of protein structures provide an opportunity to understand conformation and function in terms of amino acid sequence and composition. In this work, we have systematically analyzed the characteristic features of the amino acid residues found in alpha-helical coiled-coils and, in so doing, have developed indices for their properties, conformational parameters, surrounding hydrophobicity and flexibility. As expected, there is preference for hydrophobic (Ala, Leu), positive (Lys, Arg) and negatively (Glu) charged residues in coiled-coil domains. However, the surrounding hydrophobicity of residues in coiled-coil domains is significantly less than that for residues in other regions of coiled-coil proteins. The analysis of temperature factors in coiled-coil proteins shows that the residues in these domains are more stable than those in other regions. Further, we have delineated the medium- and long-range contacts in coiled-coil domains and compared the results with those obtained for other (non-coiled-coil) parts of the same proteins and non-coiled-coil helical segments of globular proteins. The residues in coiled-coil domains are largely influenced by medium-range contacts, whereas long-range interactions play a dominant role in other regions of these same proteins as well as in non-coiled-coil helices. We have also revealed the preference of amino acid residues to form cation-pi interactions and we found that Arg is more likely to form such interactions than Lys. The parameters developed in this work can be used to understand the folding and stability of coiled-coil proteins in general.
Collapse
Affiliation(s)
- M Michael Gromiha
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Aomi Frontier Building 17F, 2-43 Aomi, Koto, Tokyo 135-0064, Japan.
| | | |
Collapse
|
90
|
D'Onofrio G, Ghosh TC, Bernardi G. The base composition of the genes is correlated with the secondary structures of the encoded proteins. Gene 2002; 300:179-87. [PMID: 12468099 DOI: 10.1016/s0378-1119(02)01045-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The analysis of a non-redundant set of human proteins, for which both the crystallographic structures and the corresponding gene sequences are available, show that bases at third codon position are non-uniformly distributed along the coding sequences. Significant compositional differences are found by comparing the gene regions corresponding to the different secondary structures of the proteins. Inter-and intra-structure differences were most pronounced in the GC-richest genes. These results are not compatible with any proposed hypotheses based on a neutral process of formation/maintenance of the high GC(3) levels of the genes localized in the GC-richest isochores of the human genome.
Collapse
Affiliation(s)
- Giuseppe D'Onofrio
- Laboratorio di Evoluzione Molecolare, Stazione Zoologica A. Dohrn, Naples, Italy.
| | | | | |
Collapse
|
91
|
Gromiha MM, Selvaraj S. Important amino acid properties for determining the transition state structures of two-state protein mutants. FEBS Lett 2002; 526:129-34. [PMID: 12208519 DOI: 10.1016/s0014-5793(02)03122-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the mechanism in the folding pathways of proteins is an important problem in molecular biology. The Phi-value analysis provides insight into the transition state structures during protein folding. In this work, we have analyzed the relationship between the observed Phi values upon mutations in two-state proteins (FK506 binding protein, chymotrypsin inhibitor and src SH3 domain) and the changes in 48 various physico-chemical, energetic and conformational properties. We found that the classification of mutations based on solvent accessibility improved the correlation significantly. The relationship between conformational properties and Phi values determines the presence/absence of secondary structures in the transition state. In buried mutations, the physical properties volume, shape and flexibility, and the thermodynamic properties enthalpy, entropy and free-energy change have significant correlation with Phi. The short and medium-range non-bonded energy in partially buried mutations and average long-range contacts in exposed mutations showed a strong correlation with Phi values. Multiple regression analysis incorporating combinations of three properties from among all possible combinations of the 48 properties increased the correlation coefficient up to 0.99, by an average rise of 20% for all the data sets. Information about local sequence and structure is more important in surface mutations than those in buried mutations for explaining the transition state structures of two-state proteins. Further, the implications of our results for understanding the process of protein folding have been discussed.
Collapse
Affiliation(s)
- M Michael Gromiha
- Computational Biology Research Center, AIST, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | |
Collapse
|
92
|
Levin MC, Marullo S, Muntaner O, Andersson B, Magnusson Y. The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 2002; 277:30429-35. [PMID: 12034720 DOI: 10.1074/jbc.m200681200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR) is a major mediator of catecholamine effects in human heart. Patients with heart failure who were hetero- or homozygous for the Gly-49 variant of the beta(1)AR (Gly-49-beta(1)AR) showed improved long-term survival as compared with those with the Ser-49 genotype. Here, the functional consequences of this polymorphism were studied in cells expressing either variant. The Gly-49-beta(1)AR demonstrated characteristic features of constitutively active receptors. In cells expressing the Gly-49-beta(1)AR, both basal and agonist-stimulated adenylyl cyclase activities were higher than in cells expressing the Ser-49 variant (Ser-49-beta(1)AR). The Gly-49-beta(1)AR was more sensitive to the inhibitory effect of the inverse agonist metoprolol and displayed increased affinity for agonists. Isoproterenol potency for adenylyl cyclase activation was higher on membranes expressing the Gly-49-beta(1)AR than on those expressing the Ser-49-beta(1)AR. After incubation with saturating concentrations of catecholamines or sustained stimulation, the Gly-49 variant showed a much higher desensitization, which largely prevailed over constitutive activity in terms of cAMP accumulation. The Gly-49-beta(1)AR also displayed a more profound agonist-promoted down-regulation than the Ser-49 variant. The stronger regulation of the Gly-49-beta(1)AR could explain the beneficial effect of the Gly-49 genotypes on survival, further supporting the concept that beta(1)AR desensitization is protective in heart failure.
Collapse
Affiliation(s)
- Malin C Levin
- Wallenberg Laboratory, Göteborg University, Göteborg SE-413 45, Sweden
| | | | | | | | | |
Collapse
|
93
|
Kumita JR, Flint DG, Smart OS, Woolley GA. Photo-control of peptide helix content by an azobenzene cross-linker: steric interactions with underlying residues are not critical. Protein Eng Des Sel 2002; 15:561-9. [PMID: 12200538 DOI: 10.1093/protein/15.7.561] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photo-control of protein conformation could prove useful for probing function in diverse biological systems. Recently, we reported photo-switching of helix content in a short peptide containing an azobenzene cross-linker between cysteine residues at positions i and i + 7 in the sequence. In the original sequence, underlying residues at positions i + 3 and i + 4 were made bulky as preliminary modelling suggested that this would enhance photo-control of helix content. To test this hypothesis, peptides with Val, Aib; Ile, Aib; and Ala, Ala at positions i + 3 and i + 4 were synthesized, cross-linked and characterized. Before cross-linking, the peptides show distinct conformational behaviours: two with differing helix/coil mixtures whereas the other has a circular dichroism (CD) spectrum characteristic of beta-sheet and a tendency to aggregate. However, upon cross-linking the peptides have very similar CD spectra: predominantly random coil in the dark but predominantly helical upon irradiation. These results refute the original hypothesis. Steric interactions between the linker and underlying residues do not appear to be critical for photo-switching behaviour. When the cross-linking bridge is lengthened by replacing the i, i + 7 cysteine residues with homocysteine, a lower degree of photo-control of helicity is observed. Furthermore, a non-cross-linking version of the azobenzene reagent is shown not to produce any photo-control of helicity. We conclude that the intramolecular cross-link is essential for photo-switching and that it should be applicable to a wide range of peptides and proteins.
Collapse
Affiliation(s)
- Janet R Kumita
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto M5S 3H6, Canada
| | | | | | | |
Collapse
|
94
|
Funahashi J, Takano K, Yamagata Y, Yutani K. Positive contribution of hydration structure on the surface of human lysozyme to the conformational stability. J Biol Chem 2002; 277:21792-800. [PMID: 11927576 DOI: 10.1074/jbc.m110728200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Water molecules make a hydration structure with the network of hydrogen bonds, covering on the surface of proteins. To quantitatively estimate the contribution of the hydration structure to protein stability, a series of hydrophilic mutant human lysozymes (Val to Ser, Tyr, Asp, Asn, and Arg) modified at three different positions on the surface, which are located in the alpha-helix (Val-110), the beta-sheet (Val-2), and the loop (Val-74), were constructed. Their thermodynamic parameters of denaturation and crystal structures were examined by calorimetry and by x-ray crystallography at 100 K, respectively. The introduced polar residues made hydrogen bonds with protein atoms and/or water molecules, sometimes changing the hydration structure around the mutation site. Changes in the stability of the mutant proteins can be evaluated by a unique equation that considers the conformational changes resulting from the substitutions. Using this analysis, the relationship between the changes in the stabilities and the hydration structures for mutant human lysozymes substituted on the surface could be quantitatively estimated. The analysis indicated that the hydration structure on protein surface plays an important role in determining the conformational stability of the protein.
Collapse
Affiliation(s)
- Jun Funahashi
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
95
|
Iwaoka M, Okada M, Tomoda S. Solvent effects on the φ–ψ potential surfaces of glycine and alanine dipeptides studied by PCM and I-PCM methods. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00076-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
96
|
Friedberg I, Margalit H. Persistently conserved positions in structurally similar, sequence dissimilar proteins: roles in preserving protein fold and function. Protein Sci 2002; 11:350-60. [PMID: 11790845 PMCID: PMC2373454 DOI: 10.1110/ps.18602] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many protein pairs that share the same fold do not have any detectable sequence similarity, providing a valuable source of information for studying sequence-structure relationship. In this study, we use a stringent data set of structurally similar, sequence-dissimilar protein pairs to characterize residues that may play a role in the determination of protein structure and/or function. For each protein in the database, we identify amino-acid positions that show residue conservation within both close and distant family members. These positions are termed "persistently conserved". We then proceed to determine the "mutually" persistently conserved (MPC) positions: those structurally aligned positions in a protein pair that are persistently conserved in both pair mates. Because of their intra- and interfamily conservation, these positions are good candidates for determining protein fold and function. We find that 45% of the persistently conserved positions are mutually conserved. A significant fraction of them are located in critical positions for secondary structure determination, they are mostly buried, and many of them form spatial clusters within their protein structures. A substitution matrix based on the subset of MPC positions shows two distinct characteristics: (i) it is different from other available matrices, even those that are derived from structural alignments; (ii) its relative entropy is high, emphasizing the special residue restrictions imposed on these positions. Such a substitution matrix should be valuable for protein design experiments.
Collapse
Affiliation(s)
- Iddo Friedberg
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
97
|
Doucet A, Williams M, Gagnon MC, Sasseville M, Beauregard M. Engineering nutritious proteins: improvement of stability in the designer protein MB-1 via introduction of disulfide bridges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:92-98. [PMID: 11754549 DOI: 10.1021/jf010839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.
Collapse
Affiliation(s)
- Alain Doucet
- Groupe de Recherche en Energie et Information Biomoléculaire, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | | | | | | | | |
Collapse
|
98
|
Ianoul A, Boyden MN, Asher SA. Dependence of the peptide amide III vibration on the phi dihedral angle. J Am Chem Soc 2001; 123:7433-4. [PMID: 11472179 DOI: 10.1021/ja0023128] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A Ianoul
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
99
|
Chakrabarti P, Pal D. The interrelationships of side-chain and main-chain conformations in proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 76:1-102. [PMID: 11389934 DOI: 10.1016/s0079-6107(01)00005-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accurate determination of a large number of protein structures by X-ray crystallography makes it possible to conduct a reliable statistical analysis of the distribution of the main-chain and side-chain conformational angles, how these are dependent on residue type, adjacent residue in the sequence, secondary structure, residue-residue interactions and location at the polypeptide chain termini. The interrelationship between the main-chain (phi, psi) and side-chain (chi 1) torsion angles leads to a classification of amino acid residues that simplify the folding alphabet considerably and can be a guide to the design of new proteins or mutational studies. Analyses of residues occurring with disallowed main-chain conformation or with multiple conformations shed some light on why some residues are less favoured in thermophiles.
Collapse
Affiliation(s)
- P Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VIIM, 700 054, Calcutta, India. boseinst.ernet.in
| | | |
Collapse
|
100
|
Kono H, Saven JG. Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure. J Mol Biol 2001; 306:607-28. [PMID: 11178917 DOI: 10.1006/jmbi.2000.4422] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.
Collapse
Affiliation(s)
- H Kono
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|