51
|
Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 2000; 149:575-90. [PMID: 10791972 PMCID: PMC2174860 DOI: 10.1083/jcb.149.3.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors, like Nop1p, Cbf5p, Nhp2p, and Rrp5p. The small nucleolar RNAs (snoRNAs) U3, U14, and MRP were also found to be associated with the complex, which supports accurate transcription, termination, and pseudouridylation of rRNA. Formation of the complex did not depend on pol I, and the complex could efficiently recruit exogenous pol I into active ribosomal DNA (rDNA) transcription units. Visualization of the complex by electron microscopy and immunogold labeling revealed a characteristic cluster-forming network of nonuniform size containing nucleolar proteins like Nop1p and Fpr3p and attached pol I. Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Moorefield B, Greene EA, Reeder RH. RNA polymerase I transcription factor Rrn3 is functionally conserved between yeast and human. Proc Natl Acad Sci U S A 2000; 97:4724-9. [PMID: 10758157 PMCID: PMC18300 DOI: 10.1073/pnas.080063997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned a human cDNA that is related to the RNA polymerase I transcription factor Rrn3 of Saccharomyces cerevisiae. The recombinant human protein displays both sequence similarity and immunological crossreactivity to yeast Rrn3 and is capable of rescuing a yeast strain carrying a disruption of the RRN3 gene in vivo. Point mutation of an amino acid that is conserved between the yeast and human proteins compromises the function of each factor, confirming that the observed sequence similarity is functionally significant. Rrn3 is the first RNA polymerase I-specific transcription factor shown to be functionally conserved between yeast and mammals, suggesting that at least one mechanism that regulates ribosomal RNA synthesis is conserved among eukaryotes.
Collapse
Affiliation(s)
- B Moorefield
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | |
Collapse
|
53
|
Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:293-327. [PMID: 9932458 DOI: 10.1016/s0079-6603(08)60511-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article focuses on what is currently known about the regulation of transcription by RNA polymerase I (pol I) in eukaryotic organisms at opposite ends of the evolutionary spectrum--a yeast, Saccharomyces cerevisiae, and vertebrates, including mice, frogs, and man. Contemporary studies that have defined the DNA sequence elements are described, as well as the majority of the basal transcription factors essential for pol I transcription. Situations in which pol I transcription is known to be regulated are reviewed and possible regulatory mechanisms are critically discussed. Some aspects of basal pol I transcription machinery appear to have been conserved from fungi to vertebrates, but other aspects have evolved, perhaps to meet the needs of a metazoan organism. Different parts of the pol I transcription machinery are regulatory targets depending on different physiological stimuli. This suggests that multiple signaling pathways may also be involved. The involvement of ribosomal genes and their transcripts in events such as mitosis, cancer, and aging is discussed.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
54
|
Keener J, Josaitis CA, Dodd JA, Nomura M. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem 1998; 273:33795-802. [PMID: 9837969 DOI: 10.1074/jbc.273.50.33795] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five purified protein components, RNA polymerase I, Rrn3p, core factor, TBP (TATA-binding protein), and upstream activation factor, are sufficient for high level transcription in vitro from the Saccharomyces cerevisiae rDNA promoter. Rrn3p and pol I form a complex in solution that is active in specific initiation. Three protein components, pol I, Rrn3p, and core factor, and promoter sequence to -38, suffice for basal transcription. Unlike pol II and pol III, yeast pol I basal transcription does not require TBP. Instead, TBP, upstream activation factor, and the upstream element of the promoter together stimulate pol I basal transcription to a fully activated level. The role of TBP in pol I transcription is fundamentally different from its role in pol II or pol III transcription.
Collapse
Affiliation(s)
- J Keener
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
55
|
Radebaugh CA, Kubaska WM, Hoffman LH, Stiffler K, Paule MR. A novel transcription initiation factor (TIF), TIF-IE, is required for homogeneous Acanthamoeba castellanii TIF-IB (SL1) to form a committed complex. J Biol Chem 1998; 273:27708-15. [PMID: 9765308 DOI: 10.1074/jbc.273.42.27708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fundamental transcription initiation factor (TIF) for ribosomal RNA expression by eukaryotic RNA polymerase I, TIF-IB, has been purified to near homogeneity from Acanthamoeba castellanii using standard techniques. The purified factor consists of the TATA-binding protein and four TATA-binding protein-associated factors with relative molecular weights of 145,000, 99,000, 96,000, and 91,000. This yields a calculated native molecular weight of 460, 000, which compares well with its mass determined by scanning transmission electron microscopy (493,000) and its sedimentation rate, which is close to RNA polymerase I (515,000). Both impure and nearly homogeneous TIF-IB exhibit an apparent equilibrium dissociation constant of 56 +/- 3 pM. However, although impure TIF-IB can form a promoter-DNA complex resistant to challenge by other promoter-containing DNAs, near homogeneous TIF-IB cannot do so. An additional transcription factor, dubbed TIF-IE, restores the ability of near homogeneous TIF-IB to sequester DNA into a committed complex.
Collapse
Affiliation(s)
- C A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
56
|
Oakes M, Aris JP, Brockenbrough JS, Wai H, Vu L, Nomura M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 1998; 143:23-34. [PMID: 9763418 PMCID: PMC2132813 DOI: 10.1083/jcb.143.1.23] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1998] [Revised: 06/11/1998] [Indexed: 11/22/2022] Open
Abstract
The nucleolus in Saccharomyces cerevisiae is a crescent-shaped structure that makes extensive contact with the nuclear envelope. In different chromosomal rDNA deletion mutants that we have analyzed, the nucleolus is not organized into a crescent structure, as determined by immunofluorescence microscopy, fluorescence in situ hybridization, and electron microscopy. A strain carrying a plasmid with a single rDNA repeat transcribed by RNA polymerase I (Pol I) contained a fragmented nucleolus distributed throughout the nucleus, primarily localized at the nuclear periphery. A strain carrying a plasmid with the 35S rRNA coding region fused to the GAL7 promoter and transcribed by Pol II contained a rounded nucleolus that often lacked extensive contact with the nuclear envelope. Ultrastructurally distinct domains were observed within the round nucleolus. A similar rounded nucleolar morphology was also observed in strains carrying the Pol I plasmid in combination with mutations that affect Pol I function. In a Pol I-defective mutant strain that carried copies of the GAL7-35S rDNA fusion gene integrated into the chromosomal rDNA locus, the nucleolus exhibited a round morphology, but was more closely associated with the nuclear envelope in the form of a bulge. Thus, both the organization of the rDNA genes and the type of polymerase involved in rDNA expression strongly influence the organization and localization of the nucleolus.
Collapse
Affiliation(s)
- M Oakes
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | | | |
Collapse
|
57
|
Steffan JS, Keys DA, Vu L, Nomura M. Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo. Mol Cell Biol 1998; 18:3752-61. [PMID: 9632758 PMCID: PMC108958 DOI: 10.1128/mcb.18.7.3752] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 03/29/1998] [Indexed: 02/07/2023] Open
Abstract
Previous in vitro studies have shown that initiation of transcription of ribosomal DNA (rDNA) in the yeast Saccharomyces cerevisiae involves an interaction of upstream activation factor (UAF) with the upstream element of the promoter, forming a stable UAF-template complex; together with TATA-binding protein (TBP), UAF then recruits an essential factor, core factor (CF), to the promoter, forming a stable preinitiation complex. TBP interacts with both UAF and CF in vitro. In addition, a subunit of UAF, Rrn9p, interacts with TBP in vitro and in the two-hybrid system, suggesting the possible importance of this interaction for UAF function. Using the yeast two-hybrid system, we have identified three mutations in RRN9 that abolish the interaction of Rrn9p with TBP without affecting its interaction with Rrn10p, another subunit of UAF. Yeast cells containing any one of these individual mutations, L110S, L269P, or L274Q, did not show any growth defects. However, cells containing a combination of L110S with one of the other two mutations showed a temperature-sensitive phenotype, and this phenotype was suppressed by fusing the mutant genes to SPT15, which encodes TBP. In addition, another mutation (F186S), which disrupts both Rrn9p-TBP and Rrn9p-Rrn10p interactions in the two-hybrid system, abolished UAF function in vivo, and this mutational defect was suppressed by fusion of the mutant gene to SPT15 combined with overexpression of Rrn10p. These experiments demonstrate that the interaction of UAF with TBP, which is presumably achieved by the interaction of Rrn9p with TBP, is indeed important for high-level transcription of rDNA by RNA polymerase I in vivo.
Collapse
Affiliation(s)
- J S Steffan
- Department of Biological Chemistry, University of California-Irvine, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
58
|
Affiliation(s)
- T I Lee
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
59
|
Keener J, Dodd JA, Lalo D, Nomura M. Histones H3 and H4 are components of upstream activation factor required for the high-level transcription of yeast rDNA by RNA polymerase I. Proc Natl Acad Sci U S A 1997; 94:13458-62. [PMID: 9391047 PMCID: PMC28327 DOI: 10.1073/pnas.94.25.13458] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase I (Pol I) transcription in the yeast Saccharomyces cerevisiae is greatly stimulated in vivo and in vitro by the multiprotein complex, upstream activation factor (UAF). UAF binds tightly to the upstream element of the rDNA promoter, such that once bound (in vitro), UAF does not readily exchange onto a competing template. Of the polypeptides previously identified in purified UAF, three are encoded by genes required for Pol I transcription in vivo: RRN5, RRN9, and RRN10. Two others, p30 and p18, have remained uncharacterized. We report here that the N-terminal amino acid sequence, its mobility in gel electrophoresis, and the immunoreactivity of p18 shows that it is histone H3. In addition, histone H4 was found in UAF, and myc-tagged histone H4 could be used to affinity-purify UAF. Histones H2A and H2B were not detectable in UAF. These results suggest that histones H3 and H4 probably account for the strong binding of UAF to DNA and may offer a means by which general nuclear regulatory signals could be transmitted to Pol I.
Collapse
Affiliation(s)
- J Keener
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | | | | | |
Collapse
|
60
|
Affiliation(s)
- R J Planta
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands.
| |
Collapse
|
61
|
Milkereit P, Schultz P, Tschochner H. Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol Chem 1997; 378:1433-43. [PMID: 9461342 DOI: 10.1515/bchm.1997.378.12.1433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have further analyzed the requirements of yeast RNA polymerase I (pol I) to initiate transcription at the ribosomal gene promoter. Resolution of yeast whole cell extracts through several chromatographic steps yielded three protein fractions required for accurate initiation. One fraction is composed of TBP associated within a 240 kDa protein complex. The fraction contributing the RNA polymerase I (pol I) activity consists of dimeric and monomeric pol I under conditions optimal for in vitro transcription. The capability to utilize the ribosomal gene promoter correlates with monomeric pol I complexes which are possibly associated with further transcription factors. These initiation competent pol I complexes appeared to be resistant to high salt concentrations. Pol I dimers which represent the majority of the isolated pol I, can be reversibly dissociated into monomers and are only active in non-specific RNA synthesis, if single stranded DNA serves as a template. We suggest a model in which dimeric inactive pol I is converted into an active monomeric form that might be associated with other transcription factors to maintain a stable initiation competent complex.
Collapse
|
62
|
Geiss GK, Radebaugh CA, Paule MR. The fundamental ribosomal RNA transcription initiation factor-IB (TIF-IB, SL1, factor D) binds to the rRNA core promoter primarily by minor groove contacts. J Biol Chem 1997; 272:29243-54. [PMID: 9361004 DOI: 10.1074/jbc.272.46.29243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acanthamoeba castellanii transcription initiation factor-IB (TIF-IB) is the TATA-binding protein-containing transcription factor that binds the rRNA promoter to form the committed complex. Minor groove-specific drugs inhibit TIF-IB binding, with higher concentrations needed to disrupt preformed complexes because of drug exclusion by bound TIF-IB. TIF-IB/DNA interactions were mapped by hydroxyl radical and uranyl nitrate footprinting. TIF-IB contacts four minor grooves in its binding site. TIF-IB and DNA wrap around each other in a right-handed superhelix of high pitch, so the upstream and downstream contacts are on opposite faces of the helix. Dimethyl sulfate protection assays revealed limited contact with a few guanines in the major groove. This detailed analysis suggests significant DNA conformation dependence of the interaction.
Collapse
Affiliation(s)
- G K Geiss
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
63
|
Saez-Vasquez J, Pikaard CS. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc Natl Acad Sci U S A 1997; 94:11869-74. [PMID: 9342329 PMCID: PMC23640 DOI: 10.1073/pnas.94.22.11869] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain approximately 30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
64
|
Brun I, Sentenac A, Werner M. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 1997; 16:5730-41. [PMID: 9312031 PMCID: PMC1170204 DOI: 10.1093/emboj/16.18.5730] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The C34 subunit of yeast RNA polymerase (pol) III is part of a subcomplex of three subunits which have no counterpart in the other two nuclear RNA polymerases. This subunit interacts with TFIIIB70 and is therefore thought to participate in pol III recruitment. To study the role of C34 in transcription, we have mutagenized RPC34, the gene encoding C34, and found that mutations affecting growth also altered C34 interaction with TFIIIB70. The two mutant pol III that were purified had catalytic properties indistinguishable from those of the wild-type pol III on a poly[d(A-T)] template, while specific transcription of pol III genes in the presence of general transcription factors was impaired. The defect of the C34-1124 mutant enzyme could be compensated by increasing the amount of pol III present in the reaction, suggesting that the enzyme had a lower affinity for pre-initiation complexes. In contrast, the C34-1109 mutant enzyme was defective in transcription initiation due to impaired open complex formation. These observations demonstrate that the C34 subunit is a major determinant in pol III recruitment by the pre-initiation complex and further acts at a subsequent stage that involves the configuration of an initiation-competent form of RNA polymerase.
Collapse
Affiliation(s)
- I Brun
- Service de Biochimie et Génétique Moléculaire, Bâtiment 142, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
65
|
Chen L, Guo A, Pape L. An immunoaffinity purified Schizosaccharomyces pombe TBP-containing complex directs correct initiation of the S.pombe rRNA gene promoter. Nucleic Acids Res 1997; 25:1633-40. [PMID: 9092673 PMCID: PMC146630 DOI: 10.1093/nar/25.8.1633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The multi-protein complex SL1, containing TBP, which is essential for RNA polymerase I catalyzed transcription, has been analyzed in fission yeast. It was immunopurified based on association of component subunits with epitope-tagged TBP. To enable this analysis, a strain of Schizosaccharomyces pombe was created where the only functional TBP coding sequences were those of FLAG-TBP. RNA polymerase I transcription components were fractionated from this strain and the TBP-associated polypeptides were subsequently immunopurified together with the epitope- tagged TBP. An assessment of the activity of this candidate SL1 complex was undertaken cross-species. This fission yeast TBP-containing complex displays two activities in redirecting transcriptional initiation of an S. pombe rDNA gene promoter cross-species in Saccharomyces cerevisiae transcription reactions: it both blocks an incorrect transcriptional start site at +7 and directs initiation at the correct site for S. pombe rRNA synthesis. This complex is essential for accurate initiation of the S.pombe rRNA gene: rRNA synthesis is reconstituted when this S.pombe TBP-containing complex is combined with a S.pombe fraction immunodepleted of TBP.
Collapse
MESH Headings
- Base Sequence
- Chromatography, Affinity
- Chromosomes, Fungal
- Cloning, Molecular
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Escherichia coli
- Molecular Sequence Data
- Oligopeptides
- Peptides
- Pol1 Transcription Initiation Complex Proteins
- Promoter Regions, Genetic
- RNA Polymerase I/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- TATA-Box Binding Protein
- Transcription Factor TFIID
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- L Chen
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
66
|
Gadal O, Mariotte-Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, Thuriaux P. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol Cell Biol 1997; 17:1787-95. [PMID: 9121426 PMCID: PMC232025 DOI: 10.1128/mcb.17.4.1787] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A34.5, a phosphoprotein copurifying with RNA polymerase I (Pol I), lacks homology to any component of the Pol II or Pol III transcription complexes. Cells devoid of A34.5 hardly affect growth and rRNA synthesis and generate a catalytically active but structurally modified enzyme also lacking subunit A49 upon in vitro purification. Other Pol I-specific subunits (A49, A14, and A12.2) are nonessential for growth at 30 degrees C but are essential (A49 and A12.2) or helpful (A14) at 25 or 37 degrees C. Triple mutants without A34.5, A49, and A12.2 are viable, but inactivating any of these subunits together with A14 is lethal. Lethality is rescued by expressing pre-rRNA from a Pol II-specific promoter, demonstrating that these subunits are collectively essential but individually dispensable for rRNA synthesis. A14 and A34.5 single deletions affect the subunit composition of the purified enzyme in pleiotropic but nonoverlapping ways which, if accumulated in the double mutants, provide a structural explanation for their strict synthetic lethality. A34.5 (but not A14) becomes quasi-essential in strains lacking DNA topoisomerase I, suggesting a specific role of this subunit in helping Pol I to overcome the topological constraints imposed on ribosomal DNA by transcription.
Collapse
Affiliation(s)
- O Gadal
- Service de Biochimie & Génétique Moléculaire, CEA-Saclay, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH. A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:6436-43. [PMID: 8887672 PMCID: PMC231645 DOI: 10.1128/mcb.16.11.6436] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-Rrn7 complex also binds the TATA-binding protein and is required for transcription by the core domain of the Pol I promoter. Therefore, we have designated the Rrn11-Rrn6-Rrn7-TATA-binding protein complex the yeast Pol I core factor. A two-hybrid assay was used to demonstrate involvement of short leucine heptad repeats on both Rrn11 and Rrn6 in the in vivo association of these two proteins. This assay also verified the previously described strong association between Rrn6 and Rrn7, independent of the Rrn6 leucine repeat.
Collapse
Affiliation(s)
- C W Lin
- Basic Sciences Division, Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
68
|
Steffan JS, Keys DA, Dodd JA, Nomura M. The role of TBP in rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for upstream activation factor-dependent recruitment of core factor. Genes Dev 1996; 10:2551-63. [PMID: 8895657 DOI: 10.1101/gad.10.20.2551] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcription of Saccharomyces cerevisiae rDNA by RNA polymerase I involves at least two transcription factors characterized previously: upstream activation factor (UAF) consisting of Rrn5p, Rrn9p, Rrn10p, and two more uncharacterized proteins; and core factor (CF) consisting of Rrn6p, Rrn7p, and Rrn11p. UAF interacts directly with an upstream element of the promoter and mediates its stimulatory function, and CF subsequently joins a stable preinitiation complex. The TATA-binding protein (TBP) has been known to be involved in transcription by all three nuclear RNA polymerases. We found that TBP interacts specifically with both UAF and CF, the interaction with UAF being stronger than that with CF. Using extracts from a TBP (I143N) mutant, it was shown that TBP is required for stimulation of transcription mediated by the upstream element, but not for basal transcription directed by a template without the upstream element. By template competition experiments, it was shown that TBP is required for UAF-dependent recruitment of CF to the rDNA promoter, explaining the TBP requirement for stimulatory activity of the upstream element. We also studied protein-protein interactions and found specific interactions of TBP with Rrn6p and with Rrn9p both in vitro and in the yeast two-hybrid system in vivo. Thus, these two interactions may be involved in the interactions of TBP with CF and UAF, respectively, contributing to the recruitment of CF to the rDNA promoter. Additionally, we observed an interaction between Rrn9p and Rrn7p both in vitro and in the two-hybrid system; thus, this interaction might also contribute to the recruitment of CF.
Collapse
Affiliation(s)
- J S Steffan
- Department of Biological Chemistry, University of California, Irvine 92697-1700, USA
| | | | | | | |
Collapse
|