51
|
Reddy MM, Stutts MJ. Status of fluid and electrolyte absorption in cystic fibrosis. Cold Spring Harb Perspect Med 2013; 3:a009555. [PMID: 23284077 DOI: 10.1101/cshperspect.a009555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Salt and fluid absorption is a shared function of many of the body's epithelia, but its use is highly adapted to the varied physiological roles of epithelia-lined organs. These functions vary from control of hydration of outward-facing epithelial surfaces to conservation and regulation of total body volume. In the most general context, salt and fluid absorption is driven by active Na(+) absorption. Cl(-) is absorbed passively through various available paths in response to the electrical driving force that results from active Na(+) absorption. Absorption of salt creates a concentration gradient that causes water to be absorbed passively, provided the epithelium is water permeable. Key differences notwithstanding, the transport elements used for salt and fluid absorption are broadly similar in diverse epithelia, but the regulation of these elements enables salt absorption to be tailored to very different physiological needs. Here we focus on salt absorption by exocrine glands and airway epithelia. In cystic fibrosis, salt and fluid absorption by gland duct epithelia is effectively prevented by the loss of cystic fibrosis transmembrane conductance regulator (CFTR). In airway epithelia, salt and fluid absorption persists, in the absence of CFTR-mediated Cl(-) secretion. The contrast of these tissue-specific changes in CF tissues is illustrative of how salt and fluid absorption is differentially regulated to accomplish tissue-specific physiological objectives.
Collapse
Affiliation(s)
- M M Reddy
- Department of Pediatrics, UCSD School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
52
|
Bao HF, Song JZ, Duke BJ, Ma HP, Denson DD, Eaton DC. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species. Am J Physiol Cell Physiol 2012; 303:C1129-38. [PMID: 22895258 PMCID: PMC3530770 DOI: 10.1152/ajpcell.00139.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.
Collapse
Affiliation(s)
- Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
53
|
Li T, Yang Y, Canessa CM. Impact of recovery from desensitization on acid-sensing ion channel-1a (ASIC1a) current and response to high frequency stimulation. J Biol Chem 2012; 287:40680-9. [PMID: 23048040 DOI: 10.1074/jbc.m112.418400] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Consecutive proton stimulation reduces ASIC1a peak currents leading to silencing of channels. RESULTS Kinetic analysis using a fast perfusion system shows that human ASIC1a has two desensitized states with markedly different stabilities. CONCLUSION High frequency trains of short stimuli prevent desensitization. SIGNIFICANCE The results predict steady ASIC1a responses to high frequency release of protons as in synaptic transmission. ASIC1a is a neuronal sodium channel activated by external H(+) ions. To date, all the characterization of ASIC1a has been conducted applying long H(+) stimuli lasting several seconds. Such experimental protocols weaken and even silence ASIC1a currents to repetitive stimulation. In this work, we examined ASIC1a currents by methods that use rapid application and removal of H(+). We found that brief H(+) stimuli, <100 ms, even if applied at high frequency, prevent desensitization thereby generate full and steady peak currents of human ASIC1a. Kinetic analysis of recovery from desensitization of hASIC1a revealed two desensitized states: short- and long-lasting with time constants of τ(Ds) ≤0.5 and τ(Dl) = 229 s, while in chicken ASIC1a the two desensitized states have similar values τ(D) 4.5 s. It is the large difference in stability of the two desensitized states that makes hASIC1a desensitization more pronounced and complex than in cASIC1a. Furthermore, recovery from desensitization was unrelated to cytosolic variations in pH, ATP, PIP(2), or redox state but was dependent on the hydrophobicity of key residues in the first transmembrane segment (TM1). In conclusion, brief H(+)-stimuli maintain steady the magnitude of peak currents thereby the ASIC1a channel is well poised to partake in high frequency signals in the brain.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520-8026, USA
| | | | | |
Collapse
|
54
|
Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al-Khalili O, Eaton DC. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 2012; 303:F800-11. [PMID: 22791334 PMCID: PMC3468524 DOI: 10.1152/ajprenal.00703.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/06/2012] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Desimone JA, Ren Z, Phan THT, Heck GL, Mummalaneni S, Lyall V. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. J Neurophysiol 2012; 108:3206-20. [PMID: 22956787 DOI: 10.1152/jn.00916.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between taste receptor cell (TRC) Ca(2+) concentration ([Ca(2+)](i)) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO(2), and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca(2+), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca(2+)-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca(2+)](i) attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na(+) conductance. A decrease in TRC [Ca(2+)](i) enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na(+) conductance but did not affect CT responses to KCl or NH(4)Cl. An increase in TRC [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H(+)](i) and [Ca(2+)](i) was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca(2+)](i)-dependent and [Ca(2+)](i)-independent mechanisms. Changes in TRC [Ca(2+)](i) in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca(2+)](i) in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release.
Collapse
Affiliation(s)
- John A Desimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Cellular release of nucleotides is of physiological importance to regulate and maintain cell function and integrity. Also in the tubular and collecting duct system of the kidney, nucleotides are released in response to changes in cell volume or luminal flow rate and act in a paracrine and autocrine way on basolateral and luminal P2Y receptors. Recent studies using gene knockout mice assigned a prominent role to G protein-coupled P2Y(2) receptors, which are activated by both ATP and UTP. The antidiuretic hormone, arginine-vasopressin (AVP), and possibly an increase in collecting duct cell volume induce ATP release. The subsequent activation of P2Y(2) receptors inhibits AVP-induced cAMP formation and water reabsorption, which stabilizes cell volume and facilitates water excretion. An increase in NaCl intake enhances luminal release of ATP and UTP in the aldosterone-sensitive distal nephron which by activating apical P2Y(2) receptors and phospholipase C lowers the open probability of the epithelial sodium channel ENaC, thereby facilitating sodium excretion. Thus, the renal ATP/UTP/P2Y(2) receptor system not only serves to preserve cell volume and integrity but is also regulated by stimuli that derive from body NaCl homeostasis. The system also inhibits ENaC activity during aldosterone escape, i.e. when sodium reabsorption via ENaC is inappropriately high. The P2Y(2) receptor tone inhibits the expression and activity of the Na-K-2Cl cotransporter NKCC2 in the thick ascending limb and mediates vasodilation. While the role of other P2Y receptors in the kidney is less clear, the ATP/UTP/P2Y(2) receptor system regulates NaCl and water homeostasis and blood pressure.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA; VA San Diego Healthcare System, San Diego California, San Diego, CA 92161, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
57
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
58
|
Kashlan OB, Kleyman TR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res 2012; 318:1011-9. [PMID: 22405998 DOI: 10.1016/j.yexcr.2012.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
Electrogenic Na(+) transport across high resistance epithelial is mediated by the epithelial Na(+) channel (ENaC). Our understanding of the mechanisms of ENaC regulation has continued to evolve over the two decades following the cloning of ENaC subunits. This review highlights many of the cellular and extracellular factors that regulate channel trafficking or gating.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
59
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Thomas SV, Kathpalia PP, Rajagopal M, Charlton C, Zhang J, Eaton DC, Helms MN, Pao AC. Epithelial sodium channel regulation by cell surface-associated serum- and glucocorticoid-regulated kinase 1. J Biol Chem 2011; 286:32074-85. [PMID: 21784856 PMCID: PMC3173222 DOI: 10.1074/jbc.m111.278283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/20/2011] [Indexed: 11/06/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (sgk1) participates in diverse biological processes, including cell growth, apoptosis, and sodium homeostasis. In the cortical collecting duct of the kidney, sgk1 regulates sodium transport by stimulating the epithelial sodium channel (ENaC). Control of subcellular localization of sgk1 may be an important mechanism for modulating specificity of sgk1 function; however, which subcellular locations are required for sgk1-regulated ENaC activity in collecting duct cells has yet to be established. Using cell surface biotinylation studies, we detected endogenous sgk1 at the apical cell membrane of aldosterone-stimulated mpkCCD(c14) collecting duct cells. The association of sgk1 with the cell membrane was enhanced when ENaC was co-transfected with sgk1 in kidney cells, suggesting that ENaC brings sgk1 to the cell surface. Furthermore, association of endogenous sgk1 with the apical cell membrane of mpkCCD(c14) cells could be modulated by treatments that increase or decrease ENaC expression at the apical membrane; forskolin increased the association of sgk1 with the apical surface, whereas methyl-β-cyclodextrin decreased the association of sgk1 with the apical surface. Single channel recordings of excised inside-out patches from the apical membrane of aldosterone-stimulated A6 collecting duct cells revealed that the open probability of ENaC was sensitive to the sgk1 inhibitor GSK650394, indicating that endogenous sgk1 is functionally active at the apical cell membrane. We propose that the association of sgk1 with the apical cell membrane, where it interacts with ENaC, is a novel means by which sgk1 specifically enhances ENaC activity in aldosterone-stimulated collecting duct cells.
Collapse
Affiliation(s)
- Sheela V. Thomas
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Paru P. Kathpalia
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Madhumitha Rajagopal
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Carol Charlton
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| | - Jianning Zhang
- the Department of Medicine, Division of Nephrology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390, and
| | - Douglas C. Eaton
- the Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - My N. Helms
- the Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Alan C. Pao
- From the Department of Medicine, Division of Nephrology, Stanford University, Stanford, California 94305
| |
Collapse
|
61
|
Kooijman EE, Kuzenko SR, Gong D, Best MD, Folkesson HG. Phosphatidylinositol 4,5-bisphosphate stimulates alveolar epithelial fluid clearance in male and female adult rats. Am J Physiol Lung Cell Mol Physiol 2011; 301:L804-11. [PMID: 21873448 DOI: 10.1152/ajplung.00445.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain. Thus PI(4,5)P(2) effects on alveolar fluid clearance were studied in male and female rats. An isosmolar 5% albumin solution was intrapulmonary instilled; alveolar fluid clearance was studied for 1 h. Female rats had a 37 ± 19% higher baseline alveolar fluid clearance than male rats. Bilateral ovariectomy attenuated this gender difference. Compared with controls, PI(4,5)P(2) instillation (300 μM) increased alveolar fluid clearance by ∼93% in both genders. Amiloride or the specific αENaC small-interfering RNA inhibited baseline and PI(4,5)P(2)-stimulated alveolar fluid clearance in both genders, indicating a dependence on amiloride-sensitive pathways. The fraction of amiloride inhibition was greater in PI(4,5)P(2)-instilled rats (male: 64 ± 10%; female: 70 ± 11%) than in controls (male: 30 ± 6%; female: 44 ± 8%). PI(4,5)P(2) instillation lacked additional alveolar fluid clearance stimulation above that of terbutaline, nor did propranolol inhibit alveolar fluid clearance after PI(4,5)P(2) instillation, indicating that PI(4,5)P(2) stimulation was not secondary to endogenous β-adrenoceptor activation. PI(4,5)P(2) amine instillation resulted in an intermediate alveolar fluid clearance stimulation, suggesting that, to reach maximal alveolar fluid clearance stimulation, PI(4,5)P(2) must reside in cell membranes. In summary, PI(4,5)P(2) instillation upregulated in vivo alveolar fluid clearance similar to short-term β-adrenoceptor upregulation of alveolar fluid clearance. PI(4,5)P(2) stimulation was mediated partly by increased amiloride-sensitive Na transport. There exist important gender-related effects suggesting a female advantage that may have clinical implications for resolution of acute lung injury.
Collapse
Affiliation(s)
- Edgar E Kooijman
- Dept. of Biological Sciences, Kent State Univ., Kent, OH 44242, USA.
| | | | | | | | | |
Collapse
|
62
|
Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011; 301:F463-75. [PMID: 21715471 DOI: 10.1152/ajprenal.00236.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California San Diego, 92161, USA.
| | | |
Collapse
|
63
|
Seminario-Vidal L, Okada SF, Sesma JI, Kreda SM, van Heusden CA, Zhu Y, Jones LC, O'Neal WK, Penuela S, Laird DW, Boucher RC, Lazarowski ER. Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 2011; 286:26277-86. [PMID: 21606493 DOI: 10.1074/jbc.m111.260562] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.
Collapse
Affiliation(s)
- Lucia Seminario-Vidal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Drévillon L, Tanguy G, Hinzpeter A, Arous N, de Becdelièvre A, Aissat A, Tarze A, Goossens M, Fanen P. COMMD1-mediated ubiquitination regulates CFTR trafficking. PLoS One 2011; 6:e18334. [PMID: 21483833 PMCID: PMC3069076 DOI: 10.1371/journal.pone.0018334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.
Collapse
Affiliation(s)
- Loïc Drévillon
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
| | - Gaëlle Tanguy
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
| | | | | | - Alix de Becdelièvre
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
- AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Biochimie-Génétique, Créteil, France
| | - Abdel Aissat
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
| | - Agathe Tarze
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
| | - Michel Goossens
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
- AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Biochimie-Génétique, Créteil, France
| | - Pascale Fanen
- INSERM, Unité U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S 955, Créteil, France
- AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Biochimie-Génétique, Créteil, France
- * E-mail:
| |
Collapse
|
65
|
Mansley MK, Wilson SM. Dysregulation of epithelial Na+ absorption induced by inhibition of the kinases TORC1 and TORC2. Br J Pharmacol 2011; 161:1778-92. [PMID: 20735411 DOI: 10.1111/j.1476-5381.2010.01003.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the serum and glucocorticoid-inducible protein kinase 1 (SGK1) appears to be involved in controlling epithelial Na(+) absorption, its role in this physiologically important ion transport process is undefined. As SGK1 activity is dependent upon target of rapamycin complex 2 (TORC2)-catalysed phosphorylation of SGK1-Ser(422) , we have explored the effects of inhibiting TORC2 and/or TORC1 upon the hormonal control of Na(+) absorption. EXPERIMENTAL APPROACH Na(+) absorption was quantified electrometrically in mouse cortical collecting duct cells (mpkCCD) grown to confluence on permeable membranes. Kinase activities were assessed by monitoring endogenous protein phosphorylation, with or without TORC1/2 inhibitors (TORIN1 and PP242) and the TORC1 inhibitor: rapamycin. KEY RESULTS Inhibition of TORC1/2 (TORIN1, PP242) suppressed basal SGK1 activity, prevented insulin- and dexamethasone-induced SGK1 activation, and caused modest (10-20%) inhibition of basal Na(+) absorption and substantial (∼80%) inhibition of insulin/dexamethasone-induced Na(+) transport. Inhibition of TORC1 did not impair SGK1 activation or insulin-induced Na(+) transport, but did inhibit (∼80%) dexamethasone-induced Na(+) absorption. Arginine vasopressin stimulated Na(+) absorption via a TORC1/2-independent mechanism. CONCLUSION AND IMPLICATIONS Target of rapamycin complex 2, but not TORC1, is important to SGK1 activation. Signalling via phosphoinositide-3-kinase/TORC2/SGK1 can explain insulin-induced Na(+) absorption. TORC2, but not TORC1, is also involved in glucocorticoid-induced SGK1 activation but its role is permissive. Glucocorticoid-induced Na(+) transport displayed a requirement for TORC1 activity. Therefore, TORC1 and TORC2 contribute to the regulation of Na(+) absorption. Pharmacological manipulation of TORC1/2 signalling may provide novel therapies for Na(+)-sensitive hypertension.
Collapse
Affiliation(s)
- Morag K Mansley
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, UK
| | | |
Collapse
|
66
|
Lazarowski ER, Sesma JI, Seminario L, Esther CR, Kreda SM. Nucleotide release by airway epithelia. Subcell Biochem 2011; 55:1-15. [PMID: 21560042 DOI: 10.1007/978-94-007-1217-1_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purinergic events regulating the airways' innate defenses are initiated by the release of purines from the epithelium, which occurs constitutively and is enhanced by chemical or mechanical stimulation. While the external triggers have been reviewed exhaustively, this chapter focuses on current knowledge of the receptors and signaling cascades mediating nucleotide release. The list of secreted purines now includes ATP, ADP, AMP and nucleotide sugars, and involves at least three distinct mechanisms reflecting the complexity of airway epithelia. First, the constitutive mechanism involves ATP translocation to the ER/Golgi complex as energy source for protein folding, and fusion of Golgi-derived vesicles with the plasma membrane. Second, goblet cells package ATP with mucins into granules, which are discharged in response to P2Y(2)R activation and Ca(2+)-dependent signaling pathways. Finally, non-mucous cells support a regulated mechanism of ATP release involving protease activated receptor (PAR)-elicited G(12/13) activation, leading to the RhoGEF-mediated exchange of GDP for GTP on RhoA, and cytoskeleton rearrangement. Together, these pathways provide fine tuning of epithelial responses regulated by purinergic signaling events.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina, 7011 Thurston-Bowles building, Chapel Hill, NC, 27599, USA,
| | | | | | | | | |
Collapse
|
67
|
Mueller GM, Maarouf AB, Kinlough CL, Sheng N, Kashlan OB, Okumura S, Luthy S, Kleyman TR, Hughey RP. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J Biol Chem 2010; 285:30453-62. [PMID: 20663869 DOI: 10.1074/jbc.m110.151845] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na(+) self-inhibition, and reduced single channel P(o) when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.
Collapse
Affiliation(s)
- Gunhild M Mueller
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
69
|
D'Avanzo N, Cheng WWL, Wang S, Enkvetchakul D, Nichols CG. Lipids driving protein structure? Evolutionary adaptations in Kir channels. Channels (Austin) 2010; 4:139-41. [PMID: 21150302 DOI: 10.4161/chan.4.3.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many eukaryotic channels, transporters and receptors are activated by phosphatidyl inositol bisphosphate (PIP(2)) in the membrane, and every member of the eukaryotic inward rectifier potassium (Kir) channel family requires membrane PIP(2) for activity. In contrast, a bacterial homolog (KirBac1.1) is specifically inhibited by PIP(2). We speculate that a key evolutionary adaptation in eukaryotic channels is the insertion of additional linkers between transmembrane and cytoplasmic domains, revealed by new crystal structures, that convert PIP(2) inhibition to activation. Such an adaptation may reflect a novel evolutionary drive to protein structure, and that was necessary to permit channel function within the highly negatively charged membranes that evolved in the eukaryotic lineage.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
70
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
71
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1166-77. [PMID: 20347969 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
72
|
Eaton DC, Malik B, Bao HF, Yu L, Jain L. Regulation of epithelial sodium channel trafficking by ubiquitination. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2010; 7:54-64. [PMID: 20160149 PMCID: PMC3137150 DOI: 10.1513/pats.200909-096js] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/02/2009] [Indexed: 01/13/2023]
Abstract
Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Whitehead Biomedical Research Building, 615 Micheal Street, Suite 601, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
73
|
Lyall V, Phan THT, Ren Z, Mummalaneni S, Melone P, Mahavadi S, Murthy KS, DeSimone JA. Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate. J Neurophysiol 2009; 103:1337-49. [PMID: 20032236 DOI: 10.1152/jn.00883.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t.
Collapse
Affiliation(s)
- Vijay Lyall
- Dept. of Physiology and Biophysics, Virginia Commonwealth Univ., Molecular Medical Research Bldg. 5052, 1220 East Broad St., Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Anionic phospholipids differentially regulate the epithelial sodium channel (ENaC) by interacting with alpha, beta, and gamma ENaC subunits. Pflugers Arch 2009; 459:377-87. [PMID: 19763606 DOI: 10.1007/s00424-009-0733-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Anionic phospholipids (APs) present a variety of lipids in the cytoplasmic leaflet of the plasma membrane, including phosphatidylinositol (PI), PI-4-phosphate (PI(4)P), phosphatidylserine (PS), PI-4,5-bisphosphate (PI(4,5)P(2)), PI-3,4,5-trisphosphate (PI(3,4,5)P(3)), and phosphatidic acid (PA). We previously showed that PI(4,5)P(2) and PI(3,4,5)P(3) upregulate the renal epithelial sodium channel (ENaC). Further studies from others suggested that PI(4,5)P(2) and PI(3,4,5)P(3) respectively target beta- and gamma-ENaC subunit. To determine whether PI(4,5)P(2) and PI(3,4,5)P(3) selectively bind to beta and gamma subunit, we performed lipid-protein overlay experiments. Surprisingly, the results reveal that most APs, including PI(4)P, PS, PI(4,5)P(2), PI(3,4,5)P(3), and PA, but not PI, non-selectively bind to not only beta and gamma but also alpha subunit. To determine how these APs regulate ENaC, we performed inside-out patch-clamp experiments and found that PS, but not PI or PI(4)P, maintained ENaC activity, that PI(4,5)P(2) and PI(3,4,5)P(3) stimulated ENaC, and that PA, however, inhibited ENaC. These data together suggest that APs differentially regulate ENaC by physically interacting with alpha-, beta-, and gamma-ENaC. Further, the data from cell-attached patch-clamp and confocal microscopy experiments indicate that PA, a product of phospholipase D, may provide one of the pathways for inhibition of ENaC by endothelin receptors.
Collapse
|
75
|
Seminario-Vidal L, Kreda S, Jones L, O'Neal W, Trejo J, Boucher RC, Lazarowski ER. Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho- and Ca2+-dependent signaling pathways. J Biol Chem 2009; 284:20638-48. [PMID: 19439413 DOI: 10.1074/jbc.m109.004762] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular ATP controls key aspects of lung function via activation of epithelial cell purinergic receptors, but how ATP is released from cells remains poorly understood. To identify mechanistic components upstream of ATP release, we examined the effect of selected G protein coupled-receptor activation on ATP release from lung epithelial cells. The protease-activated receptor (PAR) agonist thrombin elicited a rapid Ca(2+)-dependent release of ATP from A549 cells. In contrast, the P2Y(2) receptor agonist UTP caused negligible ATP release, despite promoting a robust Ca(2+) response. Agonist-elicited ATP release was associated with Rho activation and was reduced in cells transfected with dominant negative mutants of p115-Rho GEF or RhoA, and by inhibitors of Rho kinase (ROCK). However, RhoA activation alone did not promote ATP release if temporally separated from Ca(2+) mobilization. PAR3 was the only PAR subtype detected in A549 cells by reverse transcription-PCR. Transfection of cells with human PAR3 cDNA increased thrombin-promoted ATP release, inositol phosphate formation, and RhoA activation. Conversely, small interference RNA against PAR3 diminished thrombin-evoked responses. Thrombin-elicited ATP release was accompanied by an enhanced cellular uptake of propidium iodide in a Ca(2+)- and ROCK-dependent manner and was inhibited by connexin/pannexin hemichannel blockers. Our data suggest that thrombin promotes ATP release from A549 cells via Rho- and Ca(2+)-dependent activation of connexin/pannexin hemichannels. The relevance of these findings is highlighted by the observation that exposure of primary cultures of well differentiated human bronchial epithelial cells to thrombin resulted in robust ATP release, which was inhibited by ROCK inhibitors and by connexin/pannexin hemichannel blockers.
Collapse
Affiliation(s)
- Lucia Seminario-Vidal
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway epithelia. Curr Opin Pharmacol 2009; 9:262-7. [PMID: 19285919 DOI: 10.1016/j.coph.2009.02.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
Nucleotides and nucleosides within the airway surface liquid regulate mucociliary clearance (MCC) activities, the primary innate defense mechanism that removes foreign particles and pathogens from airway surfaces. Nucleotide and nucleoside actions in the airways are mediated mainly by two purinergic receptor subtypes, the Gq-coupled ATP/UTP-sensing P2Y2 receptor and the Gs-coupled A2b adenosine receptor. Activation of the A2b receptor results in cyclic AMP-dependent activation of the cystic fibrosis transmembrane regulator (CFTR) Cl- channel and stimulation of ciliary beat frequency. Agonist occupation of the P2Y2 receptor promotes inhibition of Na+ absorption as well as CFTR-dependent and CFTR-independent Cl- secretion, ciliary beating, and mucin secretion.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research & Treatment Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
77
|
Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 2009; 458:111-35. [PMID: 19277701 DOI: 10.1007/s00424-009-0656-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/29/2022]
Abstract
The aldosterone-sensitive distal nephron (ASDN) includes the late distal convoluted tubule 2, the connecting tubule (CNT) and the collecting duct. The appropriate regulation of sodium (Na(+)) absorption in the ASDN is essential to precisely match urinary Na(+) excretion to dietary Na(+) intake whilst taking extra-renal Na(+) losses into account. There is increasing evidence that Na(+) transport in the CNT is of particular importance for the maintenance of body Na(+) balance and for the long-term control of extra-cellular fluid volume and arterial blood pressure. Na(+) transport in the CNT critically depends on the activity and abundance of the amiloride-sensitive epithelial sodium channel (ENaC) in the luminal membrane of the CNT cells. As a rate-limiting step for transepithelial Na(+) transport, ENaC is the main target of hormones (e.g. aldosterone, angiotensin II, vasopressin and insulin/insulin-like growth factor 1) to adjust transepithelial Na(+) transport in this tubular segment. In this review, we highlight the structural and functional properties of the CNT that contribute to the high Na(+) transport capacity of this segment. Moreover, we discuss some aspects of the complex pathways and molecular mechanisms involved in ENaC regulation by hormones, kinases, proteases and associated proteins that control its function. Whilst cultured cells and heterologous expression systems have greatly advanced our knowledge about some of these regulatory mechanisms, future studies will have to determine the relative importance of the various pathways in the native tubule and in particular in the CNT.
Collapse
|
78
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
79
|
An oxygen-sensitive mechanism in regulation of epithelial sodium channel. Proc Natl Acad Sci U S A 2009; 106:2957-62. [PMID: 19196957 DOI: 10.1073/pnas.0809100106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epithelial sodium channels (ENaCs) are of immense importance, controlling Na(+) transport across epithelia and thus playing a central role in all aspects of fluid clearance as well as numerous other functions. Regulation of these channels is critical. Here, we show that haem, a regulator of Na(+) transport, directly influences ENaC activity, decreasing channel-open probability (but not unitary conductance) in inside-out patches (but not outside-out). Conversely, exposure to the protein in the presence of NADPH and at normoxic O(2) tension (requirements for activity of hemeoxygenase) increases channel activity. CO, a product of hemeoxygenase activity, activated ENaC in a manner similar to that of haem plus NADPH. However, under hypoxic conditions, inhibition of ENaC by haem occurred even in the presence of NADPH. These data demonstrate a potent, O(2)-sensitive mechanism for regulation of ENaC, in which hemeoxygenase acts as the O(2) sensor, its substrate and product inhibiting and stimulating (respectively) the activity of ENaC.
Collapse
|
80
|
Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 2009; 17:533-40. [PMID: 18695396 DOI: 10.1097/mnh.0b013e328308fff3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Epithelial sodium channel (ENaC) activity is limiting for sodium reabsorption in the distal nephron. Humans regulate blood pressure by fine-tuning sodium balance through control of ENaC. ENaC dysfunction causes some hypertensive and renal salt wasting diseases. Thus, it is critical to understand the cellular mechanisms controlling ENaC activity. RECENT FINDINGS ENaC is sensitive to phosphatidylinositol 4,5-bisphosphate (PIP2), the target of phospholipase C-mediated metabolism, and phosphatidylinositiol 3,4,5-trisphosphate (PIP3), the product of phosphatidylinositide 3-OH kinase (PI3-K). PIP2 is permissive for ENaC gating possibly interacting directly with the channel. Activation of distal nephron P2Y receptors tempers ENaC activity by promoting PIP2 metabolism. This is important because gene deletion of P2Y2 receptors causes hypertension associated with hyperactive ENaC. Aldosterone, the final hormone in a negative-feedback cascade activated by decreases in blood pressure, increases ENaC activity. PIP3 sits at a critical bifurcation in the aldosterone-signaling cascade, increasing ENaC open probability and number. PIP3-effectors mediate increases in ENaC number by suppressing channel retrieval. PIP3 binds ENaC, at a site distinct from that important to PIP2 regulation, to modulate directly open probability. SUMMARY Phosphoinositides play key roles in physiologic control of ENaC and perhaps dysregulation plays a role in disease associated with abnormal renal sodium handling.
Collapse
|
81
|
Effects of lipids on ENaC activity in cultured mouse cortical collecting duct cells. J Membr Biol 2009; 227:77-85. [PMID: 19122972 DOI: 10.1007/s00232-008-9145-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Direct effects on epithelial Na+ channels (ENaC) activity by lipids, e.g., arachidonic acid (AA), eicosatetraynoic acid (ETYA), linoleic acid (LA), stearic acid (SA), hydroxyeicosatetraenoic acid (HETE), 11,12-epoxyeicosatrienoic acid (EET), (PGF2), and (PGE2), in cultured mouse cortical collecting duct (M1) cells were clarified by using single-channel recordings in this study. In a cell-attached recording, a bath application of 10 microM AA significantly reduced the ENaC open probability (NPo), whereas 10 microM ETYA or 5 microM LA only induced a slight inhibition. The inside-out recording as a standard protocol was thereafter performed to examine effects of these lipids on ENaC activity. Within 10 min after the formation of the inside-out configuration, the NPo of ENaC in cultured mouse cortical collecting duct (M1) cells remained relatively constant. Application of ETYA or LA or SA exhibited a similar inhibition on the channel NPo when applied to the extracellular side, suggesting that fatty acids could exert a nonspecific inhibition on ENaC activity. 11,12-EET, a metabolite of AA via the cytochrome P450 epoxygenase pathway, significantly inhibited the ENaC NPo, whereas 20-HETE, a metabolite of AA via the hydroxylase pathway, only caused a small inhibition of the ENaC NPo, to a similar degree as that seen with ETYA and LA. However, both PGE2 and PGF2alpha significantly enhanced the ENaC NPo. These results suggest that fatty acids exert a nonspecific effect on ENaC activity due to the interaction between the channel proximity and the lipid. The opposite effects of 11,12-EET and prostaglandin (PG) implicate different mechanisms in regulation of ENaC activity by activation of epoxygenase and cyclooxygenase.
Collapse
|
82
|
Gu Y. Effects of [Ca2+]i and pH on epithelial Na+ channel activity of cultured mouse cortical collecting ducts. ACTA ACUST UNITED AC 2008; 211:3167-73. [PMID: 18805816 DOI: 10.1242/jeb.019646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
[Ca2+]i and pH have been demonstrated to affect Na+ transport in epithelium mediated via the apical epithelial Na+ channel (ENaC). However, it still remains unclear whether the effects of [Ca2+]i and intracellular pH (pHi) on ENaC activity are direct. In this study, inside-out recording was employed to clarify the effects of pH(i) and [Ca2+]i on ENaC activity. We found that elevation of [Ca2+]i induced a significant inhibition of ENaC open probability without altering channel conductance. The inhibitory effect was due to a direct interaction between Ca2+ and ENaC, and is dependent on [Ca2+]i. pHi also directly regulated ENaC open probability. Lower pHi (<7.0) reduced the ENaC open probability as shown in shorter opening time, and higher pH(i) (>7.0) enhanced the ENaC open probability as shown in augmented opening time. pHi did not cause any alteration in channel conductance. The effects of pHi on ENaC open probability could be summarized as an S-shaped curve around pH 7.2.
Collapse
Affiliation(s)
- Yuchun Gu
- Department of Physiology, University of Birmingham, The Medical School, Edgbaston, B15 2TT, UK.
| |
Collapse
|
83
|
Saleh SN, Albert AP, Large WA. Obligatory role for phosphatidylinositol 4,5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes. J Physiol 2008; 587:531-40. [PMID: 19047197 PMCID: PMC2667327 DOI: 10.1113/jphysiol.2008.166678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the present study the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) was studied on a native TRPC1 store-operated channel (SOC) in freshly dispersed rabbit portal vein myocytes. Application of diC8-PIP2, a water soluble form of PIP2, to quiescent inside-out patches evoked single channel currents with a unitary conductance of 1.9 pS. DiC8-PIP2-evoked channel currents were inhibited by anti-TRPC1 antibodies and these characteristics are identical to SOCs evoked by cyclopiazonic acid (CPA) and BAPTA-AM. SOCs stimulated by CPA, BAPTA-AM and the phorbol ester phorbol 12,13-dibutyrate (PDBu) were reduced by anti-PIP2 antibodies and by depletion of tissue PIP2 levels by pre-treatment of preparations with wortmannin and LY294002. However, these reagents did not alter the ability of PIP2 to activate SOCs in inside-out patches. Co-immunoprecipitation techniques demonstrated association between TRPC1 and PIP2 at rest, which was greatly decreased by wortmannin and LY294002. Pre-treatment of cells with PDBu, which activates protein kinase C (PKC), augmented SOC activation by PIP2 whereas the PKC inhibitor chelerythrine decreased SOC stimulation by PIP2. Co-immunoprecipitation experiments provide evidence that PKC-dependent phosphorylation of TRPC1 occurs constitutively and was increased by CPA and PDBu but decreased by chelerythrine. These novel results show that PIP2 can activate TRPC1 SOCs in native vascular myocytes and plays an important role in SOC activation by CPA, BAPTA-AM and PDBu. Moreover, the permissive role of PIP2 in SOC activation requires PKC-dependent phosphorylation of TRPC1.
Collapse
Affiliation(s)
- Sohag N Saleh
- Ion Channels and Cell Signalling Research Centre, Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London, UK
| | | | | |
Collapse
|
84
|
General and versatile autoinhibition of PLC isozymes. Mol Cell 2008; 31:383-94. [PMID: 18691970 DOI: 10.1016/j.molcel.2008.06.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 11/26/2007] [Accepted: 06/01/2008] [Indexed: 12/12/2022]
Abstract
Phospholipase C (PLC) isozymes are directly activated by heterotrimeric G proteins and Ras-like GTPases to hydrolyze phosphatidylinositol 4,5-bisphosphate into the second messengers diacylglycerol and inositol 1,4,5-trisphosphate. Although PLCs play central roles in myriad signaling cascades, the molecular details of their activation remain poorly understood. As described here, the crystal structure of PLC-beta2 illustrates occlusion of the active site by a loop separating the two halves of the catalytic TIM barrel. Removal of this insertion constitutively activates PLC-beta2 without ablating its capacity to be further stimulated by classical G protein modulators. Similar regulation occurs in other PLC members, and a general mechanism of interfacial activation at membranes is presented that provides a unifying framework for PLC activation by diverse stimuli.
Collapse
|
85
|
Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G234-51. [PMID: 18511742 PMCID: PMC2519861 DOI: 10.1152/ajpgi.00366.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bicyclic fatty acid lubiprostone (formerly known as SPI-0211) activates two types of anion channels in A6 cells. Both channel types are rarely, if ever, observed in untreated cells. The first channel type was activated at low concentrations of lubiprostone (<100 nM) in >80% of cell-attached patches and had a unit conductance of approximately 3-4 pS. The second channel type required higher concentrations (>100 nM) of lubiprostone to activate, was observed in approximately 30% of patches, and had a unit conductance of 8-9 pS. The properties of the first type of channel were consistent with ClC-2 and the second with CFTR. ClC-2's unit current strongly inwardly rectified that could be best fit by models of the channel with multiple energy barrier and multiple anion binding sites in the conductance pore. The open probability and mean open time of ClC-2 was voltage dependent, decreasing dramatically as the patches were depolarized. The order of anion selectivity for ClC-2 was Cl > Br > NO(3) > I > SCN, where SCN is thiocyanate. ClC-2 was a "double-barreled" channel favoring even numbers of levels over odd numbers as if the channel protein had two conductance pathways that opened independently of one another. The channel could be, at least, partially blocked by glibenclamide. The properties of the channel in A6 cells were indistinguishable from ClC-2 channels stably transfected in HEK293 cells. CFTR in the patches had a selectivity of Cl > Br >> NO(3) congruent with SCN congruent with I. It outwardly rectified as expected for a single-site anion channel. Because of its properties, ClC-2 is uniquely suitable to promote anion secretion with little anion reabsorption. CFTR, on the other hand, could promote either reabsorption or secretion depending on the anion driving forces.
Collapse
Affiliation(s)
- Hui Fang Bao
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| | - Lian Liu
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| | - Julie Self
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| | - Billie Jeanne Duke
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| | - Ryuji Ueno
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| | - Douglas C. Eaton
- Departments of Physiology and Pediatrics and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia; and Sucampo Pharmaceuticals, Inc., Bethesda, Maryland
| |
Collapse
|
86
|
Mace OJ, Woollhead AM, Baines DL. AICAR activates AMPK and alters PIP2 association with the epithelial sodium channel ENaC to inhibit Na+ transport in H441 lung epithelial cells. J Physiol 2008; 586:4541-57. [PMID: 18669532 DOI: 10.1113/jphysiol.2008.158253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in amiloride-sensitive epithelial Na(+) channel (ENaC) activity (NP(o)) in the lung lead to pathologies associated with dysregulation of lung fluid balance. UTP activation of purinergic receptors and hydrolysis of PIP(2) via activation of phospholipase C (PLC) or AICAR activation of AMP-activated protein kinase (AMPK) inhibited amiloride-sensitive Na(+) transport across human H441 epithelial cell monolayers. Neither treatment altered alpha, beta or gamma ENaC subunit abundance (N) in the apical membrane indicating that the mechanism of inhibition was via a change in channel open state probability (P(o)). We found that UTP depleted PIP(2) abundance in the apical membrane whilst activation of AMPK prevented the binding of beta and gamma ENaC subunits to PIP(2.) The association of PIP(2) with the ENaC subunits is required to maintain channel activity via P(o). Thus, these data show for the first time that AICAR activation of AMPK inhibits Na(+) transport via a mechanism that perturbs the PIP(2)-ENaC channel interaction to alter P(o). In addition, we show that dissociation of PIP(2) from ENaC together with activation of AMPK further reduced Na(+) transport by a secondary effect that correlated with ENaC subunit internalization. Thus, when PIP(2)-ENaC subunit interactions were compromised, ENaC protein retrieval was initiated, indicating that AMPK can modulate ENaC P(o) and N.
Collapse
Affiliation(s)
- Oliver J Mace
- Division of Basic Medical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
87
|
Gu Y. Effect of [Cl(-)]i on ENaC activity from mouse cortical collecting duct cells. J Cell Physiol 2008; 216:453-7. [PMID: 18348164 DOI: 10.1002/jcp.21413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Na(+) transport via epithelial Na(+) channel (ENaC) occurs across many epithelial surfaces and plays a key role in regulating salt and water absorption. In this study, we have examined the effects of cytosolic Na(+) and Cl(-) on ENaC activity by patch clamping single channel recording method in mouse cortical collecting duct cells (M1). Cytosolic Na(+) exerts its effect in change of ENaC open probability (Po). High cytosolic Na(+) significantly reduces ENaC Po. No change in channel conductance by cytosolic Na(+) is observed. However, decrease of cytosolic Cl(-) concentration significantly increases channel conductance and ENaC Po. This effect is due to the right shift of ENaC I-V curve to positive membrane potential. The virtue of ENaC conductance remains the same. Cl(-) channels like CFTR and VRAC are unlikely to be involved in this regulation. The results suggest that cytosolic Cl(-) could serve as a mediator to regulate ENaC activity, in accordance with the activities of Cl(-) channels.
Collapse
Affiliation(s)
- Yuchun Gu
- Department of Physiology, University of Birmingham, Birmingham, Edgbaston, UK.
| |
Collapse
|
88
|
Button B, Boucher RC. Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 2008; 163:189-201. [PMID: 18585484 DOI: 10.1016/j.resp.2008.04.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 11/16/2022]
Abstract
Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Brian Button
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
89
|
Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 2008; 296:F10-24. [PMID: 18508877 DOI: 10.1152/ajprenal.90248.2008] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle's syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in states as diverse as salt-sensitive hypertension, nephrosis, and pulmonary edema. ENaC activity in epithelial cells is highly regulated both by open probability and number of channels. Open probability is regulated by a number of factors, including proteolytic processing, while ENaC number is regulated by cellular trafficking. This review discusses current understanding of apical membrane delivery, cell surface stability, endocytosis, retrieval, and recycling of ENaC and the molecular partners that have so far been shown to participate in these processes. We review known sites and mechanisms of hormonal regulation of trafficking by aldosterone, vasopressin, and insulin. While many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Dept. of Cell Biology and Physiology, Univ. of Pittsburgh, S375 BST, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
90
|
Albert AP, Saleh SN, Large WA. Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5-bisphosphate in mesenteric artery myocytes. J Physiol 2008; 586:3087-95. [PMID: 18467363 PMCID: PMC2538776 DOI: 10.1113/jphysiol.2008.153676] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present work investigates the effect of phosphatidylinositol-4,5-bisphosphate (PIP(2)) on native TRPC6 channel activity in freshly dispersed rabbit mesenteric artery myocytes using patch clamp recording and co-immunoprecipitation methods. Inclusion of 100 microM diC8-PIP(2) in the patch pipette and bathing solutions, respectively, inhibited angiotensin II (Ang II)-evoked whole-cell cation currents and TRPC6 channel activity by over 90%. In inside-out patches diC8-PIP(2) also inhibited TRPC6 activity induced by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) with an IC(50) of 7.6 microM. Anti-PIP(2) antibodies potentiated Ang II- and OAG-evoked TRPC6 activity by about 2-fold. Depleters of tissue PIP(2) wortmannin and LY294002 stimulated TRPC6 activity, as did the polycation PIP(2) scavenger poly-L-lysine. Wortmannin reduced Ang II-evoked TRPC6 activity by over 75% but increased OAG-induced TRPC6 activity by over 50-fold. Co-immunoprecipitation studies demonstrated association between PIP(2) and TRPC6 proteins in tissue lysates. Pre-treatment with Ang II, OAG and wortmannin reduced TRPC6 association with PIP(2). These results provide for the first time compelling evidence that constitutively produced PIP(2) exerts a powerful inhibitory action on native TRPC6 channels.
Collapse
Affiliation(s)
- Anthony P Albert
- Ion Channels & Cell Signalling Research Centre, Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
91
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a minority phospholipid of the inner leaflet of plasma membranes. Many plasma membrane ion channels and ion transporters require PIP2 to function and can be turned off by signaling pathways that deplete PIP2. This review discusses the dependence of ion channels on phosphoinositides and considers possible mechanisms by which PIP2 and analogues regulate ion channel activity.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics University of Washington School of Medicine, Seattle, Washington 98195
| | - Bertil Hille
- Department of Physiology and Biophysics University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
92
|
Gamper N, Shapiro MS. Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007; 8:921-34. [DOI: 10.1038/nrn2257] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
93
|
Lee Y, Kim YW, Jeon BW, Park KY, Suh SJ, Seo J, Kwak JM, Martinoia E, Hwang I, Lee Y. Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:803-16. [PMID: 17883374 DOI: 10.1111/j.1365-313x.2007.03277.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, we demonstrated that a protein that binds phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] inhibits both light-induced stomatal opening and ABA-induced stomatal closing. The latter effect is due to a reduction in free PtdIns(4,5)P(2), decreasing production of inositol 1,4,5-trisphosphate and phosphatidic acid by phospholipases C and D. However, it is less clear how PtdIns(4,5)P(2) modulates stomatal opening. We found that in response to white light irradiation, the PtdIns(4,5)P(2)-binding domain GFP:PLCdelta1PH translocated from the cytosol into the plasma membrane. This suggests that the level of PtdIns(4,5)P(2) increases at the plasma membrane upon illumination. Exogenously administered PtdIns(4,5)P(2) substituted for light stimuli, inducing stomatal opening and swelling of guard cell protoplasts. To identify PtdIns(4,5)P(2) targets we performed patch-clamp experiments, and found that anion channel activity was inhibited by PtdIns(4,5)P(2). Genetic analyses using an Arabidopsis PIP5K4 mutant further supported the role of PtdIns(4,5)P(2) in stomatal opening. The reduced stomatal opening movements exhibited by a mutant of Arabidopsis PIP5K4 (At3g56960) was countered by exogenous application of PtdIns(4,5)P(2). The phenotype of reduced stomatal opening in the pip5k4 mutant was recovered in lines complemented with the full-length PIP5K4. Together, these data suggest that PIP5K4 produces PtdIns(4,5)P(2) in irradiated guard cells, inhibiting anion channels to allow full stomatal opening.
Collapse
Affiliation(s)
- Yuree Lee
- POSTECH-VZH Global Research Lab., Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. ACTA ACUST UNITED AC 2007; 130:399-413. [PMID: 17893193 PMCID: PMC2151653 DOI: 10.1085/jgp.200709800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Vallon V. P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 2007; 294:F10-27. [PMID: 17977905 DOI: 10.1152/ajprenal.00432.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) regulate physiological and pathophysiological processes through activation of nucleotide P2 receptors in the plasma membrane. Examples include such diverse processes as communication from taste buds to gustatory nerves, platelet aggregation, nociception, or neutrophil chemotaxis. Over approximately the last 15 years, evidence has also accumulated that cells in renal epithelia release nucleotides in response to physiological stimuli and that these nucleotides act in a paracrine and autocrine way to activate P2 receptors and play a significant role in the regulation of transport mechanisms and cell volume regulation. This review discusses potential stimuli and mechanisms involved in nucleotide release in renal epithelia and summarizes the available data on the expression and function of nucleotide P2 receptors along the native mammalian tubular and collecting duct system. Using established agonist profiles for P2 receptor subtypes, significant insights have been gained particularly into a potential role for P2Y(2)-like receptors in the regulation of transport mechanisms in the collecting duct. Due to the lack of receptor subtype-specific antagonists, however, the in vivo relevance of P2 receptor subtypes is unclear. Studies in gene knockout mice provided first insights including an antihypertensive activity of P2Y(2) receptors that is linked to an inhibitory influence on renal Na(+) and water reabsorption. We are only beginning to unravel the important roles of extracellular nucleotides and P2 receptors in the regulation of the diverse transport mechanisms of the kidney.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161., USA.
| |
Collapse
|
96
|
Wei SP, Li XQ, Chou CF, Liang YY, Peng JB, Warnock DG, Ma HP. Membrane Tension Modulates the Effects of Apical Cholesterol on the Renal Epithelial Sodium Channel. J Membr Biol 2007; 220:21-31. [DOI: 10.1007/s00232-007-9071-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 08/27/2007] [Indexed: 11/30/2022]
|
97
|
Weixel KM, Edinger RS, Kester L, Guerriero CJ, Wang H, Fang L, Kleyman TR, Welling PA, Weisz OA, Johnson JP. Phosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells. J Biol Chem 2007; 282:36534-42. [PMID: 17940289 DOI: 10.1074/jbc.m703970200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and stimulates lattice assembly. Murine phosphatidylinositol 4-phosphate 5-kinase alpha (PI5KIalpha) has been shown to enhance endocytosis in a PIP2-dependent manner. We tested the hypothesis that PI5KIalpha-mediated PIP2 production would negatively regulate ENaC current by enhancing epsin-mediated endocytosis of the channel. Expression of PI5KIalpha decreased ENaC currents in Xenopus oocytes by 80%, entirely because of a decrease in cell surface ENaC levels. Catalytically inactive mutants of PI5Kalpha had no effect on ENaC activity. Expression of the PIP2 binding region of epsin increased ENaC current in oocytes, an effect completely reversed by co-expression of PI5KIalpha. Overexpression of epsin reduced amiloride-sensitive current in CCD cells. Overexpression of PI5KIalpha enhanced membrane PIP2 levels and reduced apical surface expression of ENaC in CCD cells, down-regulating amiloride-sensitive current. Knockdown of PI5KIalpha with isoform-specific siRNA resulted in a 4-fold enhancement of ENaC activity. PI5KIalpha localized exclusively to the apical plasma membrane domain when overexpressed in mouse CCD cells, consistent for a role in regulating PIP2 production at the apical plasma membrane. We conclude that membrane turnover events regulating ENaC surface expression and activity in oocytes and CCD cells can be regulated by PI5KIalpha.
Collapse
Affiliation(s)
- Kelly M Weixel
- Department of Medicine, Renal and Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Huang CL. Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol 2007; 293:F1761-5. [PMID: 17928411 DOI: 10.1152/ajprenal.00400.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of ion channels and transporters by phosphoinositides has received much attention over the past 10 years. There are multiple potential mechanisms for regulation of ion channels and transporters by PIP(2), including a direct binding of PIP(2) to the target proteins, alterations of membrane insertion, and retrieval. Added to the complexities of multiple potential mechanisms is how cells use PIP(2) to regulate so many different processes. Here, I briefly review several past and recent studies to illustrate the complexities and raise outstanding questions for future studies.
Collapse
Affiliation(s)
- Chou-Long Huang
- UT Southwestern Medical Center, Dept. of Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA.
| |
Collapse
|
99
|
Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 2007; 294:F38-46. [PMID: 17913833 DOI: 10.1152/ajprenal.00403.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activity of the epithelial sodium channel (ENaC) is limiting for Na(+) reabsorption at the distal nephron. Phosphoinositides, such as phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2)] modulate the activity of this channel. Activation of purinergic receptors triggers multiple events, including activation of PKC and PLC, with the latter depleting plasma membrane PI(4,5)P(2). Here, we investigate regulation of ENaC in renal principal cells by purinergic receptors via PLC and PI(4,5)P(2). Purinergic signaling rapidly decreases ENaC open probability and apical membrane PI(4,5)P(2) levels with similar time courses. Moreover, inhibiting purinergic signaling with suramin rescues ENaC activity. The PLC inhibitor U73122, but not U73343, its inactive analog, recapitulates the action of suramin. In contrast, modulating PKC signaling failed to affect purinergic regulation of ENaC. Unexpectedly, inhibiting either purinergic receptors or PLC in resting cells dramatically increased ENaC activity above basal levels, indicating tonic activation of purinergic signaling in these polarized renal epithelial cells. Increased ENaC activity was associated with elevation of apical membrane PI(4,5)P(2) levels. Subsequent treatment with ATP in the presence of inhibited purinergic signaling failed to decrease ENaC activity and apical membrane PI(4,5)P(2) levels. Dwell-time analysis reveals that depletion of PI(4,5)P(2) forces ENaC toward a closed state. In contrast, increasing PI(4,5)P(2) levels above basal values locks the channel in an open state interrupted by brief closings. Thus our results suggest that purinergic control of apical membrane PI(4,5)P(2) levels is a major regulator of ENaC activity in renal epithelial cells.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio TX 78229-3900, USA.
| | | | | | | |
Collapse
|
100
|
Kunzelmann K, Bachhuber T, Adam G, Voelcker T, Murle B, Mall M, Schreiber R. Role of CFTR and Other Ion Channels in Cystic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [DOI: 10.1007/0-387-23250-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|