51
|
Van Horn WD. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1. Crit Rev Biochem Mol Biol 2013; 48:357-72. [PMID: 23631591 DOI: 10.3109/10409238.2013.791659] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human vitamin K epoxide reductase (hVKOR) is a small integral membrane protein involved in recycling vitamin K. hVKOR produces vitamin K hydroquinone, a crucial cofactor for γ-glutamyl carboxylation of vitamin K dependent proteins, which are necessary for blood coagulation. Because of this, hVKOR is the target of a common anticoagulant, warfarin. Spurred by the identification of the hVKOR gene less than a decade ago, there have been a number of new insights related to this protein. Nonetheless, there are a number of key issues that have not been resolved; such as where warfarin binds hVKOR, or if human VKOR shares the topology of the structurally characterized but distantly related prokaryotic VKOR. The pharmacogenetics and single nucleotide polymorphisms of hVKOR used in personalized medicine strategies for warfarin dosing should be carefully considered to inform the debate. The biochemical and cell biological evidence suggests that hVKOR has a distinct fold from its ancestral protein, though the controversy will likely remain until structural studies of hVKOR are accomplished. Resolving these issues should impact development of new anticoagulants. The paralogous human protein, VKOR-like1 (VKORL1) was recently shown to also participate in vitamin K recycling. VKORL1 was also recently characterized and assigned a functional role as a housekeeping protein involved in redox homeostasis and oxidative stress with a potential role in cancer regulation. As the physiological interplay between these two human paralogs emerge, the impacts could be significant in a number of diverse fields from coagulation to cancer.
Collapse
Affiliation(s)
- Wade D Van Horn
- Department of Chemistry and Biochemistry, Biodesign Institute, The Virginia G. Piper Center for Personalized Diagnostics, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
52
|
Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochim Biophys Acta Gen Subj 2013; 1830:4202-10. [PMID: 23618698 DOI: 10.1016/j.bbagen.2013.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose-response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data. METHODS We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki. RESULTS Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay. CONCLUSION The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay. GENERAL SIGNIFICANCE In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results.
Collapse
|
53
|
Andru J, Cosson JF, Caliman JP, Benoit E. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:377-386. [PMID: 23264020 DOI: 10.1007/s10646-012-1032-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Rodent control is an important issue in human health and agriculture. Oil palm plantations are rapidly expanding in Indonesia and this is having a major economic and ecological impact. Rodent control in oil palm plantations is based principally on the use of anti-vitamin K (AVK), the main anticoagulant used being coumatetralyl, a first-generation AVK. We conducted a comparative study in two well established oil palm plantations in Indonesia: (1) one without chemical control in Riau and (2) another with intensive coumatetralyl use on Bangka Island. Rat species were identified by the molecular barcoding method. Susceptibility to coumatetralyl was then assessed within the two populations and we screened for mutations in vkorc1, which encodes the molecular target of AVK. Different species were found in the two areas: Rattus tiomanicus in Riau, and a mix of R. tanezumi and a close relative one in Bangka. The rats in Riau were much more susceptible to coumatetralyl than those in Bangka. This study is the first to demonstrate physiological tolerance to AVK in these species. vkorc1 displayed low levels of polymorphism, and no SNP was associated with the high-tolerance phenotypes of R. tanezumi clade, even those exposed to very high concentrations (32 × the effective dose of 0.36 mg kg(-1)). The biochemical basis of this tolerance remains unknown, but may involve the vkorc1 promoter and/or cytochrome P450 metabolism. We discuss our results and the selective role of anticoagulant use in the occurrence of phenotypic tolerance.
Collapse
Affiliation(s)
- J Andru
- VetAgro Sup, UMR 1233 INRA-DGER, Métabolisme des Xénobiotiques et Mycotoxines, Lyon University, Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
54
|
Oka OBV, Bulleid NJ. Forming disulfides in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2425-9. [PMID: 23434683 DOI: 10.1016/j.bbamcr.2013.02.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 11/25/2022]
Abstract
Protein disulfide bonds are an important co- and post-translational modification for proteins entering the secretory pathway. They are covalent interactions between two cysteine residues which support structural stability and promote the assembly of multi-protein complexes. In the mammalian endoplasmic reticulum (ER), disulfide bond formation is achieved by the combined action of two types of enzyme: one capable of forming disulfides de novo and another able to introduce these disulfides into substrates. The initial process of introducing disulfides into substrate proteins is catalyzed by the protein disulfide isomerase (PDI) oxidoreductases which become reduced and, therefore, have to be re-oxidized to allow for further rounds of disulfide exchange. This review will discuss the various pathways operating in the ER that facilitate oxidation of the PDI oxidoreductases and ultimately catalyze disulfide bond formation in substrate proteins. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
55
|
Doyon M, Mathieu P, Moreau P. Decreased expression of γ-carboxylase in diabetes-associated arterial stiffness: impact on matrix Gla protein. Cardiovasc Res 2013; 97:331-8. [PMID: 23118128 DOI: 10.1093/cvr/cvs325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Arterial stiffness is accelerated in type 1 diabetic patients. Medial artery calcification (MAC) contributes to the development of arterial stiffness. Vitamin K oxidoreductase (VKOR) reduces the vitamin K required by γ-carboxylase to activate matrix γ-carboxyglutamic acid (Gla) protein (MGP), an inhibitor of vascular calcification. This study aimed to evaluate the hypothesis that diabetes reduces the γ-carboxylation of MGP in the aortic wall, leading to increased vascular calcification, and the role of γ-carboxylase and VKOR in this γ-carboxylation deficit. METHODS AND RESULTS Type 1 diabetes was induced in male Wistar rats with a single ip injection of streptozotocin. Augmentation of arterial stiffness in diabetic rats was shown by a 44% increase in aortic pulse wave velocity. Aortic and femoral calcification were increased by 26 and 56%, respectively. γ-Carboxylated MGP (cMGP, active) was reduced by 36% and the aortic expression of γ-carboxylase was reduced by 58%. Expression of γ-carboxylase correlated with cMGP (r= 0.59) and aortic calcification (r = -0.57). VKOR aortic expression and activity were not modified by diabetes. Vitamin K plasma concentrations were increased by 191% in diabetic rats. In ex vivo experiments with aortic rings, vitamin K supplementation prevented the glucose-induced decrease in γ-carboxylase expression. CONCLUSION Our results suggest that reduced cMGP, through an impaired expression of γ-carboxylase, is involved in the early development of MAC in diabetes, and therefore, in the acceleration of arterial stiffness. A defect in vitamin K uptake by target cells could also be involved.
Collapse
Affiliation(s)
- Marielle Doyon
- Faculty of Pharmacy, Université de Montréal, 2900 Édouard-Montpetit, Room 2143, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
56
|
Karamoko M, Gabilly ST, Hamel PP. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:476. [PMID: 24348486 PMCID: PMC3842002 DOI: 10.3389/fpls.2013.00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Thiol oxidation to disulfides and the reverse reaction, i.e., disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e., thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Stéphane T. Gabilly
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Patrice P. Hamel
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
- *Correspondence: Patrice P. Hamel, Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 West 12th Avenue, 43210 Columbus, OH, USA e-mail:
| |
Collapse
|
57
|
Hodroge A, Matagrin B, Moreau C, Fourel I, Hammed A, Benoit E, Lattard V. VKORC1 mutations detected in patients resistant to vitamin K antagonists are not all associated with a resistant VKOR activity. J Thromb Haemost 2012; 10:2535-43. [PMID: 23039877 DOI: 10.1111/jth.12019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The VKORC1 gene codes for the VKORC1 enzyme, which is responsible for the reduction of vitamin K epoxide into vitamin K. VKORC1 enzyme is the target of vitamin K antagonists (VKA). Twenty-eight rare single mutations in the VKORC1 coding sequence have been reported from resistant patients receiving unusually high doses of VKA to achieve therapeutic anticoagulation. OBJECTIVES It has been suggested that these mutations are responsible for the resistant phenotype, while biochemical consequences of these mutations on the VKORC1 enzyme have not yet been evaluated. Therefore, the aim of this study was to investigate the causality of the VKORC1 mutations in the resistance phenotype. METHODS Wild-type VKORC1 and its spontaneous mutants were expressed in Pichia pastoris and susceptibility to VKA was assessed by the in vitro determination of kinetic and inhibition constants. RESULTS AND CONCLUSIONS The in vitro analysis revealed that six mutations only (A26P, A41S, V54L, H68Y, I123N and Y139H) were associated with increase in K(i) , suggesting their involvement in the resistance phenotype observed in patients. A41S and H68Y led to selective resistance, respectively, to indane-1,3-dione and 4-hydroxycoumarine derivatives. The other mutations did not increase the K(i). Furthermore, 10 mutations (S52L, S52W, W59L, W59R, V66M, V66G, G71A, N77S, N77T and L128R) led to an almost complete loss of activity. These results suggest the existence of other resistance mechanisms.
Collapse
Affiliation(s)
- A Hodroge
- USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, 69280 Marcy l'Etoile, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Bulleid NJ. Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 2012; 4:4/11/a013219. [PMID: 23125019 DOI: 10.1101/cshperspect.a013219] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
59
|
Tie JK, Jin DY, Stafford DW. Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms. J Biol Chem 2012; 287:33945-55. [PMID: 22923610 DOI: 10.1074/jbc.m112.402941] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) is essential for the production of reduced vitamin K that is required for modification of vitamin K-dependent proteins. Three- and four-transmembrane domain (TMD) topology models have been proposed for VKOR. They are based on in vitro glycosylation mapping of the human enzyme and the crystal structure of a bacterial (Synechococcus) homologue, respectively. These two models place the functionally disputed conserved loop cysteines, Cys-43 and Cys-51, on different sides of the endoplasmic reticulum (ER) membrane. In this study, we fused green fluorescent protein to the N or C terminus of human VKOR, expressed these fusions in HEK293 cells, and examined their topologies by fluorescence protease protection assays. Our results show that the N terminus of VKOR resides in the ER lumen, whereas its C terminus is in the cytoplasm. Selective modification of cysteines by polyethylene glycol maleimide confirms the cytoplasmic location of the conserved loop cysteines. Both results support a three-TMD model of VKOR. Interestingly, human VKOR can be changed to a four-TMD molecule by mutating the charged residues flanking the first TMD. Cell-based activity assays show that this four-TMD molecule is fully active. Furthermore, the conserved loop cysteines, which are essential for intramolecular electron transfer in the bacterial VKOR homologue, are not required for human VKOR whether they are located in the cytoplasm (three-TMD molecule) or the ER lumen (four-TMD molecule). Our results confirm that human VKOR is a three-TMD protein. Moreover, the conserved loop cysteines apparently play different roles in human VKOR and in its bacterial homologues.
Collapse
Affiliation(s)
- Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
60
|
Sato Y, Inaba K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J 2012; 279:2262-71. [DOI: 10.1111/j.1742-4658.2012.08593.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Rutkevich LA, Williams DB. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol Biol Cell 2012; 23:2017-27. [PMID: 22496424 PMCID: PMC3364168 DOI: 10.1091/mbc.e12-02-0102] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ero1 oxidation of PDI family members drives disulfide bond formation, but parallel pathways support Ero1 function. Relative contributions of known and candidate ER oxidation pathways are ranked by combinatorial RNAi in human hepatoma cells to reveal VKOR as a substantial contributor to ER oxidation, but no role for QSOX1 is observed. The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
62
|
Rishavy MA, Berkner KL. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 2012; 3:135-48. [PMID: 22516721 PMCID: PMC3648714 DOI: 10.3945/an.111.001719] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vitamin K-dependent carboxylase uses vitamin K oxygenation to drive carboxylation of multiple glutamates in vitamin K-dependent proteins, rendering them active in a variety of physiologies. Multiple carboxylations of proteins are required for their activity, and the carboxylase is processive, so that premature dissociation of proteins from the carboxylase does not occur. The carboxylase is unique, with no known homology to other enzyme families, and structural determinations have not been made, rendering an understanding of catalysis elusive. Although a model explaining the relationship of oxygenation to carboxylation had been developed, until recently almost nothing was known of the function of the carboxylase itself in catalysis. In the past decade, discovery and analysis of naturally occurring carboxylase mutants has led to identification of functionally relevant residues and domains. Further, identification of nonmammalian carboxylase orthologs has provided a basis for bioinformatic analysis to identify candidates for critical functional residues. Biochemical analysis of rationally chosen carboxylase mutants has led to breakthroughs in understanding vitamin K oxygenation, glutamate carboxylation, and maintenance of processivity by the carboxylase. Protein carboxylation has also been assessed in vivo, and the intracellular environment strongly affects carboxylase function. The carboxylase is an integral membrane protein, and topological analysis, coupled with biochemical determinations, suggests that interaction of the carboxylase with the membrane is an important facet of function. Carboxylase homologs, likely acquired by horizontal transfer, have been discovered in some bacteria, and functional analysis of these homologs has the potential to lead to the discovery of new roles of vitamin K in biology.
Collapse
|
63
|
Tie JK, Jin DY, Stafford DW. Mycobacterium tuberculosis vitamin K epoxide reductase homologue supports vitamin K-dependent carboxylation in mammalian cells. Antioxid Redox Signal 2012; 16:329-38. [PMID: 21939388 PMCID: PMC3246416 DOI: 10.1089/ars.2011.4043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS Vitamin K epoxide reductase complex, subunit 1 (VKORC1) is a critical participant in the production of active forms of reduced vitamin K and is required for modification of vitamin K-dependent proteins. Homologues of VKORC1 (VKORH) exist throughout evolution, but in bacteria they appear to function in oxidative protein folding as well as quinone reduction. In the current study we explore two questions: Do VKORHs function in the mammalian vitamin K cycle? Is the pair of loop cysteines-C43 and C51 in human VKORC1-conserved in all VKORC1s, essential for the activity of vitamin K epoxide reduction? RESULTS We used our recently developed cell-based assay to compare the function of VKORHs to that of human VKORC1 in mammalian cells. We identified for the first time a VKORH (from Mycobacterium tuberculosis [Mt-VKORH]) that can function in the mammalian vitamin K cycle with vitamin K epoxide or vitamin K as substrate. Consistent with our previous in vitro results, the loop cysteines of human VKORC1 are not essential for its activity in vivo. Moreover, the corresponding loop cysteines of Mt-VKORH (C57 and C65), which are essential for its activity in disulfide bond formation during protein folding in Escherichia coli, are not required in the mammalian vitamin K cycle. INNOVATION AND CONCLUSIONS Our results indicate that VKORC1 in eukaryotes and Mt-VKORH in bacteria, that is, in their respective native environments, employ apparently different mechanisms for electron transfer. However, when Mt-VKORH is in the mammalian cell system, it employs a mechanism similar to that of VKORC1.
Collapse
Affiliation(s)
- Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
64
|
Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. THE PLANT CELL 2011; 23:4462-75. [PMID: 22209765 PMCID: PMC3269877 DOI: 10.1105/tpc.111.089680] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/15/2011] [Accepted: 12/13/2011] [Indexed: 05/18/2023]
Abstract
Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond-forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b(6)f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Sara Cline
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Kevin Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
65
|
Warfarin and acetaminophen interaction: a summary of the evidence and biologic plausibility. Blood 2011; 118:6269-73. [PMID: 21911832 DOI: 10.1182/blood-2011-08-335612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ms TS is a 66-year-old woman who receives warfarin for prevention of systemic embolization in the setting of hypertension, diabetes, and atrial fibrillation. She had a transient ischemic attack about 4 years ago when she was receiving aspirin. Her INR control was excellent; however, over the past few months it has become erratic, and her average dose required to maintain an INR of 2.0 to 3.0 appears to have decreased. She has had back pain over this same period and has been taking acetaminophen at doses at large as 650 mg four times daily, with her dose varying based on her symptoms. You recall a potential interaction and wonder if (1) her acetaminophen use is contributing to her loss of INR control, and (2) does this interaction place her at increased risk of warfarin-related complications?
Collapse
|
66
|
Harrington DJ, Siddiq S, Allford SL, Shearer MJ, Mumford AD. More on: endoplasmic reticulum loop VKORC1 substitutions cause warfarin resistance but do not diminish gamma-carboxylation of the vitamin K-dependent coagulation factors. J Thromb Haemost 2011; 9:1093-5. [PMID: 21362126 DOI: 10.1111/j.1538-7836.2011.04249.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|