51
|
Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH. The role of microRNAs in bone remodeling. Int J Oral Sci 2015. [PMID: 26208037 PMCID: PMC4582559 DOI: 10.1038/ijos.2015.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ge Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Le Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Hu Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
52
|
Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY, Kim JE. Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation. Osteoarthritis Cartilage 2015; 23:1421-31. [PMID: 25865393 DOI: 10.1016/j.joca.2015.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Runt-related transcription factor 2 (Runx2) and Osterix (Osx) are the master transcription factors in bone formation. Nonetheless, genes acting downstream of both Runx2 and Osx have yet to be fully characterized. Here, we investigate the downstream targets of both Runx2 and Osx in osteoblasts. MATERIALS AND METHODS DNA microarray analysis was conducted on calvarial RNA from wild-type, Runx2 heterozygous, Osx heterozygous, and Runx2/Osx double heterozygous embryos. Expression and transcriptional responses of the selected target gene were analyzed in MC3T3-E1 osteoblastic cells. RESULTS The expression of unique cartilage matrix-associated protein (Ucma) was decreased in Runx2/Osx double heterozygous embryos. In contrast, Ucma expression was increased in osteoblasts overexpressing both Runx2 and Osx. Ucma expression was initiated mid-way through osteoblast differentiation and continued throughout the differentiation process. Transcriptional activity of the Ucma promoter was increased upon transfection of the cells with both Runx2 and Osx. Runx2-and Osx-mediated activation of the Ucma promoter was directly regulated by Runx2-and/or Sp1-binding sites within its promoter. During osteoblast differentiation, the formation of mineralized nodules in Ucma-overexpressing stable clones occurred earlier and was more enhanced than that in the mock-transfected control. Mineralized nodule formation was strongly augmented in the cells cultured in a medium containing secretory Ucma proteins. CONCLUSION Ucma is a novel downstream gene regulated by both Runx2 and Osx and it stimulates osteoblast differentiation and nodule formation.
Collapse
Affiliation(s)
- Y-J Lee
- Cell and Matrix Research Institute, Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - S-Y Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea.
| | - S-J Lee
- Cell and Matrix Research Institute, Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Y C Boo
- Cell and Matrix Research Institute, Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - J-Y Choi
- Cell and Matrix Research Institute, Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - J-E Kim
- Cell and Matrix Research Institute, Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
53
|
COX2 is involved in hypoxia-induced TNF-α expression in osteoblast. Sci Rep 2015; 5:10020. [PMID: 26066979 PMCID: PMC4464352 DOI: 10.1038/srep10020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
Bone regeneration involves a series of events in a coordinated manner, including recruitment of mesenchymal stem cells, induction of immune response, inflammatory activity and vascular ingrowth. The microenvironment of bone regeneration is hypoxic. Low oxygen tension (hypoxia) promotes the upregulation of several signaling molecules. The primary mediating factor is the hypoxia-inducible factor-1 (HIF-1). Hypoxia stimulates the expression of a variety of cytokines from inflammatory cells, fibroblasts, endothelial cells, and osteoblasts. TNF-α is a key proinflammatory cytokine. The molecular events involved in osteoblast dysfunction under hypoxia are not fully understood. This study determined the effects of hypoxia on TNF-α in osteoblasts, and molecular mechanisms were explored. We observed that hypoxia induced TNF-α expression in a time-dependent manner in osteoblasts. Experiments using a potent HIF-1α activator DFO demonstrated that hypoxia-induced TNF-α was mediated by HIF-1-α. In addition, this study showed that hypoxia activated cyclooxygenase-2 (COX2) expression along with TNF-α. Inhibition experiments using COX2 inhibitor N398 indicated that COX2 was involved in hypoxia-mediated TNF-α expression, and this observation was further confirmed by Small interfering RNA against COX2. On the other hand, TNF-α didn’t lead to the activation of COX2 expression. We conclude that COX2 is involved in hypoxia-induced TNF-α expression in osteoblast.
Collapse
|
54
|
Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 2014; 561:3-12. [PMID: 24832390 DOI: 10.1016/j.abb.2014.05.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/23/2023]
Abstract
The portrait of osteoblasts and osteocytes has been subjected to a revision, since a large body of evidence is attributing these cells amazing roles both inside and outside the bone. The osteoblast, long confined to its bone building function, is actually a very eclectic cell, actively regulating osteoclast formation and function as well as hematopoietic stem cells homeostasis. It is also an endocrine cell, affecting energy metabolism, male fertility and cognition through the release of osteocalcin, a perfect definition-fitting hormone in its uncarboxylated state. As for the osteocytes, many evidence shows that they do not merely represent the final destination of the osteoblasts, but they are instead very active cells that, besides a mechanosensorial function, actively contribute to the bone remodelling by regulating bone formation and resorption. The regulation is exerted by the production of sclerostin (SOST), which in turn inhibits osteoblast differentiation by blocking Wnt/beta-catenin pathway. At the same time, osteocytes influence bone resorption both indirectly, by producing RANKL, which stimulates osteoclastogenesis, and directly by means of a local osteolysis, which is observed especially under pathological conditions. The great versatility of both these cells reflects the complexity of the bone tissue, which has not only a structural role, but influences and is influenced by different organs, taking part in homeostatic and adaptive responses affecting the whole organism.
Collapse
|
55
|
Weivoda MM, Oursler MJ. Developments in sclerostin biology: regulation of gene expression, mechanisms of action, and physiological functions. Curr Osteoporos Rep 2014; 12:107-14. [PMID: 24477413 PMCID: PMC4009626 DOI: 10.1007/s11914-014-0188-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SOST gene, which encodes the protein sclerostin, was identified through genetic linkage analysis of sclerosteosis and van Buchem's disease patients. Sclerostin is a secreted glycoprotein that binds to the low-density lipoprotein receptor-related proteins 4, 5, and 6 to inhibit Wnt signaling. Since the initial discovery of sclerostin, much understanding has been gained into the role of this protein in the regulation of skeletal biology. In this article, we discuss the latest findings in the regulation of SOST expression, sclerostin mechanisms of action, and the potential utility of targeting sclerostin in conditions of low bone mass.
Collapse
Affiliation(s)
- Megan M Weivoda
- Division of Endocrinology, Metabolism, Nutrition & Diabetes, Mayo Clinic, 200 First Street NW, Rochester, MN, 55905, USA,
| | | |
Collapse
|
56
|
Zhao X, Qu Z, Tickner J, Xu J, Dai K, Zhang X. The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev 2013; 25:35-44. [PMID: 24411565 DOI: 10.1016/j.cytogfr.2013.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 02/06/2023]
Abstract
Since the discovery of SATB2 (special AT-rich sequence binding protein 2) a decade ago, its pivotal roles in development and tissue regeneration have emerged, particularly in craniofacial patterning and development, palate formation, and osteoblast differentiation and maturation. As a member of the special AT-rich binding proteins family that bind to nuclear matrix-attachment regions (MAR), it also displays functional versatility in central nervous development, especially corpus callosum and pons formation, cancer development and prognosis, as well as in immune regulation. At the molecular level, Satb2 gene expression appears to be tissue and stage-specific, and is regulated by several cytokines and growth factors, such as BMP2/4/7, insulin, CNTF, and LIF via ligand receptor signaling pathways. SATB2 mainly performs a twofold role as a transcription regulator by directly binding to AT-rich sequences in MARs to modulate chromatin remodeling, or through association with other transcription factors to modulate the cis-regulation elements and thus to regulate the expression of down-stream target genes and a wide range of biological processes. This contemporary review provides an exploration of the molecular characteristics and function of SATB2; including its expression and cytokine regulation, its involvement in human disease, and its potential roles in skeletogenesis.
Collapse
Affiliation(s)
- Xiaoying Zhao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 200031, China
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia (M504), 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia (M504), 35 Stirling Highway, Crawley WA 6009, Australia.
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China; Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China; Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
57
|
Yan S, Zhang J, Tu Q, Ye J, Luo E, Schuler M, Dard M, Yu Y, Murray D, Cochran D, Kim S, Yang P, Chen J. Transcription factor and bone marrow stromal cells in osseointegration of dental implants. Eur Cell Mater 2013; 26:263-70; discussion 270-1. [PMID: 24352891 PMCID: PMC7700752 DOI: 10.22203/ecm.v026a19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Titanium implants are widely used in dental clinics and orthopaedic surgery. However, bone formation surrounding the implant is relatively slow after inserting the implant. The current study assessed the effects of bone marrow stromal cells (BMSCs) with forced expression of special AT-rich sequence-binding protein 2 (SATB2) on the osseointegration of titanium implants. To determine whether SATB2 overexpression in BMSCs can enhance the osseointegration of implants, BMSCs were infected with the retrovirus encoding Satb2 (pBABE-Satb2) and were locally applied to bone defects before implanting the titanium implants in the mouse femur. Seven and twenty-one days after implantation, the femora were isolated for immunohistochemical (IHC) staining, haematoxylin eosin (H&E) staining, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), and micro-computed tomography (μCT) analysis. IHC staining analysis revealed that SATB2-overexpressing BMSCs were intensely distributed in the bone tissue surrounding the implant. Histological analysis showed that SATB2-overexpressing BMSCs significantly enhanced new bone formation and bone-to-implant contact 3 weeks after implantation. Real-time qRT-PCR results showed that the local delivery of SATB2-overexpressing BMSCs enhanced expression levels of potent osteogenic transcription factors and bone matrix proteins in the implantation sites. μCT analysis demonstrated that SATB2-overexpressing BMSCs significantly increased the density of the newly formed bone surrounding the implant 3 weeks post-operatively. These results conclude that local delivery of SATB2-overexpressing BMSCs significantly accelerates osseointegration of titanium implants. These results provide support for future pharmacological and clinical applications of SATB2, which accelerates bone regeneration around titanium implants.
Collapse
Affiliation(s)
- S.G. Yan
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China,Shandong Academy of Medical Sciences, Jinan, China
| | - J. Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Q. Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - J.H. Ye
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing China
| | - E. Luo
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Department of Oral and Maxillofacial Surgery, School of Stomatology, Sichuan University, Chengdu, China
| | - M. Schuler
- Institute Straumann AG, Basel, Switzerland
| | - M.M. Dard
- Periodontology and Implant Dentistry, College of Dentistry, New York University, New York City, USA
| | - Y. Yu
- Department of Dentistry, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - D. Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - D.L. Cochran
- Department of Periodontics, University of Texas Health Science Centre at San Antonio, San Antonio, USA
| | - S.H. Kim
- Cancer Preventive Material Development Research Centre (CPMDRC) and Institute, College of Oriental Medicine, Kyunghee University, Seoul, South Korea
| | - P. Yang
- Shandong Provincial Key Lab of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - J. Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA,Department of Anatomy and Cell Biology, Tufts University School of Medicine and Sackler Graduate School of Biomedical Sciences, Boston, USA,Address for correspondence: Jake Chen, Division of Oral Biology, Tufts University School of Dental Medicine, One Kneeland Street, Boston MA, 02111, USA, Telephone Number: 617-636-2729, FAX Number: 617-636-0878,
| |
Collapse
|
58
|
Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013; 5:136-148. [PMID: 24179602 PMCID: PMC3812518 DOI: 10.4252/wjsc.v5.i4.136] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic tissue that is constantly renewed by the coordinated action of two cell types, i.e., the bone-resorbing osteoclasts and the bone-forming osteoblasts. However, in some circumstances, bone regeneration exceeds bone self repair capacities. This is notably often the case after bone fractures, osteolytic bone tumor surgery, or osteonecrosis. In this regard, bone tissue engineering with autologous or allogenic mesenchymal stem cells (MSCs) is been widely developed. MSCs can be isolated from bone marrow or other tissues such as adipose tissue or umbilical cord, and can be implanted in bone defects with or without prior amplification and stimulation. However, the outcome of most pre-clinical studies remains relatively disappointing. A better understanding of the successive steps and molecular mechanisms involved in MSC-osteoblastic differentiation appears to be crucial to optimize MSC-bone therapy. In this review, we first present the important growth factors that stimulate osteoblastogenesis. Then we review the main transcription factors that modulate osteoblast differentiation, and the microRNAs (miRs) that inhibit their expression. Finally, we also discuss articles dealing with the use of these factors and miRs in the development of new bone MSC therapy strategies. We particularly focus on the studies using human MSCs, since significant differences exist between osteoblast differentiation mechanisms in humans and mice for instance.
Collapse
|
59
|
Tran RT, Wang L, Zhang C, Huang M, Tang W, Zhang C, Zhang Z, Jin D, Banik B, Brown JL, Xie Z, Bai X, Yang J. Synthesis and characterization of biomimetic citrate-based biodegradable composites. J Biomed Mater Res A 2013; 102:2521-32. [PMID: 23996976 DOI: 10.1002/jbm.a.34928] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked.
Collapse
Affiliation(s)
- Richard T Tran
- Department of Bioengineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Chen D, Li Y, Dai X, Zhou X, Tian W, Zhou Y, Zou X, Zhang C. 1,25-Dihydroxyvitamin D3 activates MMP13 gene expression in chondrocytes through p38 MARK pathway. Int J Biol Sci 2013; 9:649-55. [PMID: 23847446 PMCID: PMC3708044 DOI: 10.7150/ijbs.6726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/15/2013] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing 100035, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wiegand T, Hiebner K, Gauza L, Schwartz C, Song Z, Miller S, Zacharias N, Wooley PH, Redepenning J. Biomimetic composites by surface-initiated polymerization of cyclic lactones at anorganic bone: preparation and in vitro evaluation of osteoblast and osteoclast competence. J Biomed Mater Res A 2013; 102:1755-66. [PMID: 23776188 DOI: 10.1002/jbm.a.34840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 11/11/2022]
Abstract
Biomimetic composites were constructed using anorganic bone to initiate the polymerization of cyclic lactones. The resulting anorganic bone/polylactone composites preserve the inorganic structure and the mechanical properties of the original bone. Thermal conditions used to prepare the anorganic bone were shown to control the surface functionalities, surface area, and crystallinity, all of which influence the rates of subsequent polymerizations. Thermal pretreatment of anorganic bone was examined as a function of time and temperature, ranging from 400°C to 800°C. Polymerization rates of different monomers were also compared. Additionally, in vitro evaluations of anorganic bone/poly-L-lactide and anorganic bone/polyglycolide composites for osteoblast and osteoclast competence suggest that these composites are good candidates for potential in vivo use, since both composites promoted osteoblast differentiation. The anorganic bone/poly-L-lactide composite also promoted osteoclast differentiation.
Collapse
|
62
|
Chen D, Li Y, Zhou Z, Wu C, Xing Y, Zou X, Tian W, Zhang C. HIF-1α inhibits Wnt signaling pathway by activating Sost expression in osteoblasts. PLoS One 2013; 8:e65940. [PMID: 23776575 PMCID: PMC3679053 DOI: 10.1371/journal.pone.0065940] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022] Open
Abstract
The nature of the cellular and molecular mechanisms for the transition of avascular cartilage replacement with bone during endochondral ossification remains poorly understood. One of the driving forces is hypoxia. As a master regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that osteoblast growth is inhibited under hypoxia and that HIF-1α cooperates with Osterix (Osx) to inhibit Wnt pathway. However, molecular mechanisms for inhibitory effects of HIF-1α on Wnt pathway are not well understood. In this study, our quantitative RT-PCR results revealed that the expression of a Wnt antagonist Sclerostin (Sost) was upregulated in osteoblasts during hypoxia while HIF-1α was upregulated. Treatment of desferrioxamine (DFO), a HIF-1α activator, led to further increase of Sost expression, suggesting that HIF-1α may activate Sost expression. The regulation of Sost gene expression by HIF-1α was then investigated. We performed loss-of-function experiments to examine Sost expression by using siRNA approach against HIF-1α, and found that the inhibition of HIF-1α by siRNA in osteoblasts led to the decrease of Sost expression. To address transcriptional regulation of Sost gene by HIF-1α, transient transfection assay was performed and showed that HIF-1α activated Sost-1 kb promoter reporter activity in a dose-dependent manner. To narrow down the minimal region of Sost promoter activated by HIF-1α, we generated a series of deletion mutants of Sost constructs. It was demonstrated that Sost-260 was the minimal region of Sost promoter for HIF-1α activation and that Sost-106 construct, which lack hypoxia response element, abolished HIF-1α-mediated Sost reporter activation. Gel shift assay showed that HIF-1 bound to the promoter sequence of Sost directly. These findings support our hypothesis that HIF-1α activates Sost expression. This study provides a novel molecular mechanism through which HIF-1α inhibits Wnt signaling in osteoblasts.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yang Li
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhiyu Zhou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,China
| | - Chengai Wu
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yonggang Xing
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Xuenong Zou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
- * E-mail: (CZ); (WT)
| | - Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CZ); (WT)
| |
Collapse
|
63
|
Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, Tang Z, Zhang G, Tang C, Yu J, Liao H. Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif 2013; 46:214-22. [PMID: 23510476 DOI: 10.1111/cpr.12016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/16/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Stem cells from the dental apical papilla (SCAPs) can be induced to differentiate along both osteoblast and odontoblast lineages. However, little knowledge is available concerning their differentiation efficiency in osteogenic media containing additional KH2 PO4 . MATERIALS AND METHODS Stem cells from the dental apical papilla were isolated from apical papillae of immature third molars and treated with two kinds of mineralization-inducing media, MM1 and MM2, differing in KH2 PO4 concentration. Proliferation and osteo/odontogenic differentiation capacity of MM1/MM2-treated SCAPs were investigated and compared both in vitro and in vivo. RESULTS Cell counting and flow cytometry demonstrated that MM2 containing 1.8 mm additional KH2 PO4 significantly enhanced proliferative potential of SCAPs, compared to MM1. Osteo/odontogenic capacity of SCAPs was much better in MM2 medium than in MM1, as indicated by elevated alkaline phosphatase activity, increased calcium deposition and upregulated expression of osteo/odontoblast-specific genes/proteins (for example, runt-related transcription factor 2, osterix, osteocalcin, dentin sialoprotein, and dentin sialophosphoprotein). In vivo transplantation findings proved that SCAPs in MM2 group generated more mineralized tissues, and presented higher expression of osteo/odontoblast-specific proteins (osteocalcin and dentin sialoprotein) than those in the MM1 group. CONCLUSION Mineralization-inducing media supplemented with 1.8 mm additional KH2 PO4 significantly enhanced cell proliferation and improved differentiation capacity of SCAPs along osteo/odontogenic cell lineages, compared to counterparts lacking additional KH2 PO4 .
Collapse
Affiliation(s)
- L Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Zhang C, Li Y, Tang W, Kamiya N, Kim H. Lactoferrin activates BMP7 gene expression through the mitogen-activated protein kinase ERK pathway in articular cartilage. Biochem Biophys Res Commun 2013; 431:31-5. [DOI: 10.1016/j.bbrc.2012.12.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 11/30/2022]
|
65
|
Thalji G, Gretzer C, Cooper LF. Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 2013; 52:444-53. [PMID: 22884725 DOI: 10.1016/j.bone.2012.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The objective of our study is to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. MATERIALS AND METHODS Thirty-two titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix Rat Gene 1.1 ST Array followed by validation of select genes through qRT-PCR was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. RESULTS While significant differences at the gene level were not noted when comparing the two-implant surfaces at each time point, the microarray identified several genes that were differentially regulated at day 4 vs. day 2 for both implant surfaces. A total of 649 genes were differentially regulated at day 4 vs. day 2 in AT-I and 392 genes in AT-II implants. Functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development, bone mineralization and biomineral tissue development were upregulated and more prominent at AT-I (day 4 vs. day 2) compared to AT-II. Analysis of the downregulated gene lists (day 4 vs. day 2) with average fold change >2 (were not statistically significant) revealed the biological processes involved with the inflammatory/immune response gene expression. The number of genes that were associated with the inflammatory/immune response category was greater for AT-I than AT-II. CONCLUSIONS The presence of nanosurface features modulated in vivo bone response. Gene regulation implicating osteogenesis as well as the inflammatory/immune responses that occur as a function of surface topography may affect bone mass shortly after implant placement.
Collapse
Affiliation(s)
- Ghadeer Thalji
- Department of Prosthodontics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
66
|
Chen D, Li Y, Zhou Z, Xing Y, Zhong Y, Zou X, Tian W, Zhang C. Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS One 2012; 7:e52948. [PMID: 23300831 PMCID: PMC3531395 DOI: 10.1371/journal.pone.0052948] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/22/2012] [Indexed: 12/17/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Inhibition of Wnt pathway by Osx highlights the potential for feedback control mechanisms involved in bone formation. Hypoxia-inducible factor-1α (HIF-1α) is a master regulator of hypoxia. HIF-1α has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that Osx and HIF-1α cooperatively regulate VEGF expression in osteoblasts. Effects of hypoxia/HIF-1α on osteoblast proliferation and related mechanisms are not well understood. In this study, osteoblast growth under hypoxia was examined. We observed that osteoblast growth was inhibited under hypoxia. To explore possible mechanisms for hypoxia/HIF-1α to inhibit osteoblast proliferation, we tested the effect of hypoxia/HIF-1α on Wnt pathway. Quantitative RT-PCR results revealed that Wnt target genes such as cyclin D1 and c-Myc were downregulated under hypoxia while HIF-1α was upregulated. Treatment of desferrioxamine, a HIF-1α activator, led to further downregulation of expressions of cyclin D1 and c-Myc in osteoblasts. On the contrary, the inhibition of HIF-1α by siRNA in osteoblasts led to the expression increase of cyclin D1 and c-Myc. These data suggest that HIF-1α inhibits Wnt pathway in osteoblasts. To examine the effect of HIF-1α on Wnt pathway, HIF-1α was cotransfected with β-catenin along with Topflash reporter in transient transfection assay. Our results showed that HIF-1α inhibited β-catenin-induced Topflash reporter activity. Interestingly, a synergistic interplay was observed between Osx and HIF-1α in the inhibition of β-catenin-induced Topflash expression. Our findings indicate that Osx and HIF-1α cooperatively inhibit Wnt pathway. This study revealed additional new information of the cooperation between HIF-1α and Osx in osteoblasts.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yang Li
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhiyu Zhou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yonggang Xing
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Yu Zhong
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Department of Spine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
67
|
Zhang C, Tang W, Li Y. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS One 2012. [PMID: 23185634 PMCID: PMC3503972 DOI: 10.1371/journal.pone.0050525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation from mesenchymal stem cells. In Osx-null mice, no bone formation occurs. Matrix metalloproteinase 13 (MMP13) is a member of the matrix metalloproteinase family and plays an important role in endochondral ossification and bone remodeling. Transcriptional regulation of MMP13 expression in osteoblasts is not well understood. Here, we provide several lines of evidence which show that MMP13 is a direct target of Osx in osteoblasts. Calvaria obtained from Osx-null embryos displayed dramatic reductions in MMP13 expression compared to wild-type calvaria. Stable overexpression of Osx stimulated MMP13 expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of MMP13 expression. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the MMP13 promoter in a dose-dependent manner. To define the region of the MMP13 promoter that was responsive to Osx, a series of MMP13 promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 80 bp of the MMP13 promoter. Additional point mutant analysis was used to identify one GC-rich region that was responsible for MMP13 promoter activation by Osx. Gel Shift Assay showed that Osx bound to MMP13 promoter sequence directly. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native MMP13 promoter in primary osteoblasts in vivo. Taken together, these data strongly support a direct regulatory role for Osx in MMP13 gene expression in osteoblasts. They further provide new insight into potential mechanisms and pathways that Osx controls bone formation.
Collapse
Affiliation(s)
- Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | |
Collapse
|
68
|
Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, Downing A, Fairbairn L, Kapetanovic R, Raza S, Tomoiu A, Alberio R, Wu C, Su AI, Summers KM, Tuggle CK, Archibald AL, Hume DA. A gene expression atlas of the domestic pig. BMC Biol 2012; 10:90. [PMID: 23153189 PMCID: PMC3814290 DOI: 10.1186/1741-7007-10-90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering. RESULTS The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development. CONCLUSIONS As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites http://biogps.org and http://www.macrophages.com/pig-atlas.
Collapse
Affiliation(s)
- Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Alasdair Ivens
- Fios Genomics Ltd, ETTC, King's Buildings, Edinburgh EH9 3JL UK,Centre for Immunity, Infection and Evolution, University of Edinburgh Ashworth
Labs, King's Buildings, West Mains Road, Edinburgh EH9 3JT
| | - J Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Dario Beraldi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK,Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson
way, Cambridge, CB2 0RE, UK
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - David Dorward
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Alison Downing
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Sobia Raza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Andru Tomoiu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham,
Sutton Bonington, Leicestershire LE12 5RD UK
| | - Chunlei Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute,
MEM-216, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute,
MEM-216, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | | | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| |
Collapse
|
69
|
Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, Doan PL, Helms K, Nakamura M, Fixsen E, Herradon G, Reya T, Chao NJ, Harroch S, Chute JP. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep 2012; 2:964-75. [PMID: 23084748 DOI: 10.1016/j.celrep.2012.09.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 02/10/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022] Open
Abstract
The mechanisms through which the bone marrow (BM) microenvironment regulates hematopoietic stem cell (HSC) fate remain incompletely understood. We examined the role of the heparin-binding growth factor pleiotrophin (PTN) in regulating HSC function in the niche. PTN(-/-) mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking protein tyrosine phosphatase receptor zeta, which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC autonomous, but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche that regulates HSC self-renewal and retention in vivo.
Collapse
Affiliation(s)
- Heather A Himburg
- Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Nishimura R, Wakabayashi M, Hata K, Matsubara T, Honma S, Wakisaka S, Kiyonari H, Shioi G, Yamaguchi A, Tsumaki N, Akiyama H, Yoneda T. Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J Biol Chem 2012; 287:33179-90. [PMID: 22869368 PMCID: PMC3460424 DOI: 10.1074/jbc.m111.337063] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/27/2012] [Indexed: 11/06/2022] Open
Abstract
Endochondral ossification is temporally and spatially regulated by several critical transcription factors, including Sox9, Runx2, and Runx3. Although the molecular mechanisms that control the late stages of endochondral ossification (e.g. calcification) are physiologically and pathologically important, these precise regulatory mechanisms remain unclear. Here, we demonstrate that Osterix is an essential transcription factor for endochondral ossification that functions downstream of Runx2. The global and conditional Osterix-deficient mice studied here exhibited a defect of cartilage-matrix ossification and matrix vesicle formation. Importantly, Osterix deficiencies caused the arrest of endochondral ossification at the hypertrophic stage. Microarray analysis revealed that matrix metallopeptidase 13 (MMP13) is an important target of Osterix. We also showed that there exists a physical interaction between Osterix and Runx2 and that these proteins function cooperatively to induce MMP13 during chondrocyte differentiation. Most interestingly, the introduction of MMP13 stimulated the calcification of matrices in Osterix-deficient mouse limb bud cells. Our results demonstrated that Osterix was essential to endochondral ossification and revealed that the physical and functional interaction between Osterix and Runx2 were necessary for the induction of MMP13 during endochondral ossification.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang C, Li Y, Cornelia R, Swisher S, Kim H. Regulation of VEGF expression by HIF-1α in the femoral head cartilage following ischemia osteonecrosis. Sci Rep 2012; 2:650. [PMID: 22970342 PMCID: PMC3438463 DOI: 10.1038/srep00650] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 01/22/2023] Open
Abstract
Juvenile femoral head osteonecrosis is due to disruption of blood supply which results in ischemic injury. Angiogenesis is an essential component for the healing of damaged head. Hypoxia-inducible factor-1α (HIF-1α) is a master regulator of cellular response to hypoxia. Our histological studies showed increased vessel formation in cartilage in the ischemic group compared to the control group in a pig model of femoral head osteonecrosis. Microarray and RT-PCR indicated that VEGF expression was upregulated along with HIF-1α in the ischemic side. Immunohistochemistry assay demonstrated that HIF-1α and VEGF were upregulated in chondrocytes in ischemic femoral heads. Both HIF-1α and VEGF expression increased in primary chondrocytes under hypoxia station. Interestingly, an HIF-1α activator DFO further enhanced VEGF expression. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of VEGF expression. Taken together, our data indicated that upregulation of VEGF during hypoxia in chondrocyte is mediated partially through HIF-1α.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
72
|
Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts. PLoS One 2011; 6:e26504. [PMID: 22028889 PMCID: PMC3196580 DOI: 10.1371/journal.pone.0026504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.
Collapse
|