51
|
|
52
|
Abstract
mTOR is a serine/threonine kinase and plays a critical role in mammalian cell growth, survival, and metabolism. mTOR is present in two cellular complexes: mTORC1 and mTORC2. Dysregulation of the mTOR pathway has been related to tumorigenesis, poor prognosis and/or chemotherapy resistance in a variety of malignancies. Inhibition of mTORC1 by Rapamycin and its analogs has been explored to treat a number of tumors. However, the effectiveness of patient response is limited and not all patients respond. Second generation of mTOR inhibitors have recently been developed to target mTOR kinase activity and to suppress both mTORC1 and mTORC2. Dual mTORC1/mTORC2 inhibitors generally are more efficacious in preclinical studies and clinical trials. We and others have recently found that dual mTORC1/mTORC2 inhibitors sensitize T-cell acute lymphocytic leukemia and rhabdomyosarcoma cells to DNA damaging agents by suppression of expression of FANCD2 of the Fanconi anemia pathway, an important DNA repair mechanism that is associated with drug resistance of multiple types of cancer. This review will highlight mTOR and the Fanconi anemia pathway in cancer, with a particular attention to our newly discovered connection between mTOR and the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
53
|
Guilbert C, Annis MG, Dong Z, Siegel PM, Miller WH, Mann KK. Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer. PLoS One 2013; 8:e85995. [PMID: 24392034 PMCID: PMC3877392 DOI: 10.1371/journal.pone.0085995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways.
Collapse
Affiliation(s)
- Cynthia Guilbert
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Matthew G. Annis
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Zhifeng Dong
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Peter M. Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Wilson H. Miller
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
54
|
Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2013; 142:164-75. [PMID: 24333502 DOI: 10.1016/j.pharmthera.2013.12.004] [Citation(s) in RCA: 608] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022]
Abstract
Aberrations in various cellular signaling pathways are instrumental in regulating cellular metabolism, tumor development, growth, proliferation, metastasis and cytoskeletal reorganization. The fundamental cellular signaling cascade involved in these processes, the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR), closely related to the mitogen-activated protein kinase (MAPK) pathway, is a crucial and intensively explored intracellular signaling pathway in tumorigenesis. Various activating mutations in oncogenes together with the inactivation of tumor suppressor genes are found in diverse malignancies across almost all members of the pathway. Substantial progress in uncovering PI3K/AKT/mTOR alterations and their roles in tumorigenesis has enabled the development of novel targeted molecules with potential for developing efficacious anticancer treatment. Two approved anticancer drugs, everolimus and temsirolimus, exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic and many others are in preclinical development as well as being tested in early clinical trials for many different types of cancer. This review focuses on targeted PI3K/AKT/mTOR signaling from the perspective of novel molecular targets for cancer therapy found in key pathway members and their corresponding experimental therapeutic agents. Various aberrant prognostic and predictive biomarkers are also discussed and examples are given. Novel approaches to PI3K/AKT/mTOR pathway inhibition together with a better understanding of prognostic and predictive markers have the potential to significantly improve the future care of cancer patients in the current era of personalized cancer medicine.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic; Department of Neurology, Faculty Hospital Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
55
|
Sun SY. mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett 2013; 340:1-8. [PMID: 23792225 PMCID: PMC3779533 DOI: 10.1016/j.canlet.2013.06.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023]
Abstract
The mammalian target of rapamycin (mTOR) plays a critical role in the positive regulation of cell growth and survival primarily through direct interaction with raptor (forming mTORC complex 1; mTORC1) or rictor (forming mTOR complex 2; mTORC2). The mTOR axis is often activated in many types of cancer and thus has become an attractive cancer therapeutic target. The modest clinical anticancer activity of conventional mTOR allosteric inhibitors, rapamycin and its analogs (rapalogs), which preferentially inhibit mTORC1, in most types of cancer, has encouraged great efforts to develop mTOR kinase inhibitors (TORKinibs) that inhibit both mTORC1 and mTORC2, in the hope of developing a novel generation of mTOR inhibitors with better therapeutic efficacy than rapalogs. Several TORKinibs have been developed and actively studied pre-clinically and clinically. This review will highlight recent advances in the development and research of TORKinibs and discuss some potential issues or challenges in this area.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
56
|
Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory. Learn Mem 2013; 20:518-30. [PMID: 24042848 DOI: 10.1101/lm.027664.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanistic target of rapamcyin (mTOR) is a central player in cell growth throughout the organism. However, mTOR takes on an additional, more specialized role in the developed neuron, where it regulates the protein synthesis-dependent, plastic changes underlying learning and memory. mTOR is sequestered in two multiprotein complexes (mTORC1 and mTORC2) that have different substrate specificities, thus allowing for distinct functions at synapses. We will examine how learning activates the mTOR complexes, survey the critical effectors of this pathway in the context of synaptic plasticity, and assess whether mTOR plays an instructive or permissive role in generating molecular memory traces.
Collapse
Affiliation(s)
- Tyson E Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | | | | |
Collapse
|
57
|
Li X, Li Z, Zhou W, Xing X, Huang L, Tian L, Chen J, Chen C, Ma X, Yang Z. Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis 2013; 4:e803-9. [PMID: 24030155 PMCID: PMC3789189 DOI: 10.1038/cddis.2013.331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Our previous studies have shown that the inhibition of phosphatidylinositol 3-kinase (PI3K) or mTOR complex 1 can obviously promote the Coxsackievirus B3 (CVB3)-induced apoptosis of HeLa cells by regulating the expression of proapoptotic factors. To further illustrate it, Homo sapiens eIF4E-binding protein 1 (4EBP1), p70S6 kinase (p70S6K), Akt1 and Akt2 were transfected to HeLa cells, respectively. And then, we established the stable transfected cell lines. Next, after CVB3 infection, apoptosis in different groups was determined by flow cytometry; the expressions of Bim, Bax, caspase-9 and caspase-3 were examined by real-time fluorescence quantitative PCR and western blot analysis; the expression of CVB3 mRNA and viral capsid protein VP1 were also analyzed by real-time fluorescence quantitative PCR, western blot analysis and immunofluorescence, respectively. At the meantime, CVB3 replication was observed by transmission electron microscope. We found that CVB3-induced cytopathic effect and apoptosis in transfected groups were more obvious than that in controls. Unexpectedly, apoptosis rate in Akt1 group was higher than others at the early stage after viral infection and decreased with the viral-infected time increasing, which was opposite to other groups. Compared with controls, the expression of CVB3 mRNA was increased at 3, 6, 12 and 24 h postinfection (p. i.) in all groups. At the meantime, VP1 expression in 4EBP1 group was higher than control during the process of infection, while the expressions in the other groups were change dynamically. Moreover, overexpression of 4EBP1 did not affect the mRNA expressions of Bim, Bax, caspase-9 and caspase-3; while protein expressions of Bim and Bax were decreased, the self-cleavages of caspase-9 and caspase-3 were stimulated. Meanwhile, overexpression of p70S6K blocked the CVB3-induced Bim, Bax and caspase-9 expressions but promoted the self-cleavage of caspase-9. In the Akt1 group, it is noteworthy that the expressions of Bim protein were higher than controls at 3 and 6 h p. i. but lower at 24 h p. i., and the expression of Bax protein were higher at 6 and 24 h p. i., while their mRNA expressions were all decreased. Furthermore, overexpression of Akt1 stimulated the procaspase-9 and procaspase-3 expression but blocked their self-cleavages. Overexpression of Akt2, however, had little effect on Bim, Bax and caspase-3, while prevented caspase-9 from self-cleavage at the late stage of CVB3 infection. As stated above, our results demonstrated that overexpression of 4EBP1, p70S6K, Akt1 or Akt2 could promote the CVB3-induced apoptosis in diverse degree via different mediating ways in viral replication and proapoptotic factors in BcL-2 and caspase families. As 4EBP1, p70S6K and Akt are the important substrates of PI3K and mammalian target of rapamycin (mTOR), we further illustrated the role of PI3K/Akt/mTOR signaling pathway in the process of CVB3-induced apoptosis.
Collapse
Affiliation(s)
- X Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Combination of mTOR and EGFR kinase inhibitors blocks mTORC1 and mTORC2 kinase activity and suppresses the progression of colorectal carcinoma. PLoS One 2013; 8:e73175. [PMID: 23991179 PMCID: PMC3750018 DOI: 10.1371/journal.pone.0073175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022] Open
Abstract
Mammalian target of rapamycin complex 1 and 2 (mTORC1/2) are overactive in colorectal carcinomas; however, the first generation of mTOR inhibitors such as rapamycin have failed to show clinical benefits in treating colorectal carcinoma in part due to their effects only on mTORC1. The second generation of mTOR inhibitors such as PP242 targets mTOR kinase; thus, they are capable of inhibiting both mTORC1 and mTORC2. To examine the therapeutic potential of the mTOR kinase inhibitors, we treated a panel of colorectal carcinoma cell lines with PP242. Western blotting showed that the PP242 inhibition of mTORC2-mediated AKT phosphorylation at Ser 473 (AKTS473) was transient only in the first few hours of the PP242 treatment. Receptor tyrosine kinase arrays further revealed that PP242 treatment increased the phosphorylated epidermal growth factor receptor (EGFR) at Tyr 1068 (EGFRT1068). The parallel increase of AKTS473 and EGFRT1068 in the cells following PP242 treatment raised the possibility that EGFR phosphorylation might contribute to the PP242 incomplete inhibition of mTORC2. To test this notion, we showed that the combination of PP242 with erlotinib, an EGFR small molecule inhibitor, blocked both mTORC1 and mTORC2 kinase activity. In addition, we showed that the combination treatment inhibited colony formation, blocked cell growth and induced apoptotic cell death. A systemic administration of PP242 and erlotinib resulted in the progression suppression of colorectal carcinoma xenografts in mice. This study suggests that the combination of mTOR kinase and EGFR inhibitors may provide an effective treatment of colorectal carcinoma.
Collapse
|
59
|
Guo F, Li J, Zhang S, Du W, Amarachintha S, Sipple J, Phelan J, Grimes HL, Zheng Y, Pang Q. mTOR kinase inhibitor sensitizes T-cell lymphoblastic leukemia for chemotherapy-induced DNA damage via suppressing FANCD2 expression. Leukemia 2013; 28:203-6. [PMID: 23852546 DOI: 10.1038/leu.2013.215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- F Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - S Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - S Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Sipple
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Phelan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H L Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
60
|
Bortezomid enhances the efficacy of lidamycin against human multiple myeloma cells. Anticancer Drugs 2013; 24:609-16. [DOI: 10.1097/cad.0b013e3283615006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
61
|
Dasgupta T, Haas-Kogan DA. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas. Front Oncol 2013; 3:110. [PMID: 23717811 PMCID: PMC3650671 DOI: 10.3389/fonc.2013.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/22/2013] [Indexed: 11/13/2022] Open
Abstract
Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent, or refractory pediatric brain tumors, radiation therapy (XRT) is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in pediatric gliomas is being exploited with the use of specific targeted inhibitors. These agents are additionally being combined with XRT to increase the efficacy and duration of local control. In this review, we discuss novel agents targeting three different pathways in gliomas, and their potential combination with XRT. BRAF is a serine/threonine kinase in the RAS/RAF/MAPK kinase pathway, which is integral to cellular division, survival, and metabolism. Two-thirds of pilocytic astrocytomas, a low-grade pediatric glioma, contain a translocation within the BRAF gene called KIAA1549:BRAF that causes an overactivation of the MEK/MAPK signaling cascade. In vitro and in vivo data support the use of MEK or mammalian target of rapamycin (mTOR) inhibitors in low-grade gliomas expressing this translocation. Additionally, 15-20% of high-grade pediatric gliomas express BRAF V600E, an activating mutation of the BRAF gene. Pre-clinical in vivo and in vitro data in BRAF V600E gliomas demonstrate dramatic cooperation between XRT and small molecule inhibitors of BRAF V600E. Another major signaling cascade that plays a role in pediatric glioma pathogenesis is the PI3-kinase (PI3K)/mTOR pathway, known to be upregulated in the majority of high- and low-grade pediatric gliomas. Dual PI3K/mTOR inhibitors are in clinical trials for adult high-grade gliomas and are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis that render them refractory to treatment. An analog of thalidomide, CC-5103 increases the secretion of critical cytokines of the tumor microenvironment, including IL-2, IFN-γ, TNF-α, and IL-10, and is currently being evaluated in clinical trials for the treatment of recurrent or refractory pediatric central nervous system tumors. In summary, several targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. This review article summarizes the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. In many cases, parallels are drawn to molecular mechanisms and targeted inhibitors of adult gliomas. We additionally discuss the potential mechanisms underlying the efficacy of these agents.
Collapse
Affiliation(s)
- Tina Dasgupta
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| | - Daphne A. Haas-Kogan
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
62
|
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 2013; 8:e57289. [PMID: 23437362 PMCID: PMC3578870 DOI: 10.1371/journal.pone.0057289] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser(473) while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser(473) and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Feedback, Physiological/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Indoles/pharmacology
- Insulin/pharmacology
- Metformin/pharmacology
- Morpholines/pharmacology
- Neurotensin/pharmacology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Purines/pharmacology
- Pyrimidines/pharmacology
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Heloisa P. Soares
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Hematology-Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yang Ni
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Krisztina Kisfalvi
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|