51
|
Wang Q, Li M, Shen Z, Bu F, Yu H, Pan X, Yang Y, Meng X, Huang C, Li J. The Long Non-coding RNA MEG3/miR-let-7c-5p Axis Regulates Ethanol-Induced Hepatic Steatosis and Apoptosis by Targeting NLRC5. Front Pharmacol 2018; 9:302. [PMID: 29692724 PMCID: PMC5902529 DOI: 10.3389/fphar.2018.00302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
Ethanol (EtOH)-induced hepatic injury, characterized by hepatic steatosis with apoptosis, causes heavy health burden personally and socially. Long non-coding RNAs (lncRNAs) have been implicated in liver diseases. However, the role of lncRNA maternally expressed gene 3 (MEG3) in EtOH-induced hepatic injury remains unknown. The aim of present study was to assess the function of MEG3 and its functional interaction with miR-let-7c-5p in EtOH-induced hepatic injury. Here, we observed that MEG3 and NLRC5 expression was increased and miR-let-7c-5p expression decreased in EtOH-fed mice and EtOH-induced AML-12 cells. Knockdown of MEG3 contributed to attenuation of EtOH-induced steatosis and apoptosis in AML-12 cells. Also, expression level of MEG3 negatively correlated with miR-let-7c-5p expression and positively correlated with NLRC5 expression. In contrary to MEG3, miR-let-7c-5p overexpression attenuated EtOH-induced steatosis and apoptosis, as well as suppressed EtOH-induced increase in NLRC5 expression. By luciferase reporter assay, we concluded that miR-let-7c-5p directly binds to NLRC5 3′-UTR, thereby negatively regulates NLRC5 expression. Our data suggested that lncRNA MEG3 functions as a competing endogenous RNA for miR-let-7c-5p to regulate NLRC5 expression in EtOH-induced hepatic injury.
Collapse
Affiliation(s)
- Qin Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Mingfang Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zhiming Shen
- Department of Cardiac Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangtian Bu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Haixia Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xueyin Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yang Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
52
|
De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, Mellibovsky L, Grinberg D, Diez-Perez A, Garcia-Giralt N. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell 2017; 31:33-41. [PMID: 28933035 DOI: 10.1007/s13577-017-0181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Collapse
Affiliation(s)
- Laura De-Ugarte
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jenny Serra-Vinardell
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Magdalena Arnal
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|