51
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
52
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
53
|
Kolesnikova S, Curtis EA. Structure and Function of Multimeric G-Quadruplexes. Molecules 2019; 24:molecules24173074. [PMID: 31450559 PMCID: PMC6749722 DOI: 10.3390/molecules24173074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
Collapse
Affiliation(s)
- Sofia Kolesnikova
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Edward A Curtis
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic.
| |
Collapse
|
54
|
Wan C, Fu W, Jing H, Zhang N. NMR solution structure of an asymmetric intermolecular leaped V-shape G-quadruplex: selective recognition of the d(G2NG3NG4) sequence motif by a short linear G-rich DNA probe. Nucleic Acids Res 2019; 47:1544-1556. [PMID: 30445650 PMCID: PMC6379650 DOI: 10.1093/nar/gky1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
Aside from classical loops among G-quadruplexes, the unique leaped V-shape scaffold spans over three G-tetrads, without any intervening residues. This scaffold enables a sharp reversal of two adjacent strand directions and simultaneously participates in forming the G-tetrad core. These features make this scaffold itself distinctive and thus an essentially more accessible target. As an alternative to the conventional antisense method using a complementary chain, forming an intermolecular G-quadruplex from two different oligomers, in which the longer one as the target is captured by a short G-rich fragment, could be helpful for recognizing G-rich sequences and structural motifs. However, such an intermolecular leaped V-shape G-quadruplex consisting of DNA oligomers of quite different lengths has not been evaluated. Here, we present the first nuclear magnetic resonance (NMR) study of an asymmetric intermolecular leaped V-shape G-quadruplex assembled between an Oxytricha nova telomeric sequence d(G2T4G4T4G4) and a single G-tract fragment d(TG4A). Furthermore, we explored the selectivity of this short fragment as a potential probe, examined the kinetic discrimination for probing a specific mutant, and proposed the key sequence motif d(G2NG3NG4) essential for building the leaped V-shape G-quadruplexes.
Collapse
Affiliation(s)
- Chanjuan Wan
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
| |
Collapse
|
55
|
Calabrese DR, Zlotkowski K, Alden S, Hewitt WM, Connelly CM, Wilson RM, Gaikwad S, Chen L, Guha R, Thomas CJ, Mock BA, Schneekloth JS. Characterization of clinically used oral antiseptics as quadruplex-binding ligands. Nucleic Acids Res 2019; 46:2722-2732. [PMID: 29481610 PMCID: PMC5888870 DOI: 10.1093/nar/gky084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/25/2022] Open
Abstract
Approaches to characterize the nucleic acid-binding properties of drugs and druglike small molecules are crucial to understanding the behavior of these compounds in cellular systems. Here, we use a Small Molecule Microarray (SMM) profiling approach to identify the preferential interaction between chlorhexidine, a widely used oral antiseptic, and the G-quadruplex (G4) structure in the KRAS oncogene promoter. The interaction of chlorhexidine and related drugs to the KRAS G4 is evaluated using multiple biophysical methods, including thermal melt, fluorescence titration and surface plasmon resonance (SPR) assays. Chlorhexidine has a specific low micromolar binding interaction with the G4, while related drugs have weaker and/or less specific interactions. Through NMR experiments and docking studies, we propose a plausible binding mode driven by both aromatic stacking and groove binding interactions. Additionally, cancer cell lines harbouring oncogenic mutations in the KRAS gene exhibit increased sensitivity to chlorhexidine. Treatment of breast cancer cells with chlorhexidine decreases KRAS protein levels, while a KRAS gene transiently expressed by a promoter lacking a G4 is not affected. This work confirms that known ligands bind broadly to G4 structures, while other drugs and druglike compounds can have more selective interactions that may be biologically relevant.
Collapse
Affiliation(s)
- David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Katherine Zlotkowski
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Stephanie Alden
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - William M Hewitt
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert M Wilson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892-4258, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892-4258, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
56
|
Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 2019; 46:661-676. [PMID: 29165690 PMCID: PMC5778462 DOI: 10.1093/nar/gkx1142] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. We designed oligonucleotides mimicking the KRAS G4-motif and found that 8-oxoG impacts folding and stability of the G-quadruplex. Dimethylsulphate-footprinting showed that the G-run carrying 8-oxoG is excluded from the G-tetrads and replaced by a redundant G-run in the KRAS G4-motif. Chromatin immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | | | - Erik B Pedersen
- Nucleic Acid Center, Institute of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Luigi E Xodo
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
57
|
Importance of Chiral Recognition in Designing Metal-Free Ligands for G-Quadruplex DNA. Molecules 2019; 24:molecules24081473. [PMID: 30991655 PMCID: PMC6514905 DOI: 10.3390/molecules24081473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023] Open
Abstract
Four pairs of amino acid-functionalized naphthalenediimide enantiomers (d- and l-lysine derived NDIs) were screened toward G-quadruplex forming sequences in telomeres (h-TELO) and oncogene promoters: c-KIT1, c-KIT2, k-RAS and BCL-2. This is the first study to address the effect of point chirality toward G-quadruplex DNA stabilization using purely small organic molecules. Enantioselective behavior toward the majority of ligands was observed, particularly in the case of parallel conformations of c-KIT2 and k-RAS. Additionally, Nε-Boc-l-Lys-NDI and Nε-Boc-d-Lys-NDI discriminate between quadruplexes with parallel and hybrid topologies, which has not previously been observed with enantiomeric ligands.
Collapse
|
58
|
Sengar A, Vandana J, Chambers VS, Di Antonio M, Winnerdy F, Balasubramanian S, Phan AT. Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter. Nucleic Acids Res 2019; 47:1564-1572. [PMID: 30551210 PMCID: PMC6379715 DOI: 10.1093/nar/gky1179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) has emerged as an attractive target for cancer therapy due to its key role in DNA repair processes. Inhibition of PARP1 in BRCA-mutated cancers has been observed to be clinically beneficial. Recent genome-mapping experiments have identified a non-canonical G-quadruplex-forming sequence containing bulges within the PARP1 promoter. Structural features, like bulges, provide opportunities for selective chemical targeting of the non-canonical G-quadruplex structure within the PARP1 promoter, which could serve as an alternative therapeutic approach for the regulation of PARP1 expression. Here we report the G-quadruplex structure formed by a 23-nucleotide G-rich sequence in the PARP1 promoter. Our study revealed a three-layered intramolecular (3+1) hybrid G-quadruplex scaffold, in which three strands are oriented in one direction and the fourth in the opposite direction. This structure exhibits unique structural features such as an adenine bulge and a G·G·T base triple capping structure formed between the central edgewise loop, propeller loop and 5' flanking terminal. Given the highly important role of PARP1 in DNA repair and cancer intervention, this structure presents an attractive opportunity to explore the therapeutic potential of PARP1 inhibition via G-quadruplex DNA targeting.
Collapse
Affiliation(s)
- Anjali Sengar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - J Jeya Vandana
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Vicki S Chambers
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Marco Di Antonio
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
59
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|
60
|
Abstract
G-quadruplexes (G4s) have become one of the most exciting nucleic acid secondary structures. A noncanonical, four-stranded structure formed in guanine-rich DNA and RNA sequences, G-quadruplexes can readily form under physiologically relevant conditions and are globularly folded structures. DNA is widely recognized as a double-helical structure essential in genetic information storage. However, only ~3% of the human genome is expressed in protein; RNA and DNA may form noncanonical secondary structures that are functionally important. G-quadruplexes are one such example which have gained considerable attention for their formation and regulatory roles in biologically significant regions, such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5'- and 3'-untranslated region (UTR) of mRNA. They are shown to be a regulatory motif in a number of critical cellular processes including gene transcription, translation, replication, and genomic stability. G-quadruplexes are also found in nonhuman genomes, particularly those of human pathogens. Therefore, G-quadruplexes have emerged as a new class of molecular targets for drug development. In addition, there is considerable interest in the use of G-quadruplexes for biomaterials, biosensors, and biocatalysts. The First International Meeting on Quadruplex DNA was held in 2007, and the G-quadruplex field has been growing dramatically over the last decade. The methods used to study G-quadruplexes have been essential to the rapid progress in our understanding of this exciting nucleic acid secondary structure.
Collapse
Affiliation(s)
- Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, West Lafayette, IN USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN USA
| |
Collapse
|
61
|
Calabrese DR, Chen X, Leon EC, Gaikwad SM, Phyo Z, Hewitt WM, Alden S, Hilimire TA, He F, Michalowski AM, Simmons JK, Saunders LB, Zhang S, Connors D, Walters KJ, Mock BA, Schneekloth JS. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat Commun 2018; 9:4229. [PMID: 30315240 PMCID: PMC6185959 DOI: 10.1038/s41467-018-06315-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
G-quadruplexes (G4s) are noncanonical DNA structures that frequently occur in the promoter regions of oncogenes, such as MYC, and regulate gene expression. Although G4s are attractive therapeutic targets, ligands capable of discriminating between different G4 structures are rare. Here, we describe DC-34, a small molecule that potently downregulates MYC transcription in cancer cells by a G4-dependent mechanism. Inhibition by DC-34 is significantly greater for MYC than other G4-driven genes. We use chemical, biophysical, biological, and structural studies to demonstrate a molecular rationale for the recognition of the MYC G4. We solve the structure of the MYC G4 in complex with DC-34 by NMR spectroscopy and illustrate specific contacts responsible for affinity and selectivity. Modification of DC-34 reveals features required for G4 affinity, biological activity, and validates the derived NMR structure. This work advances the design of quadruplex-interacting small molecules to control gene expression in therapeutic areas such as cancer. Targeting noncoding nucleic acids with small molecules represents an important and significant challenge in chemical biology and drug discovery. Here the authors characterize DC-34, a small molecule that exhibits selective binding to specific G4 structures, and provide a structural basis for its selectivity
Collapse
Affiliation(s)
- David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiang Chen
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Elena C Leon
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Snehal M Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Zaw Phyo
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - William M Hewitt
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Stephanie Alden
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Fahu He
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | | | - John K Simmons
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lindsey B Saunders
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kylie J Walters
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
62
|
Pattanayak R, Barua A, Das A, Chatterjee T, Pathak A, Choudhury P, Sen S, Saha P, Bhattacharyya M. Porphyrins to restrict progression of pancreatic cancer by stabilizing KRAS G-quadruplex: In silico, in vitro and in vivo validation of anticancer strategy. Eur J Pharm Sci 2018; 125:39-53. [PMID: 30223034 DOI: 10.1016/j.ejps.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
KRAS, a frequently mutated G-quadruplex forming proto-oncogene is responsible for almost every type of cancer which can form a parallel G-quadruplex structure in the promoter region. G-quadruplex structure is one of the most important drug targets for modern cancer therapy for their unique structure and specificity. Here, we have screened several synthetic porphyrin-based compounds as potential KRAS G-quadruplex stabilizing ligands, using molecular modeling and docking studies. Two novel porphyrins: Porphyrin-1(Cobalt containing) and Porphyrin-2 (Palladium containing) evidenced high affinity towards KRAS-promoter/G-quadruplex. As KRAS mutation is prevalent in pancreatic cancer, the efficacy of these ligands against human pancreatic ductal carcinoma cell line PANC-1 and MiaPaCa2 were examined. Both the Porphyrins exhibited significant cytotoxicity and block metastasis by inhibiting Epithelial to messenchymal transition. In vivo studies confirmed both porphyrin compounds to be effective against EAC tumors along with significantly low toxicity against normal Swiss albino mice. The expression of KRAS gene in porphyrin-treated PANC-1, MiaPaCa2 and tumor-derived EAC cells were drastically reduced at both protein and RNA levels. Thus interaction of porphyrin-based ligands with G-quadruplex DNA at the promoter region of KRAS, might be utilized as a target for anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata 700107, West Bengal, India
| | - Atish Barua
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Amlan Das
- National Institute of Technology Sikkim, Barrffung Block Ravangla Sub-Division, South Sikkim 737139, India
| | - Tanima Chatterjee
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Adrija Pathak
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pritha Choudhury
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Srikanta Sen
- 229A/230, Mira Tower, Lake Town, Block-A, Kolkata 700089, India
| | - Prosenjit Saha
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata 700107, West Bengal, India.
| |
Collapse
|
63
|
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46:3270-3283. [PMID: 29554280 PMCID: PMC5909458 DOI: 10.1093/nar/gky187] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that form within guanine-rich strands of regulatory genomic regions. G4s have been extensively described in the human genome, especially in telomeres and oncogene promoters; in recent years the presence of G4s in viruses has attracted increasing interest. Indeed, G4s have been reported in several viruses, including those involved in recent epidemics, such as the Zika and Ebola viruses. Viral G4s are usually located in regulatory regions of the genome and implicated in the control of key viral processes; in some cases, they have been involved also in viral latency. In this context, G4 ligands have been developed and tested both as tools to study the complexity of G4-mediated mechanisms in the viral life cycle, and as therapeutic agents. In general, G4 ligands showed promising antiviral activity, with G4-mediated mechanisms of action both at the genome and transcript level. This review aims to provide an updated close-up of the literature on G4s in viruses. The current state of the art of G4 ligands in antiviral research is also reported, with particular focus on the structural and physicochemical requirements for optimal biological activity. The achievements and the to-dos in the field are discussed.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| |
Collapse
|
64
|
Marquevielle J, Kumar MVV, Mergny JL, Salgado GF. 1H, 13C, and 15N chemical shift assignments of a G-quadruplex forming sequence within the KRAS proto-oncogene promoter region. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:123-127. [PMID: 29189986 DOI: 10.1007/s12104-017-9793-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Single stranded guanine rich DNA (or RNA) sequences adopt noncanonical secondary structures called G-quadruplexes (G4). Functionally, quadruplexes control gene transcription and regulate activities such as replication, gene recombination or alternative splicing. Hence they are potential targets for cancer, neuronal, and viral related diseases. KRAS is one of the most mutated oncogenes in the genome of cancer cells and contains a nuclease hypersensitive element (NHE) sequence capable of forming G-quadruplexes via its six runs of guanines. In our work, we are interested in the NMR structure of the major G4 scaffold formed in the KRAS NHE region with a mutated sequence of 22 residues. Here, we report 1H, 13C and 15N chemical shift assignments the G4 formed within KRAS22RT sequence.
Collapse
Affiliation(s)
- Julien Marquevielle
- ARNA Laboratory, European Institute of Chemistry and Biology (IECB), Université de Bordeaux, Inserm U1212 - CNRS UMR 5320, 2, rue Robert Escarpit, 33607, Pessac, France
| | - M V Vasantha Kumar
- ARNA Laboratory, European Institute of Chemistry and Biology (IECB), Université de Bordeaux, Inserm U1212 - CNRS UMR 5320, 2, rue Robert Escarpit, 33607, Pessac, France
| | - Jean-Louis Mergny
- ARNA Laboratory, European Institute of Chemistry and Biology (IECB), Université de Bordeaux, Inserm U1212 - CNRS UMR 5320, 2, rue Robert Escarpit, 33607, Pessac, France
| | - Gilmar F Salgado
- ARNA Laboratory, European Institute of Chemistry and Biology (IECB), Université de Bordeaux, Inserm U1212 - CNRS UMR 5320, 2, rue Robert Escarpit, 33607, Pessac, France.
| |
Collapse
|
65
|
Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 2018; 144:144-152. [DOI: 10.1016/j.biochi.2017.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023]
|
66
|
|