51
|
de Las Rivas M, Lira-Navarrete E, Gerken TA, Hurtado-Guerrero R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr Opin Struct Biol 2019; 56:87-96. [PMID: 30703750 PMCID: PMC6656595 DOI: 10.1016/j.sbi.2018.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Mucin-type O-glycosylation is a post-translational modification (PTM) that is predicted to occur in more than the 80% of the proteins that pass through the Golgi apparatus. This PTM is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) that modify Ser and Thr residues of proteins through the addition of a GalNAc moiety. These enzymes are type II membrane proteins that consist of a Golgi luminal catalytic domain connected by a flexible linker to a ricin type lectin domain. Together, both domains account for the different glycosylation preferences observed among isoenzymes. Although it is well accepted that most of the family members share some degree of redundancy toward their protein and glycoprotein substrates, it has been recently found that several GalNAc-Ts also possess activity toward specific targets. Despite the high similarity between isoenzymes, structural differences have recently been reported that are key to understanding the molecular basis of both their redundancy and specificity. The present review focuses on the molecular aspects of the protein substrate recognition and the different glycosylation preferences of these enzymes, which in turn will serve as a roadmap to the rational design of specific modulators of mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Matilde de Las Rivas
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerken
- Departments of Biochemistry, Chemistry and Pediatrics Case Western Reserve University, Cleveland, OH, USA.
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
52
|
Advances toward mapping the full extent of protein site-specific O-GalNAc glycosylation that better reflects underlying glycomic complexity. Curr Opin Struct Biol 2019; 56:146-154. [DOI: 10.1016/j.sbi.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
|
53
|
Klee EW, Zimmermann MT. Molecular modeling of LDLR aids interpretation of genomic variants. J Mol Med (Berl) 2019; 97:533-540. [PMID: 30778614 PMCID: PMC6440939 DOI: 10.1007/s00109-019-01755-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 11/24/2022]
Abstract
Abstract Genetic variants in low-density lipoprotein receptor (LDLR) are known to cause familial hypercholesterolemia (FH), occurring in up to 1 in 200 people (Youngblom E. et al. 1993 and Nordestgaard BG et al. 34:3478–3490a, 2013) and leading to significant risk for heart disease. Clinical genomics testing using high-throughput sequencing is identifying novel genomic variants of uncertain significance (VUS) in individuals suspected of having FH, but for whom the causal link to the disease remains to be established (Nordestgaard BG et al. 34:3478–3490a, 2013). Unfortunately, experimental data about the atomic structure of the LDL binding domains of LDLR at extracellular pH does not exist. This leads to an inability to apply protein structure-based methods for assessing novel variants identified through genetic testing. Thus, the ambiguities in interpretation of LDLR variants are a barrier to achieving the expected clinical value for personalized genomics assays for management of FH. In this study, we integrated data from the literature and related cellular receptors to develop high-resolution models of full-length LDLR at extracellular conditions and use them to predict which VUS alter LDL binding. We believe that the functional effects of LDLR variants can be resolved using a combination of structural bioinformatics and functional assays, leading to a better correlation with clinical presentation. We have completed modeling of LDLR in two major physiologic conditions, generating detailed hypotheses for how each of the 1007 reported protein variants may affect function. Key messages • Hundreds of variants are observed in the LDLR, but most lack interpretation. • Molecular modeling is aided by biochemical knowledge. • We generated context-specific 3D protein models of LDLR. • Our models allowed mechanistic interpretation of many variants. • We interpreted both rare and common genomic variants in their physiologic context. • Effects of genomic variants are often context-specific. Electronic supplementary material The online version of this article (10.1007/s00109-019-01755-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric W Klee
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, 53226-0509, USA.
| |
Collapse
|
54
|
Nakamura N, Kurosaka A. Mucin-type glycosylation as a regulatory factor of amyloid precursor protein processing. J Biochem 2019; 165:205-208. [DOI: 10.1093/jb/mvy121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Naosuke Nakamura
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| | - Akira Kurosaka
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| |
Collapse
|
55
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
56
|
Simon EJ, Linstedt AD. Site-specific glycosylation of Ebola virus glycoprotein by human polypeptide GalNAc-transferase 1 induces cell adhesion defects. J Biol Chem 2018; 293:19866-19873. [PMID: 30389789 PMCID: PMC6314128 DOI: 10.1074/jbc.ra118.005375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
The surface glycoprotein (GP) of Ebola virus causes many of the virus's pathogenic effects, including a dramatic loss of endothelial cell adhesion associated with widespread hemorrhaging during infection. Although the GP-mediated deadhesion depends on its extracellular mucin-like domain, it is unknown whether any, or all, of this domain's densely clustered O-glycosylation sites are required. It is also unknown whether any of the 20 distinct polypeptide GalNAc-transferases (ppGalNAc-Ts) that initiate mucin-type O-glycosylation in human cells are functionally required. Here, using HEK293 cell lines lacking specific glycosylation enzymes, we demonstrate that GP requires extended O-glycans to exert its deadhesion effect. We also identified ppGalNAc-T1 as largely required for the GP-mediated adhesion defects. Despite its profound effect on GP function, the absence of ppGalNAc-T1 only modestly reduced the O-glycan mass of GP, indicating that even small changes in the bulky glycodomain can cause loss of GP function. Indeed, protein-mapping studies identified a small segment of the mucin-like domain critical for function and revealed that mutation of five glycan acceptor sites within this segment are sufficient to abrogate GP function. Together, these results argue against a mechanism of Ebola GP-induced cell detachment that depends solely on ectodomain bulkiness and identify a single host-derived glycosylation enzyme, ppGalNAc-T1, as a potential target for therapeutic intervention against Ebola virus disease.
Collapse
Affiliation(s)
- Emily J Simon
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Adam D Linstedt
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
57
|
Hintze J, Ye Z, Narimatsu Y, Madsen TD, Joshi HJ, Goth CK, Linstedt A, Bachert C, Mandel U, Bennett EP, Vakhrushev SY, Schjoldager KT. Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. J Biol Chem 2018; 293:19064-19077. [PMID: 30327431 PMCID: PMC6295722 DOI: 10.1074/jbc.ra118.004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.
Collapse
Affiliation(s)
- John Hintze
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Zilu Ye
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Thomas Daugbjerg Madsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Christoffer K Goth
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Adam Linstedt
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Collin Bachert
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| |
Collapse
|
58
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
59
|
Hirano M. An Endocytic Receptor, Megalin-Ligand Interactions: Effects of Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1752.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Hirano M. An Endocytic Receptor, Megalin-Ligand Interactions: Effects of Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1752.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Validation of LDLr Activity as a Tool to Improve Genetic Diagnosis of Familial Hypercholesterolemia: A Retrospective on Functional Characterization of LDLr Variants. Int J Mol Sci 2018; 19:ijms19061676. [PMID: 29874871 PMCID: PMC6032215 DOI: 10.3390/ijms19061676] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by high blood-cholesterol levels mostly caused by mutations in the low-density lipoprotein receptor (LDLr). With a prevalence as high as 1/200 in some populations, genetic screening for pathogenic LDLr mutations is a cost-effective approach in families classified as ‘definite’ or ‘probable’ FH and can help to early diagnosis. However, with over 2000 LDLr variants identified, distinguishing pathogenic mutations from benign mutations is a long-standing challenge in the field. In 1998, the World Health Organization (WHO) highlighted the importance of improving the diagnosis and prognosis of FH patients thus, identifying LDLr pathogenic variants is a longstanding challenge to provide an accurate genetic diagnosis and personalized treatments. In recent years, accessible methodologies have been developed to assess LDLr activity in vitro, providing experimental reproducibility between laboratories all over the world that ensures rigorous analysis of all functional studies. In this review we present a broad spectrum of functionally characterized missense LDLr variants identified in patients with FH, which is mandatory for a definite diagnosis of FH.
Collapse
|