51
|
Nabet B, Tsai A, Tobias JW, Carstens RP. Identification of a putative network of actin-associated cytoskeletal proteins in glomerular podocytes defined by co-purified mRNAs. PLoS One 2009; 4:e6491. [PMID: 19652713 PMCID: PMC2714980 DOI: 10.1371/journal.pone.0006491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022] Open
Abstract
The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types.
Collapse
Affiliation(s)
- Behnam Nabet
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
52
|
Mingle LA, Bonamy G, Barroso M, Liao G, Liu G. LPA-induced mutually exclusive subcellular localization of active RhoA and Arp2 mRNA revealed by sequential FRET and FISH. Histochem Cell Biol 2009; 132:47-58. [PMID: 19365637 PMCID: PMC2753266 DOI: 10.1007/s00418-009-0589-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2009] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that mRNAs for the subunits of the Arp2/3 complex localize to protrusions in fibroblasts (Mingle et al. in J Cell Sci 118:2425-2433, 2005). However, the signaling pathway that regulates Arp2/3 complex mRNA localization remains unknown. In this study we have identified lysophosphatidic acid (LPA) as a potent inducer of Arp2 mRNA localization to protrusions in fibroblasts via the RhoA-ROCK pathway. As RhoA is known to be activated locally in the cells, we sought to understand how spatial activation of Rho affects Arp2 mRNA localization. By sequentially performing fluorescence resonance energy transfer (FRET) and fluorescence in situ hybridization (FISH), we have visualized active RhoA and Arp2 mRNA in the same cells. Upon LPA stimulation, approximately two times more cells than those in the serum-free medium showed mutually exclusive localization of active RhoA and Arp2 mRNA. These results demonstrate the importance of localized activation of Rho in Arp2 mRNA localization and provide new insights as to how Rho regulates Arp2/3 complex mRNA localization. To our best knowledge, this is the first report in which FRET and FISH are combined to detect localized protein activity and mRNA in the same cells. This method should be easily adopted for the detection of other fluorescence protein based biosensors and DNA/RNA in the same cells.
Collapse
Affiliation(s)
- Lisa A. Mingle
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| | - Ghislain Bonamy
- Hudson Alpha Institute for Biotechnology, 127 Holmes Ave, Huntsville, AL 35801, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| | - Gang Liu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| |
Collapse
|
53
|
Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, Leung S, Wiseman SM, Nabi IR. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 2008; 68:8210-20. [PMID: 18922892 DOI: 10.1158/0008-5472.can-08-0343] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rho/ROCK signaling and caveolin-1 (Cav1) are implicated in tumor cell migration and metastasis; however, the underlying molecular mechanisms remain poorly defined. Cav1 was found here to be an independent predictor of decreased survival in breast and rectal cancer and significantly associated with the presence of distant metastasis for colon cancer patients. Rho/ROCK signaling promotes tumor cell migration by regulating focal adhesion (FA) dynamics through tyrosine (Y14) phosphorylation of Cav1. Phosphorylated Cav1 is localized to protrusive domains of tumor cells and Cav1 tyrosine phosphorylation is dependent on Src kinase and Rho/ROCK signaling. Increased levels of phosphorylated Cav1 were associated with elevated GTP-RhoA levels in metastatic tumor cells of various tissue origins. Stable expression and knockdown studies of Cav1 in tumor cells showed that phosphorylated Cav1 expression stimulates Rho activation, stabilizes FAK association with FAs, and promotes cell migration and invasion in a ROCK-dependent and Src-dependent manner. Tyrosine-phosphorylated Cav1, therefore, functions as an effector of Rho/ROCK signaling in the regulation of FA turnover and, thereby, tumor cell migration and invasion. These studies define a feedback loop between Rho/ROCK, Src, and phosphorylated Cav1 in tumor cell protrusions, identifying a novel function for Cav1 in tumor metastasis that may contribute to the poor prognosis of some Cav1-expressing tumors.
Collapse
Affiliation(s)
- Bharat Joshi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Stuart HC, Jia Z, Messenberg A, Joshi B, Underhill TM, Moukhles H, Nabi IR. Localized Rho GTPase activation regulates RNA dynamics and compartmentalization in tumor cell protrusions. J Biol Chem 2008; 283:34785-95. [PMID: 18845542 DOI: 10.1074/jbc.m804014200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA trafficking and local protein translation are associated with protrusive cellular domains, such as neuronal growth cones, and deregulated control of protein translation is associated with tumor malignancy. We show here that activated RhoA, but not Rac1, is enriched in pseudopodia of MSV-MDCK-INV tumor cells and that Rho, Rho kinase (ROCK), and myosin II regulate the microtubule-independent targeting of RNA to these tumor cell domains. ROCK inhibition does not affect pseudopodial actin turnover but significantly reduces the dynamics of pseudopodial RNA turnover. Gene array analysis shows that 7.3% of the total genes analyzed exhibited a greater than 1.6-fold difference between the pseudopod and cell body fractions. Of these, only 13.2% (261 genes) are enriched in pseudopodia, suggesting that only a limited number of total cellular mRNAs are enriched in tumor cell protrusions. Comparison of the tumor pseudopod mRNA cohort and a cohort of mRNAs enriched in neuronal processes identified tumor pseudopod-specific signaling networks that were defined by expression of M-Ras and the Shp2 protein phosphatase. Pseudopod expression of M-Ras and Shp2 mRNA were diminished by ROCK inhibition linking pseudopodial Rho/ROCK activation to the localized expression of specific mRNAs. Pseudopodial enrichment for mRNAs involved in protein translation and signaling suggests that local mRNA translation regulates pseudopodial expression of less stable signaling molecules as well as the cellular machinery to translate these mRNAs. Pseudopodial Rho/ROCK activation may impact on tumor cell migration and metastasis by stimulating the pseudopodial translocation of mRNAs and thereby regulating the expression of local signaling cascades.
Collapse
Affiliation(s)
- Heather C Stuart
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
55
|
Van Troys M, Lambrechts A, David V, Demol H, Puype M, Pizarro-Cerda J, Gevaert K, Cossart P, Vandekerckhove J. The actin propulsive machinery: the proteome of Listeria monocytogenes tails. Biochem Biophys Res Commun 2008; 375:194-9. [PMID: 18694727 DOI: 10.1016/j.bbrc.2008.07.152] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 01/09/2023]
Abstract
Actin-based comet tails produced by Listeria monocytogenes are considered as representative models for cellular force-producing machineries crucial for cell migration. We here present a proteomic picture of these tails formed in extracts from brain and platelets. This provides a comprehensive view, revealing high molecular complexity and novel host cell proteins as tail components, and suggests the participation of specific multicomponent regulatory complexes. This work forms a new basis to expand current models of cellular protrusion.
Collapse
|
56
|
Godbout R, Li L, Liu RZ, Roy K. Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol 2008; 3:575-87. [PMID: 17927523 DOI: 10.2217/14796694.3.5.575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of hereditary and nonhereditary retinoblastoma led to the formulation of the two-hit hypothesis of cancer in the early 1970s. The two-hit hypothesis was validated in the 1980s when both copies of the RB1 gene were shown to be mutated in hereditary and nonhereditary retinoblastoma. However, consistent genetic abnormalities other than RB1 mutations suggest that additional events may be required for the formation of these malignant tumors. For example, MYCN amplification has long been known to occur in both retinoblastoma and neuroblastoma tumors and is strongly associated with poor prognosis in neuroblastoma. The DEAD box gene, DEAD box 1 (DDX1), is often coamplified with MYCN in both these childhood tumors. Here, we examine possible roles for DDX1 overexpression in retinoblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Roseline Godbout
- Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | |
Collapse
|
57
|
Brandt DT, Grosse R. Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep 2008; 8:1019-23. [PMID: 17972901 DOI: 10.1038/sj.embor.7401089] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/12/2007] [Indexed: 12/24/2022] Open
Abstract
IQGAPs are actin-binding proteins that scaffold numerous interaction partners, transmitting extracellular signals that influence mitogenic, morphological and migratory cell behaviour. However, the precise mechanisms by which IQGAP proteins influence actin dynamics and actin filament structures have been elusive. Now that IQGAP1 has emerged as a potential key regulator of actin-cytoskeletal dynamics by recruiting both the actin related protein (Arp)2/3 complex and/or formin-dependent actin polymerizing machineries, we propose that IQGAP1 might coordinate the function of mechanistically different actin nucleators for cooperative localized actin filament production in various cellular processes.
Collapse
Affiliation(s)
- Dominique T Brandt
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | |
Collapse
|
58
|
Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 2007; 13:5665-9. [PMID: 17908954 DOI: 10.1158/1078-0432.ccr-06-2491] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducers and activators of transcription (STAT) are a highly conserved family of transcription factors that are activated by phosphorylation in the cytoplasm, after which they translocate to the nucleus to regulate gene expression. Among the seven STATs, STAT3 is of particular interest due to its constitutive phosphorylation in a large proportion of human cancers and its ability to induce neoplastic transformation. Inhibition of STAT3 can reverse tumor growth in experimental systems while having few effects in normal cells. These findings have implicated STAT3 as a potentially important target for therapeutic intervention. In addition to its well-described role as a transcription factor, STAT3 has been found recently to have important effects in the cytoplasm. Collectively, these functions of STAT3 directly contribute to tumorigenesis, invasion, and metastasis. Given the potential importance of STAT3 as a target for cancer therapy, molecules have been developed that can block STAT3 function at a variety of steps. These drugs show promise as anticancer agents in model systems of a variety of common human cancers. Thus, elucidating the functions of STAT3 and developing agents to inhibit this protein remain important scientific and clinical challenges.
Collapse
Affiliation(s)
- Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
59
|
Wang C, Navab R, Iakovlev V, Leng Y, Zhang J, Tsao MS, Siminovitch K, McCready DR, Done SJ. Abelson interactor protein-1 positively regulates breast cancer cell proliferation, migration, and invasion. Mol Cancer Res 2007; 5:1031-9. [PMID: 17951403 DOI: 10.1158/1541-7786.mcr-06-0391] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abelson interactor protein-1 (ABI-1) is an adaptor protein involved in actin reorganization and lamellipodia formation. It forms a macromolecular complex containing Hspc300/WASP family verprolin-homologous proteins 2/ABI-1/nucleosome assembly protein 1/PIR121 or Abl/ABI-1/WASP family verprolin-homologous proteins 2 in response to Rho family-dependent stimuli. Due to its role in cell mobility, we hypothesized that ABI-1 has a role in invasion and metastasis. In the present study, we found that weakly invasive breast cancer cell lines (MCF-7, T47D, MDA-MB-468, SKBR3, and CAMA1) express lower levels of ABI-1 compared with highly invasive breast cancer cell lines (MDA-MB-231, MDA-MB-157, BT549, and Hs578T), which exhibit high ABI-1 levels. Using RNA interference, ABI-1 was stably down-regulated in MDA-MB-231, which resulted in decreased cell proliferation and anchorage-dependent colony formation and abrogation of lamellipodia formation on fibronectin. Down-regulation of ABI-1 decreased invasiveness and migration ability and decreased adhesion on collagen IV and actin polymerization in MDA-MB-231 cells. Additionally, compared with control parental cells, ABI-1 small interfering RNA-transfected cells showed decreased levels of phospho-PDK1, phospho-Raf, phospho-AKT, total AKT, and AKT1. These data suggest that ABI-1 plays an important role in the spread of breast cancer and that this role may be mediated via the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Chunjie Wang
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Chianale F, Cutrupi S, Rainero E, Baldanzi G, Porporato PE, Traini S, Filigheddu N, Gnocchi VF, Santoro MM, Parolini O, van Blitterswijk WJ, Sinigaglia F, Graziani A. Diacylglycerol kinase-alpha mediates hepatocyte growth factor-induced epithelial cell scatter by regulating Rac activation and membrane ruffling. Mol Biol Cell 2007; 18:4859-71. [PMID: 17898083 PMCID: PMC2096597 DOI: 10.1091/mbc.e07-02-0177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diacylglycerol kinases (Dgk) phosphorylate diacylglycerol (DG) to phosphatidic acid (PA), thus turning off and on, respectively, DG-mediated and PA-mediated signaling pathways. We previously showed that hepatocyte growth factor (HGF), vascular endothelial growth factor, and anaplastic lymphoma kinase activate Dgkalpha in endothelial and leukemia cells through a Src-mediated mechanism and that activation of Dgkalpha is required for chemotactic, proliferative, and angiogenic signaling in vitro. Here, we investigate the downstream events and signaling pathways regulated by Dgkalpha, leading to cell scatter and migration upon HGF treatment and v-Src expression in epithelial cells. We report that specific inhibition of Dgkalpha, obtained either pharmacologically by R59949 treatment, or by expression of Dgkalpha dominant-negative mutant, or by small interfering RNA-mediated down-regulation of endogenous Dgkalpha, impairs 1) HGF- and v-Src-induced cell scatter and migration, without affecting the loss of intercellular adhesions; 2) HGF-induced cell spreading, lamellipodia formation, membrane ruffling, and focal adhesions remodeling; and 3) HGF-induced Rac activation and membrane targeting. In summary, we provide evidence that Dgkalpha, activated downstream of tyrosine kinase receptors and Src, regulates crucial steps directing Rac activation and Rac-dependent remodeling of actin cytoskeleton and focal contacts in migrating epithelial cells.
Collapse
Affiliation(s)
| | - Santina Cutrupi
- Departments of *Medical Sciences
- Department of Animal and Human Biology and
- Center for Complex System in Molecular Biology and Medicine – SysBioM, University of Torino, 10123 Torino, Italy
| | | | - Gianluca Baldanzi
- Departments of *Medical Sciences
- Centro Ricerche “E. Menni,” Ospedale Poliambulanza, 25124 Brescia, Italy; and
| | | | | | | | | | - Massimo M. Santoro
- Scienze dell'Ambiente e della Vita, University of Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | - Ornella Parolini
- Centro Ricerche “E. Menni,” Ospedale Poliambulanza, 25124 Brescia, Italy; and
| | | | | | | |
Collapse
|
61
|
DeFea KA. Stop that cell! Beta-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 2007; 69:535-60. [PMID: 17002593 DOI: 10.1146/annurev.physiol.69.022405.154804] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beta-arrestins have recently emerged as key regulators of directed cell migration or chemotaxis. Given their traditional role as mediators of receptor desensitization, one theory is that beta-arrestins contribute to cell polarity during chemotaxis by quenching the signal at the trailing edge of the cell. A second theory is that they scaffold signaling molecules involved in cytoskeletal reorganization to promote localized actin assembly events leading to the formation of a leading edge. This review addresses both models. It discusses studies demonstrating the involvement of beta-arrestins in chemotaxis both in vivo and in vitro as well as recent evidence that beta-arrestins directly bind and regulate proteins involved in actin reorganization.
Collapse
Affiliation(s)
- Kathryn A DeFea
- Division of Biomedical Sciences and Cell, Molecular, and Developmental Biology Program, University of California, Riverside, California 92521, USA.
| |
Collapse
|
62
|
Koh E, Clair T, Hermansen R, Bandle RW, Schiffmann E, Roberts DD, Stracke ML. Sphingosine-1-phosphate initiates rapid retraction of pseudopodia by localized RhoA activation. Cell Signal 2007; 19:1328-38. [PMID: 17307336 DOI: 10.1016/j.cellsig.2007.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 01/17/2023]
Abstract
Lysophosphatidic acid (LPA) stimulates sphingosine-1-phosphate (S1P)-sensitive motility in NIH3T3 clone7 cells. S1P inhibits motility only when added to the bottom well of the Boyden chamber, suggesting that pseudopodia can respond to their microenvironment. In order to study and localize this effect, we utilized a Transwell insert system to isolate pseudopodia. LPA stimulates protrusion of pseudopodia that are enriched in RhoA compared to cell bodies. Removal of LPA results in slow retraction with loss of vinculin-rich adhesion complexes and prolonged activation of RhoA. However, RhoA, ROCK and mDia are not required for this process. In contrast, rapid retraction, induced by adding S1P to the bottom well, is associated with a quick spike of activated RhoA and coalescence of adhesion complexes that colocalize with the ends of stress fibers. S1P-induced retraction requires RhoA and ROCK but is only delayed by inhibition of mDia. These data indicate that pseudopodia sense and integrate signals initiated by localized bioactive lipids, affecting both cellular polarity and their own function in motility.
Collapse
Affiliation(s)
- Eunjin Koh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 2A33, Bethesda, MD 20892-1500, United States
| | | | | | | | | | | | | |
Collapse
|
63
|
Jia Z, Vadnais J, Lu ML, Noël J, Nabi IR. Rho/ROCK-dependent pseudopodial protrusion and cellular blebbing are regulated by p38 MAPK in tumour cells exhibiting autocrine c-Met activation. Biol Cell 2006; 98:337-51. [PMID: 16448388 DOI: 10.1042/bc20050088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The c-Met-dependent, beta-actin-rich, blebbed pseudopodia of MSV-MDCK-INV (invasive Moloney-sarcoma-virus-transformed Madin-Darby canine kidney) cells are induced by Rho/ROCK (Rho kinase) activation, and are morphologically distinct from flat extended lamellipodia. RESULTS Microtubules were shown to extend to these actin-rich pseudopodial domains, and microtubule depolymerization by nocodazole treatment resulted in progressive cellular blebbing, initiating in the pseudopodial domains and resulting in transient cellular rounding and blebbing after 30 min. The blebbing response was dependent on autocrine HGF (hepatocyte growth factor) activation of c-Met and prevented by inhibition of RhoA, ROCK and p38 MAPK (p38 mitogen-activated protein kinase), but not ERK (extracellular-signal-regulated kinase) or PI3K (phosphoinositide 3-kinase). Phospho-p38 MAPK was present in pseudopodia, localizing activation of this signalling pathway to this protrusive membrane structure. In serum-starved cells, LPA (lysophosphatidic acid) activation of RhoA induced p38 MAPK-dependent pseudopodial protrusions, and inhibition of p38 MAPK prevented pseudopodial protrusion and displacement of MSV-MDCK-INV cells. MSV-MDCK-INV cells exhibited intermittent blebbing and rounding, which may represent an integral part of their motile behaviour. CONCLUSIONS The localized activation of an autocrine HGF/c-Met loop regulates Rho/ROCK activation of p38 MAPK signalling to stimulate both membrane blebbing and pseudopod formation.
Collapse
Affiliation(s)
- Zongjian Jia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
64
|
DerMardirossian C, Rocklin G, Seo JY, Bokoch GM. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell 2006; 17:4760-8. [PMID: 16943322 PMCID: PMC1635405 DOI: 10.1091/mbc.e06-06-0533] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases (Rac, Rho, and Cdc42) play important roles in regulating cell function through their ability to coordinate the actin cytoskeleton, modulate the formation of signaling reactive oxidant species, and control gene transcription. Activation of Rho GTPase signaling pathways requires the regulated release of Rho GTPases from RhoGDI complexes, followed by their reuptake after membrane cycling. We show here that Src kinase binds and phosphorylates RhoGDI both in vitro and in vivo at Tyr156. Analysis of Rho GTPase-RhoGDI complexes using in vitro assays of complexation and in vivo by coimmunoprecipitation analysis indicates that Src-mediated phosphorylation of Tyr156 causes a dramatic decrease in the ability of RhoGDI to form a complex with RhoA, Rac1, or Cdc42. Phosphomimetic mutation of Tyr156-->Glu results in the constitutive association of RhoGDI(Y156E) with the plasma membrane and/or associated cortical actin. Substantial cortical localization of tyrosine-phosphorylated RhoGDI is also observed in fibroblasts expressing active Src, where it is most evident in podosomes and regions of membrane ruffling. Expression of membrane-localized RhoGDI(Y156E) mutant is associated with enhanced cell spreading and membrane ruffling. These results suggest that Src-mediated RhoGDI phosphorylation is a novel physiological mechanism for regulating Rho GTPase cytosol membrane-cycling and activity.
Collapse
Affiliation(s)
- Céline DerMardirossian
- Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
65
|
Abstract
STAT3, a member of the signal transducer and activator of transcription (STAT) family of transcription factors, is a known regulator of cell motility through its transcriptional activating functions. However, new evidence suggests a novel role for non-tyrosine-phosphorylated and cytoplasmically localized STAT3 in mediating cell migration by disrupting an interaction between microtubules and one of its partners, stathmin. The association of STAT3 with stathmin potentiates microtubule polymerization and cell movement.
Collapse
Affiliation(s)
- S Paul Gao
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|