51
|
Liang X, Butterworth MB, Peters KW, Walker WH, Frizzell RA. An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. J Biol Chem 2008; 283:27418-27425. [PMID: 18687683 DOI: 10.1074/jbc.m803687200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased distal nephron sodium absorption in response to aldosterone involves Nedd4-2 phosphorylation, which blocks its ability to ubiquitylate ENaC and increases apical membrane channel density by reducing its endocytosis. Our prior work (Liang, X., Peters, K. W., Butterworth, M. B., and Frizzell, R. A. (2006) J. Biol. Chem. 281, 16323-16332) showed that aldosterone selectively increased 14-3-3 protein isoform expression and that the association of 14-3-3beta with phospho-Nedd4-2 was required for sodium transport stimulation. The knockdown of 14-3-3beta alone nearly eliminated the response to aldosterone, despite the expression of other 14-3-3 isoforms in cortical collecting duct (CCD) cells. To further examine this marked effect of 14-3-3beta knockdown, we evaluated the hypothesis that phospho-Nedd4-2 binding prefers a heterodimer composed of two different 14-3-3 isoforms. We tested this concept in polarized CCD cells using RNA interference and assays of sodium transport and of the interaction of Nedd4-2 with 14-3-3epsilon, a second aldosterone-induced isoform. As observed previously for 14-3-3beta knockdown, small interfering RNA-induced reduction of 14-3-3epsilon markedly attenuated aldosterone-stimulated ENaC expression and sodium transport and increased the interaction of Nedd4-2 with ENaC toward prealdosterone levels. After aldosterone induction, 14-3-3beta and 14-3-3epsilon were quantitatively co-immunoprecipitated from CCD cell lysates, and the association of both isoforms with Nedd4-2 increased. Finally, the knockdown of either 14-3-3beta or 14-3-3epsilon reduced the association of Nedd4-2 with the other isoform. We conclude that the two aldosterone-induced 14-3-3 isoforms, beta and epsilon, interact with phospho-Nedd4-2 as an obligatory heterodimer, blocking its interaction with ENaC and thereby increasing apical ENaC density and sodium transport.
Collapse
Affiliation(s)
- Xiubin Liang
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Michael B Butterworth
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kathryn W Peters
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - William H Walker
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
52
|
Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 2008; 296:F10-24. [PMID: 18508877 DOI: 10.1152/ajprenal.90248.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle's syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in states as diverse as salt-sensitive hypertension, nephrosis, and pulmonary edema. ENaC activity in epithelial cells is highly regulated both by open probability and number of channels. Open probability is regulated by a number of factors, including proteolytic processing, while ENaC number is regulated by cellular trafficking. This review discusses current understanding of apical membrane delivery, cell surface stability, endocytosis, retrieval, and recycling of ENaC and the molecular partners that have so far been shown to participate in these processes. We review known sites and mechanisms of hormonal regulation of trafficking by aldosterone, vasopressin, and insulin. While many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Dept. of Cell Biology and Physiology, Univ. of Pittsburgh, S375 BST, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
53
|
Raikwar NS, Thomas CP. Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel. Am J Physiol Renal Physiol 2008; 294:F1157-65. [PMID: 18322022 PMCID: PMC2424110 DOI: 10.1152/ajprenal.00339.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously reported the existence of multiple isoforms of human Nedd4-2 (Am J Physiol Renal Physiol 285: F916-F929, 2003). When overexpressed in M-1 collecting duct epithelia, full-length Nedd4-2 (Nedd4-2), Nedd4-2 lacking the NH(2)-terminal C2 domain (Nedd4-2DeltaC2), and Nedd4-2 lacking WW domains 2 and 3 (Nedd4-2DeltaWW2,3) variably reduce benzamil-sensitive Na(+) transport. We investigated the effect of each of the Nedd4-2 isoforms on cell surface expression and ubiquitination of ENaC subunits. We find that alphaENaC when transfected alone or with beta and gammaENaC is expressed at the cell surface and this membrane expression is variably reduced by coexpression with each of the Nedd4-2 isoforms. Nedd4-2 reduces the half-life of ENaC subunits and enhances the ubiquitination of alpha, beta, and gammaENaC subunits when expressed alone or together suggesting that each subunit is a target for Nedd4-2-mediated ubiquitination. As has been reported recently, we confirm that the surface-expressed pool of ENaC is multi-ubiquitinated. Inhibitors of the proteasome increase ubiquitination of ENaC subunits and stimulate Na(+) transport in M-1 cells consistent with a role for the ubiquitin-proteasome pathway in regulating Na(+) transport in the collecting duct.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA
| | - Christie P. Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA
- Graduate Program in Molecular Biology, University of Iowa College of Medicine, Iowa City, IA
- Veterans Affairs Medical Center, Iowa City, IA
| |
Collapse
|
54
|
Lee IH, Campbell CR, Cook DI, Dinudom A. Regulation of epithelial Na+ channels by aldosterone: role of Sgk1. Clin Exp Pharmacol Physiol 2008; 35:235-41. [PMID: 18197893 DOI: 10.1111/j.1440-1681.2007.04844.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The epithelial sodium channel (ENaC) is tightly regulated by hormonal and humoral factors, including cytosolic ion concentration and glucocorticoid and mineralocorticoid hormones. Many of these regulators of ENaC control its activity by regulating its surface expression via neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2). 2. During the early phase of aldosterone action, Nedd4-2-dependent downregulation of ENaC is inhibited by the serum- and glucocorticoid-induced kinase 1 (Sgk1). 3. Sgk1 phosphorylates Nedd4-2. Subsequently, phosphorylated Nedd4-2 binds to the 14-3-3 protein and, hence, reduces binding of Nedd4-2 to ENaC. 4. Nedd4-2 is also phosphorylated by protein kinase B (Akt1). Both Sgk1 and Akt1 are part of the insulin signalling pathway that increases transepithelial Na(+) absorption by inhibiting Nedd4-2 and activating ENaC.
Collapse
Affiliation(s)
- Il-Ha Lee
- School of Medical Science, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
55
|
Abstract
Aldosterone increases sodium reabsorption across kidney target tubules already before it increases the number of transport proteins, indicating that the early functional response to aldosterone depends on the activation of preexisting channels and pumps. A central mediator of this action is the early aldosterone-induced kinase Sgk1 that de-represses the surface expression and activity of the epithelial sodium channel (ENaC). A main mechanism by which Sgk1 exerts this de-repression is the phosphorylation of the ubiquitin ligase Nedd4-2 that is thereby prevented from ubiquitylating ENaC. Among a series of new early aldosterone-induced gene products recently identified in kidney target tubules, an additional regulator of ENaC ubiquitylation, the deubiquitylating enzyme Usp2-45, was identified. Coexpression of Usp2-45 was shown to increase ENaC surface expression and activity, and to decrease its ubiquitylation in expression systems, whereas other Usps such as the splice variant Usp2-69 had no effect. Since both Sgk1 and Usp2-45 are similarly induced in distal colon as well, in contrast to other gene products strongly induced in kidney that are not regulated in colon, we suggest that (de)ubiquitylation is the major ENaC regulatory mechanism targeted by aldosterone in the short-term via transcriptional regulation.
Collapse
|
56
|
Bailey MA, Paterson JM, Hadoke PWF, Wrobel N, Bellamy COC, Brownstein DG, Seckl JR, Mullins JJ. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol 2007; 19:47-58. [PMID: 18032795 DOI: 10.1681/asn.2007040401] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The syndrome of apparent mineralocorticoid excess arises from nonfunctional mutations in 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), an enzyme that inactivates cortisol and confers aldosterone specificity on the mineralocorticoid receptor. Loss of 11betaHSD2 permits glucocorticoids to activate the mineralocorticoid receptor, and the hypertension in the syndrome is presumed to arise from volume expansion secondary to renal sodium retention. An 11betaHSD2 null mouse was generated on an inbred C57BL/6J genetic background, allowing survival to adulthood. 11betaHSD2(-/-) mice had BP approximately 20 mmHg higher on average compared with wild-type mice but were volume contracted, not volume expanded as expected. Initially, impaired sodium excretion associated with increased activity of the epithelial sodium channel was observed. By 80 days of age, however, channel activity was abolished and 11betaHSD2(-/-) mice lost salt. Despite the natriuresis, hypertension remained but was not attributable to intrinsic vascular dysfunction. Instead, urinary catecholamine levels in 11betaHSD2(-/-) mice were double those in wild-type mice, and alpha1-adrenergic receptor blockade rescued the hypertensive phenotype, suggesting that vasoconstriction contributes to the sustained hypertension in this model. In summary, it is proposed that renal sodium retention remains a key event in apparent mineralocorticoid excess but that the accompanying hypertension changes from a renal to a vascular etiology over time.
Collapse
Affiliation(s)
- Matthew A Bailey
- Centre for Cardiovascular Science, The University of Edinburgh, QMRI, 47, Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Pao AC, McCormick JA, Li H, Siu J, Govaerts C, Bhalla V, Soundararajan R, Pearce D. NH2 terminus of serum and glucocorticoid-regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiological functions. Am J Physiol Renal Physiol 2007; 292:F1741-50. [PMID: 17356130 DOI: 10.1152/ajprenal.00027.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum and glucocorticoid regulated kinase 1 (SGK1) has been identified as a key regulatory protein that controls a diverse set of cellular processes including sodium (Na(+)) homeostasis, osmoregulation, cell survival, and cell proliferation. Two other SGK isoforms, SGK2 and SGK3, have been identified, which differ most markedly from SGK1 in their NH(2)-terminal domains. We found that SGK1 and SGK3 are potent stimulators of epithelial Na(+) channel (ENaC)-dependent Na(+) transport, while SGK2, which has a short NH(2) terminus, is a weak stimulator of ENaC. Further characterization of the role of the SGK1 NH(2) terminus revealed that its deletion does not affect in vitro kinase activity but profoundly limits the ability of SGK1 either to stimulate ENaC-dependent Na(+) transport or inhibit Forkhead-dependent gene transcription. The NH(2) terminus of SGK1, which shares sequence homology with the phosphoinositide 3-phosphate [PI(3)P] binding domain of SGK3, binds phosphoinositides in protein lipid overlay assays, interacting specifically with PI(3)P, PI(4)P, and PI(5)P, but not with PI(3,4,5)P(3). Moreover, a point mutation that reduces phosphoinositide binding to the NH(2) terminus also reduces SGK1 effects on Na(+) transport and Forkhead activity. These data suggest that the NH(2) terminus, although not required for PI 3-kinase-dependent modulation of SGK1 catalytic activity, is required for multiple SGK1 functions, including stimulation of ENaC and inhibition of the proapoptotic Forkhead transcription factor. Together, these observations support the idea that the NH(2)-terminal domain acts downstream of PI 3-kinase-dependent activation to target the kinase to specific cellular compartments and/or substrates, possibly through its interactions with a subset of phosphoinositides.
Collapse
Affiliation(s)
- Alan C Pao
- Division of Nephrology, Department of Medicine, San Francisco General Hospital, CA 94110, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR. AMP-activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4-2. J Biol Chem 2006; 281:26159-69. [PMID: 16844684 DOI: 10.1074/jbc.m606045200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the beta-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the beta-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California 94107, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Bens M, Chassin C, Vandewalle A. Regulation of NaCl transport in the renal collecting duct: lessons from cultured cells. Pflugers Arch 2006; 453:133-46. [PMID: 16937117 DOI: 10.1007/s00424-006-0123-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/29/2022]
Abstract
The fine control of NaCl absorption regulated by hormones takes place in the distal nephron of the kidney. In collecting duct principal cells, the epithelial sodium channel (ENaC) mediates the apical entry of Na(+), which is extruded by the basolateral Na(+),K(+)-ATPase. Simian virus 40-transformed and "transimmortalized" collecting duct cell lines, derived from transgenic mice carrying a constitutive, conditionally, or tissue-specific promoter-regulated large T antigen, have been proven to be valuable tools for studying the mechanisms controlling the cell surface expression and trafficking of ENaC and Na(+),K(+)-ATPase. These cell lines have made it possible to identify sets of aldosterone- and vasopressin-stimulated proteins, and have provided new insights into the concerted mechanism of action of serum- and glucocorticoid-inducible kinase 1 (Sgk1), ubiquitin ligase Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), and 14-3-3 regulatory proteins in modulating ENaC-mediated Na(+) currents. Epidermal growth factor and induced leucine zipper protein have also been shown to repress and stimulate ENaC-dependent Na(+) absorption, respectively, by activating or repressing the mitogen-activated protein kinase externally regulated kinase(1/2). Overall, these findings have provided evidence suggesting that multiple pathways are involved in regulating NaCl absorption in the distal nephron.
Collapse
Affiliation(s)
- M Bens
- INSERM, U773, Centre de Recherche Biomédicale Bichat-Beaujon, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, BP 416, 75870 Paris, France
| | | | | |
Collapse
|
60
|
Myerburg MM, Butterworth MB, McKenna EE, Peters KW, Frizzell RA, Kleyman TR, Pilewski JM. Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis. J Biol Chem 2006; 281:27942-9. [PMID: 16873367 DOI: 10.1074/jbc.m606449200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient clearance of mucus and inhaled pathogens from the lung is dependent on an optimal airway surface liquid (ASL) volume, which is maintained by the regulated transport of sodium and chloride across the airway epithelium. Accumulating evidence suggests that impaired mucus clearance in cystic fibrosis (CF) airways is a result of ASL depletion caused by excessive Na(+) absorption through the epithelial sodium channel (ENaC). However, the cellular mechanisms that result in increased ENaC activity in CF airways are not completely understood. Recently, proteases were shown to modulate the activity of ENaC, but the relevance of this mechanism to the physiologic regulation of ASL volume is unknown. Using primary human airway epithelial cells, we demonstrate that: (i) protease inhibitors are present in the ASL and prevent the activation of near-silent ENaC, (ii) when the ASL volume is increased, endogenous protease inhibitors become diluted, allowing for proteolytic activation of near-silent channels, and (iii) in CF, the normally present near-silent pool of ENaC is constitutively active and the alpha subunit undergoes increased proteolytic processing. These findings indicate that the ASL volume modulates the activity of ENaC by modification of the serine protease-protease inhibitor balance and that alterations in this balance contribute to excessive Na(+) absorption in cystic fibrosis.
Collapse
Affiliation(s)
- Mike M Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|