Baro B, Rodriguez-Rodriguez JA, Calabria I, Hernáez ML, Gil C, Queralt E. Dual Regulation of the mitotic exit network (MEN) by PP2A-Cdc55 phosphatase.
PLoS Genet 2013;
9:e1003966. [PMID:
24339788 PMCID:
PMC3854864 DOI:
10.1371/journal.pgen.1003966]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022] Open
Abstract
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit.
Cell cycle studies over the years have tried to elucidate the molecular mechanisms behind cell division, one of the most highly regulated of all cell processes, which ensures life in all organisms. Protein phosphorylation emerged as a key regulatory mechanism in the cell cycle. The highly conserved family of cyclin-dependent kinases, the Cdks, are considered the main component of the cell cycle control system. However, it has become clear that opposing phosphatases also play a key role in determining the phosphorylation state of the proteins. Cells enter mitosis when mitotic Cdk activity increases, having its pick of activity during metaphase. To exit mitosis, cells must coordinate chromosome segregation with Cdk inactivation processes involving the activation of protein phosphatases. Here we show that the phosphatase PP2A regulates the mitotic exit network (MEN) by counteracting the phosphorylation of Bfa1 and Mob1. Our findings provide new insights into the mechanism by which PP2A-Cdc55 functions affect the regulation of various MEN components that contribute to mitotic exit. The core signalling elements of the MEN, SIN and Hippo pathways are highly conserved. Therefore, studies of MEN regulation will contribute to our understanding of MEN-related pathways in other organisms.
Collapse