51
|
Baulac S. mTOR signaling pathway genes in focal epilepsies. PROGRESS IN BRAIN RESEARCH 2016; 226:61-79. [DOI: 10.1016/bs.pbr.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
52
|
Zelter A, Bonomi M, Kim JO, Umbreit NT, Hoopmann MR, Johnson R, Riffle M, Jaschob D, MacCoss MJ, Moritz RL, Davis TN. The molecular architecture of the Dam1 kinetochore complex is defined by cross-linking based structural modelling. Nat Commun 2015; 6:8673. [PMID: 26560693 PMCID: PMC4660060 DOI: 10.1038/ncomms9673] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022] Open
Abstract
Accurate segregation of chromosomes during cell division is essential. The Dam1 complex binds kinetochores to microtubules and its oligomerization is required to form strong attachments. It is a key target of Aurora B kinase, which destabilizes erroneous attachments allowing subsequent correction. Understanding the roles and regulation of the Dam1 complex requires structural information. Here we apply cross-linking/mass spectrometry and structural modelling to determine the molecular architecture of the Dam1 complex. We find microtubule attachment is accompanied by substantial conformational changes, with direct binding mediated by the carboxy termini of Dam1p and Duo1p. Aurora B phosphorylation of Dam1p C terminus weakens direct interaction with the microtubule. Furthermore, the Dam1p amino terminus forms an interaction interface between Dam1 complexes, which is also disrupted by phosphorylation. Our results demonstrate that Aurora B inhibits both direct interaction with the microtubule and oligomerization of the Dam1 complex to drive error correction during mitosis.
Collapse
Affiliation(s)
- Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Jae Ook Kim
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel Jaschob
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
53
|
Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT. A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 2015; 12:1135-8. [PMID: 26436480 DOI: 10.1038/nmeth.3617] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
It remains particularly problematic to define the structures of native macromolecular assemblies, which are often of low abundance. Here we present a strategy for isolating complexes at endogenous levels from GFP-tagged transgenic cell lines. Using cross-linking mass spectrometry, we extracted distance restraints that allowed us to model the complexes' molecular architectures.
Collapse
Affiliation(s)
- Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA.,Institut Pasteur, Paris, France
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | | | - Mary K Thompson
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Yinyin Li
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| |
Collapse
|
54
|
Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 2015; 9:1281-91. [PMID: 25457612 DOI: 10.1016/j.celrep.2014.10.019] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK) and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition.
Collapse
|
55
|
Ferguson SM. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Curr Opin Cell Biol 2015; 35:59-68. [PMID: 25950843 DOI: 10.1016/j.ceb.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Lysosomes are becoming increasingly recognized as a hub that integrates diverse signals in order to control multiple aspects of cell physiology. This is illustrated by the discovery of a growing number of lysosome-localized proteins that respond to changes in growth factor and nutrient availability to regulate mTORC1 signaling as well as the identification of MiT/TFE transcription factors (MITF, TFEB and TFE3) as proteins that shuttle between lysosomes and the nucleus to elicit a transcriptional response to ongoing changes in lysosome status. These findings have been paralleled by advances in human genetics that connect mutations in genes involved in lysosomal signaling to a broad range of human illnesses ranging from cancer to neurological disease. This review summarizes these new discoveries at the interface between lysosome cell biology and human disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
56
|
Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128:2219-28. [PMID: 25934700 DOI: 10.1242/jcs.168922] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.
Collapse
Affiliation(s)
- Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
57
|
Kelley K, Knockenhauer KE, Kabachinski G, Schwartz TU. Atomic structure of the Y complex of the nuclear pore. Nat Struct Mol Biol 2015; 22:425-431. [PMID: 25822992 PMCID: PMC4424061 DOI: 10.1038/nsmb.2998] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. Here we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved core of the Y complex has six rather than seven members. Evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.
Collapse
Affiliation(s)
- Kotaro Kelley
- Department of Biology, Massachusetts Institute of Technology Cambridge, MA USA
| | | | - Greg Kabachinski
- Department of Biology, Massachusetts Institute of Technology Cambridge, MA USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology Cambridge, MA USA
| |
Collapse
|
58
|
Schlacht A, Dacks JB. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol Evol 2015; 7:1098-109. [PMID: 25747251 PMCID: PMC4419792 DOI: 10.1093/gbe/evv045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The coat protein complex II (COPII) is responsible for the transport of protein cargoes from the Endoplasmic Reticulum (ER) to the Golgi apparatus. COPII has been functionally characterized extensively in vivo in humans and yeast. This complex shares components with the nuclear pore complex and the Seh1-Associated (SEA) complex, inextricably linking its evolution with that of the nuclear pore and other protocoatomer domain-containing complexes. Importantly, this is one of the last coat complexes to be examined from a comparative genomic and phylogenetic perspective. We use homology searching of eight components across 74 eukaryotic genomes, followed by phylogenetic analyses, to assess both the distribution of the COPII components across eukaryote diversity and to assess its evolutionary history. We report that Sec12, but not Sed4 was present in the Last Eukaryotic Common Ancestor along with Sec16, Sar1, Sec13, Sec31, Sec23, and Sec24. We identify a previously undetected paralog of Sec23 that, at least, predates the archaeplastid clade. We also describe three Sec24 paralogs likely present in the Last Eukaryotic Common Ancestor, including one newly detected that was anciently present but lost from both opisthokonts and excavates. Altogether, we report previously undescribed complexity of the COPII coat in the ancient eukaryotic ancestor and speculate on models for the evolution, not only of the complex, but its relationship to other protocoatomer-derived complexes.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
59
|
Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. Nat Struct Mol Biol 2014; 21:1028-34. [PMID: 25383669 PMCID: PMC4259101 DOI: 10.1038/nsmb.2914] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023]
Abstract
The evolutionarily conserved Mediator complex is a critical coactivator for RNA polymerase II (Pol II)-mediated transcription. Here, we report the reconstitution of a functional 15-subunit human core Mediator complex and its characterization by functional assays and chemical cross-linking coupled to mass spectrometry (CX-MS). Whereas the reconstituted head and middle modules can stably associate, only with incorporation of MED14 into the bi-modular complex does it acquire basal and coactivator functions. This results from a dramatically enhanced ability of MED14-containing complexes to associate with Pol II. Altogether, our analyses identify MED14 as both an architectural and a functional backbone of the Mediator complex. We further establish a conditional requirement for metazoan-specific MED26 that becomes evident in the presence of heterologous nuclear factors. This general approach paves the way for systematically dissecting the multiple layers of functionalities associated with the Mediator complex.
Collapse
|
60
|
Shi Y, Fernandez-Martinez J, Tjioe E, Pellarin R, Kim SJ, Williams R, Schneidman-Duhovny D, Sali A, Rout MP, Chait BT. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol Cell Proteomics 2014; 13:2927-43. [PMID: 25161197 DOI: 10.1074/mcp.m114.041673] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope.
Collapse
Affiliation(s)
- Yi Shi
- From the ‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065
| | - Javier Fernandez-Martinez
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Elina Tjioe
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Rosemary Williams
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Dina Schneidman-Duhovny
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Michael P Rout
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065;
| | - Brian T Chait
- From the ‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065;
| |
Collapse
|