51
|
Wang Q, Wang K, Ye M. Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 2017; 142:3536-3548. [DOI: 10.1039/c7an00954b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein methylation is an important post-translational modification (PTM) that plays crucial roles in the regulation of diverse biological processes.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| |
Collapse
|
52
|
Ning Z, Star AT, Mierzwa A, Lanouette S, Mayne J, Couture JF, Figeys D. A charge-suppressing strategy for probing protein methylation. Chem Commun (Camb) 2016; 52:5474-7. [PMID: 27021271 DOI: 10.1039/c6cc00814c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methylation of arginine and lysine (RK) residues play essential roles in epigenetics and the regulation of gene expression. However, research in this area is often hindered by the lack of effective tools for probing the protein methylation. Here, we present an antibody-free strategy to capture protein methylation on RK residues by using chemical reactions to eliminate the charges on un-modified RK residues and peptide N-termini. Peptides containing methylated RK residues remain positively charged and are then enriched by strong cation exchange chromatography, followed by high-resolution mass spectrometry identification.
Collapse
Affiliation(s)
- Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Alexandra Therese Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Anna Mierzwa
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| |
Collapse
|
53
|
Zhang C, Liu Y. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry. Methods Enzymol 2016; 586:165-191. [PMID: 28137562 DOI: 10.1016/bs.mie.2016.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Posttranslational modifications (PTMs) of histones are one of the main research interests in the rapidly growing field of epigenetics. Accurate and precise quantification of these highly complex histone PTMs is critical for understanding the histone code and the biological significance behind it. It nonetheless remains a major analytical challenge. Mass spectrometry (MS) has been proven as a robust tool in retrieving quantitative information of histone PTMs, and a variety of MS-based quantitative strategies have been successfully developed and employed in basic research as well as clinical studies. In this chapter, we provide an overview for quantitative analysis of histone PTMs, often highly flexible and case dependent, as a primer for future experimental designs.
Collapse
Affiliation(s)
- C Zhang
- Baylor College of Medicine, Houston, TX, United States.
| | - Y Liu
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
54
|
Hamey JJ, Hart-Smith G, Erce MA, Wilkins MR. The activity of a yeast Family 16 methyltransferase, Efm2, is affected by a conserved tryptophan and its N-terminal region. FEBS Open Bio 2016; 6:1320-1330. [PMID: 28255539 PMCID: PMC5324768 DOI: 10.1002/2211-5463.12153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/24/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
The Family 16 methyltransferases are a group of eukaryotic nonhistone protein methyltransferases. Sixteen of these have recently been described in yeast and human, but little is known about their sequence and structural features. Here we investigate one of these methyltransferases, Saccharomyces cerevisiae elongation factor methyltransferase 2 (Efm2), by site-directed mutagenesis and truncation. We show that an active site-associated tryptophan, invariant in Family 16 methyltransferases and at position 222 in Efm2, is important for methyltransferase activity. A second highly conserved tryptophan, at position 318 in Efm2, is likely involved in S-adenosyl methionine binding but is of lesser consequence for catalysis. By truncation analysis, we show that the N-terminal 50-200 amino acids of Efm2 are critical for its methyltransferase activity. As N-terminal regions are variable among Family 16 methyltransferases, this suggests a possible role in determining substrate specificity. This is consistent with recently solved structures that show the core of Family 16 methyltransferases to be near-identical but the N termini to be structurally quite different. Finally, we show that Efm2 can exist as an oligomer but that its N terminus is not necessary for oligomerisation to occur.
Collapse
Affiliation(s)
- Joshua J Hamey
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Melissa A Erce
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| | - Marc R Wilkins
- Systems Biology Initiative School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia
| |
Collapse
|
55
|
Wang K, Dong M, Mao J, Wang Y, Jin Y, Ye M, Zou H. Antibody-Free Approach for the Global Analysis of Protein Methylation. Anal Chem 2016; 88:11319-11327. [DOI: 10.1021/acs.analchem.6b02872] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Keyun Wang
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Dong
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Jin
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
56
|
Sun M, Xu J, Wu Z, Zhai L, Liu C, Cheng Z, Xu G, Tao S, Ye BC, Zhao Y, Tan M. Characterization of Protein Lysine Propionylation in Escherichia coli: Global Profiling, Dynamic Change, and Enzymatic Regulation. J Proteome Res 2016; 15:4696-4708. [DOI: 10.1021/acs.jproteome.6b00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingwei Sun
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junyu Xu
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Lab
of Biosystems and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhixiang Wu
- Pediatric
Surgery Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P. R. China
| | - Linhui Zhai
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxi Liu
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, P. R. China
| | - Guofeng Xu
- Pediatric
Surgery Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P. R. China
| | - Shengce Tao
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bang-Ce Ye
- Lab
of Biosystems and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yingming Zhao
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Ben
May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | - Minjia Tan
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
57
|
Cao XJ, Garcia BA. Global Proteomics Analysis of Protein Lysine Methylation. ACTA ACUST UNITED AC 2016; 86:24.8.1-24.8.19. [PMID: 27801517 DOI: 10.1002/cpps.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysine methylation is a common protein post-translational modification dynamically mediated by protein lysine methyltransferases (PKMTs) and protein lysine demethylases (PKDMs). Beyond histone proteins, lysine methylation on non-histone proteins plays a substantial role in a variety of functions in cells and is closely associated with diseases such as cancer. A large body of evidence indicates that the dysregulation of some PKMTs leads to tumorigenesis via their non-histone substrates. However, most studies on other PKMTs have made slow progress owing to the lack of approaches for extensive screening of lysine methylation sites. However, recently, there has been a series of publications to perform large-scale analysis of protein lysine methylation. In this unit, we introduce a protocol for the global analysis of protein lysine methylation in cells by means of immunoaffinity enrichment and mass spectrometry. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xing-Jun Cao
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
58
|
Kaur I, Zeeshan M, Saini E, Kaushik A, Mohmmed A, Gupta D, Malhotra P. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages. Sci Rep 2016; 6:35432. [PMID: 27762281 PMCID: PMC5071865 DOI: 10.1038/srep35432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways.
Collapse
Affiliation(s)
- Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mohammad Zeeshan
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB, Aruna Asaf Ali Marg, New Delhi-110067, India.,Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ekta Saini
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, ICGEB, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
59
|
Modulation of the cytoplasmic functions of mammalian post-transcriptional regulatory proteins by methylation and acetylation: a key layer of regulation waiting to be uncovered? Biochem Soc Trans 2016; 43:1285-95. [PMID: 26614674 DOI: 10.1042/bst20150172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-transcriptional control of gene expression is critical for normal cellular function and viability and many of the proteins that mediate post-transcriptional control are themselves subject to regulation by post-translational modification (PTM), e.g. phosphorylation. However, proteome-wide studies are revealing new complexities in the PTM status of mammalian proteins, in particular large numbers of novel methylated and acetylated residues are being identified. Here we review studied examples of methylation/acetylation-dependent regulation of post-transcriptional regulatory protein (PTRP) function and present collated PTM data that points to the huge potential for regulation of mRNA fate by these PTMs.
Collapse
|
60
|
Ahmed H, Duan S, Arrowsmith CH, Barsyte-Lovejoy D, Schapira M. An Integrative Proteomic Approach Identifies Novel Cellular SMYD2 Substrates. J Proteome Res 2016; 15:2052-9. [DOI: 10.1021/acs.jproteome.6b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hazem Ahmed
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre and Department
of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department
of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University of Toronto; 1 King’s
College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
61
|
Garnett GA, Starke MJ, Shaurya A, Li J, Hof F. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics. Anal Chem 2016; 88:3697-703. [DOI: 10.1021/acs.analchem.5b04508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Graham A.E. Garnett
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Melissa J. Starke
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Alok Shaurya
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Janessa Li
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| |
Collapse
|
62
|
Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, Campbell RM, Garcia BA, Nguyen H. Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics. Mol Cell Proteomics 2016; 15:892-905. [PMID: 26750096 DOI: 10.1074/mcp.m115.053280] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.
Collapse
Affiliation(s)
- Jonathan B Olsen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Xing-Jun Cao
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Bomie Han
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Lisa Hong Chen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | | | | | - Robert M Campbell
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Benjamin A Garcia
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104;
| | - Hannah Nguyen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285;
| |
Collapse
|
63
|
Hart-Smith G, Yagoub D, Tay AP, Pickford R, Wilkins MR. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates. Mol Cell Proteomics 2015; 15:989-1006. [PMID: 26699799 DOI: 10.1074/mcp.m115.055384] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 01/22/2023] Open
Abstract
All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through (13)CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857.
Collapse
Affiliation(s)
- Gene Hart-Smith
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Daniel Yagoub
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Aidan P Tay
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Russell Pickford
- ‖Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R Wilkins
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| |
Collapse
|
64
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|
65
|
Carlson SM, Moore KE, Sankaran SM, Reynoird N, Elias JE, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem 2015; 290:12040-7. [PMID: 25795785 DOI: 10.1074/jbc.m115.641530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5' splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.
Collapse
Affiliation(s)
| | - Kaitlyn E Moore
- From the Department of Biology and Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | | | | | - Joshua E Elias
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Or Gozani
- From the Department of Biology and ogozani@stanfordedu
| |
Collapse
|
66
|
Zhang Y, Zhang C, Jiang H, Yang P, Lu H. Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 2015; 44:8260-87. [DOI: 10.1039/c4cs00529e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently available chemical approaches for the enrichment and separation of a PTM proteome using functional solid phases were reviewed.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| | - Cheng Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Hucong Jiang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| |
Collapse
|