51
|
Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1694-704. [DOI: 10.1016/j.bbabio.2016.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
52
|
Rudashevskaya EL, Sickmann A, Markoutsa S. Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Rev Proteomics 2016; 13:951-964. [PMID: 27602509 DOI: 10.1080/14789450.2016.1233064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite the rapid evolution of proteomic methods, protein interactions and their participation in protein complexes - an important aspect of their function - has rarely been investigated on the proteome-wide level. Disease states, such as muscular dystrophy or viral infection, are induced by interference in protein-protein interactions within complexes. The purpose of this review is to describe the current methods for global complexome analysis and to critically discuss the challenges and opportunities for the application of these methods in biomedical research. Areas covered: We discuss advancements in experimental techniques and computational tools that facilitate profiling of the complexome. The main focus is on the separation of native protein complexes via size exclusion chromatography and gel electrophoresis, which has recently been combined with quantitative mass spectrometry, for a global protein-complex profiling. The development of this approach has been supported by advanced bioinformatics strategies and fast and sensitive mass spectrometers that have allowed the analysis of whole cell lysates. The application of this technique to biomedical research is assessed, and future directions are anticipated. Expert commentary: The methodology is quite new, and has already shown great potential when combined with complementary methods for detection of protein complexes.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| | - Albert Sickmann
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany.,b Medizinisches Proteom-Center , Ruhr-Universität Bochum , Bochum , Germany.,c School of Natural & Computing Sciences, Department of Chemistry , University of Aberdeen , Aberdeen , UK
| | - Stavroula Markoutsa
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| |
Collapse
|
53
|
Zhang J, Li M, Zhang Z, Zhu R, Olcese R, Stefani E, Toro L. The mitochondrial BK Ca channel cardiac interactome reveals BK Ca association with the mitochondrial import receptor subunit Tom22, and the adenine nucleotide translocator. Mitochondrion 2016; 33:84-101. [PMID: 27592226 DOI: 10.1016/j.mito.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Mitochondrial BKCa channel, mitoBKCa, regulates mitochondria function in the heart but information on its protein partnerships in cardiac mitochondria is missing. A directed proteomic approach discovered the novel interaction of BKCa with Tom22, a component of the mitochondrion outer membrane import system, and the adenine nucleotide translocator (ANT). The expressed protein partners co-immunoprecipitated and co-segregated into mitochondrial fractions in HEK293T cells. The BKCa 50 amino acid splice insert, DEC, facilitated BKCa interaction with ANT. Further, BKCa transmembrane domain was required for the association with both Tom22 and ANT. The results serve as a working framework to understand mitoBKCa import and functional relationships.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Li
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhu Zhang
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ronghui Zhu
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ligia Toro
- Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
54
|
Pérez-Pérez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A, García-Bartolomé A, Fernández-Vizarra E, Cadenas S, Delmiro A, García-Consuegra I, Arenas J, Martín MA, Larsson NG, Ugalde C. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation. Cell Rep 2016; 16:2387-98. [PMID: 27545886 DOI: 10.1016/j.celrep.2016.07.081] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/28/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.
Collapse
Affiliation(s)
- Rafael Pérez-Pérez
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Teresa Lobo-Jarne
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Alberto García-Bartolomé
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | | | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Aitor Delmiro
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Inés García-Consuegra
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Joaquín Arenas
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Miguel A Martín
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain.
| |
Collapse
|
55
|
Hashemi A, Gharechahi J, Nematzadeh G, Shekari F, Hosseini SA, Salekdeh GH. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:90-101. [PMID: 27362847 DOI: 10.1016/j.jplph.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress.
Collapse
Affiliation(s)
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ghorbanali Nematzadeh
- Faculty of Agronomy, University of Agricultural Sciences and Natural Resources of Sari, Sari, Iran
| | - Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Abdollah Hosseini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran; Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|